JP2003170049A - Exhaust gas cleaning catalyst - Google Patents
Exhaust gas cleaning catalystInfo
- Publication number
- JP2003170049A JP2003170049A JP2001375958A JP2001375958A JP2003170049A JP 2003170049 A JP2003170049 A JP 2003170049A JP 2001375958 A JP2001375958 A JP 2001375958A JP 2001375958 A JP2001375958 A JP 2001375958A JP 2003170049 A JP2003170049 A JP 2003170049A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- methane
- catalyst
- carrier
- manganese oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 31
- 238000004140 cleaning Methods 0.000 title abstract 5
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 34
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 8
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 7
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 3
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 3
- 229910052741 iridium Inorganic materials 0.000 claims abstract 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 42
- 239000007789 gas Substances 0.000 abstract description 31
- 238000002485 combustion reaction Methods 0.000 abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 abstract description 12
- 239000001301 oxygen Substances 0.000 abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 10
- 230000003647 oxidation Effects 0.000 abstract description 7
- 238000007254 oxidation reaction Methods 0.000 abstract description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 25
- 238000000746 purification Methods 0.000 description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000012050 conventional carrier Substances 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排気ガス浄化触媒
に関し、特に内燃機関排気ガス中のメタンに対する浄化
能力を高めた排気ガス浄化触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly to an exhaust gas purifying catalyst having an improved purifying ability for methane in exhaust gas of an internal combustion engine.
【0002】[0002]
【従来の技術】自動車排気ガスに代表される内燃機関排
気ガス中には、運転条件等によって不完全燃焼成分とし
てメタンが含有されることがある。2. Description of the Related Art Exhaust gas of an internal combustion engine represented by automobile exhaust gas may contain methane as an incomplete combustion component depending on operating conditions.
【0003】従来、このような排気ガス中のメタンを除
去するための浄化触媒としては、アルミナ、ジルコニ
ア、シリカアルミナ、シリカ等の高比表面積多孔体を担
体とし、これにメタンの燃焼浄化に有効な活性種である
Pd等の貴金属を担持させたものが用いられてきた。Conventionally, as a purification catalyst for removing methane in such exhaust gas, a porous material having a high specific surface area such as alumina, zirconia, silica-alumina and silica has been used as a carrier, which is effective for combustion purification of methane. A material carrying a noble metal such as Pd, which is an active species, has been used.
【0004】しかし、環境浄化に対する社会的要請は一
層高まる趨勢にあり、浄化性能を更に高めた排気ガス浄
化触媒が求められている。However, the social demand for environmental purification has been increasing, and there is a demand for an exhaust gas purification catalyst having further improved purification performance.
【0005】メタンに対する浄化能力を高める一つの重
要な観点は、触媒担体がその酸化数変化により酸素を放
出しメタンの燃焼を促進することである。One of the important aspects of enhancing the purification capacity for methane is that the catalyst carrier releases oxygen due to the change in its oxidation number to promote the combustion of methane.
【0006】上記従来のアルミナ等の担体は、酸化数変
化を容易に起こさず、酸素の吸着点も持たないため、酸
素放出によるメタンの燃焼促進はできない。The above-mentioned conventional carrier such as alumina does not easily change the oxidation number and does not have an oxygen adsorption point, and therefore cannot promote combustion of methane by releasing oxygen.
【0007】一方、マンガン酸化物は酸化数変化を容易
に起こす遷移金属酸化物として知られている。しかし、
遷移金属酸化物は一般に比表面積が小さいため、メタン
の燃焼浄化に必要な活性種であるPd等の貴金属の分散
度がアルミナ等に比べて著しく低下してしまうという問
題があった。On the other hand, manganese oxide is known as a transition metal oxide that easily causes a change in oxidation number. But,
Since a transition metal oxide generally has a small specific surface area, there is a problem that the dispersity of a noble metal such as Pd, which is an active species necessary for combustion purification of methane, is significantly reduced as compared with alumina or the like.
【0008】[0008]
【発明が解決しようとする課題】本発明は、担体の酸化
数変化による酸素放出と、メタン燃焼浄化ための活性種
の高分散担持とを同時に実現して、排気ガス中のメタン
に対する浄化能力を高めた排気ガス浄化触媒を提供する
ことを目的とする。DISCLOSURE OF THE INVENTION According to the present invention, oxygen release due to a change in the oxidation number of a carrier and high-dispersion loading of active species for methane combustion purification are realized at the same time to improve the purification ability for methane in exhaust gas. An object is to provide an enhanced exhaust gas purifying catalyst.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の排気ガス浄化触媒は、ホーランダイト型
結晶構造を有するマンガン酸化物に貴金属を担持して成
ることを特徴とする。In order to achieve the above object, the exhaust gas purifying catalyst of the present invention is characterized in that a manganese oxide having a hollandite type crystal structure is loaded with a noble metal.
【0010】上記貴金属は、Pd、Pt、RhおよびI
rから成る群から選択される。The precious metals are Pd, Pt, Rh and I.
selected from the group consisting of r.
【0011】[0011]
【発明の実施の形態】本発明の排気ガス浄化触媒は、メ
タン燃焼のための活性種を担持する担体を、ホーランダ
イト(Hollandite)型結晶構造を有するマンガン酸化物
で構成した点に特徴がある。BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas purifying catalyst of the present invention is characterized in that the carrier carrying active species for methane combustion is composed of manganese oxide having a Hollandite type crystal structure. .
【0012】マンガン酸化物は、上述のとおり酸化数変
化を容易に起こして酸素を放出するので、この酸素によ
ってメタンの燃焼浄化を促進することができる。As described above, manganese oxide easily causes a change in the oxidation number and releases oxygen, so that the combustion purification of methane can be promoted by this oxygen.
【0013】同時に、ホーランダイト型結晶構造は、M
nO6八面体を基本単位とし、これが縦2単位×横2単
位配列して中央に細孔が形成された構造であり、担体全
体としては三次元細孔構造を備えている。この三次元細
孔構造により、活性種を高分散に担持することができ
る。At the same time, the hollandite type crystal structure is M
The nO 6 octahedron is used as a basic unit, and this is a structure in which 2 units in the vertical direction × 2 units in the horizontal direction are arranged and a pore is formed in the center, and the carrier as a whole has a three-dimensional pore structure. Due to this three-dimensional pore structure, the active species can be supported in high dispersion.
【0014】[0014]
【実施例】〔実施例〕本発明により、ホーランダイト型
結晶構造を有するマンガン酸化物から成る担体に、メタ
ン燃焼のための活性種としてパラジウム(Pd)を担持
した排気ガス浄化触媒を下記の手順で作製した。[Examples] According to the present invention, an exhaust gas purifying catalyst in which palladium (Pd) as an active species for methane combustion is carried on a carrier made of manganese oxide having a hollandite type crystal structure is carried out by the following procedure. It was made in.
【0015】<担体:ホーランダイト型マンガン酸化物
の調製>KMnO411.78gをイオン交換水200
mlに溶解した溶液を調製した。<Support: Preparation of hollandite-type manganese oxide> 11.78 g of KMnO 4 was added to 200 parts of ion-exchanged water.
A solution dissolved in ml was prepared.
【0016】別に、MnSO4・xH2O17.6gを
イオン交換水60mlに溶解した溶液を調製した。Separately, a solution was prepared by dissolving 17.6 g of MnSO 4 .xH 2 O in 60 ml of ion-exchanged water.
【0017】上記2種の水溶液を混合した後、HNO3
を6ml加えた。After mixing the above two aqueous solutions, HNO 3
6 ml was added.
【0018】得られた混合溶液を、容積300mlのオ
ートクレーブに入れて、100℃×24時間の水熱合成
を行った。The obtained mixed solution was placed in an autoclave having a volume of 300 ml and subjected to hydrothermal synthesis at 100 ° C. for 24 hours.
【0019】水熱合成による生成物を濾過して固形分を
回収し、イオン交換水で洗浄した後、120℃で乾燥し
て、粉末サンプルを得た。The product obtained by the hydrothermal synthesis was filtered to collect the solid content, washed with ion-exchanged water and dried at 120 ° C. to obtain a powder sample.
【0020】得られた粉末サンプルについてX線回折を
行ったところ、ホーランダイト型結晶構造を持つことが
確認された。CuKα線によるX線回折チャートの例を
図1に示す。When the obtained powder sample was subjected to X-ray diffraction, it was confirmed to have a hollandite type crystal structure. An example of an X-ray diffraction chart using CuKα rays is shown in FIG.
【0021】<触媒作製:パラジウム(Pd)の担持>
上記で作製したホーランダイト型マンガン酸化物粉末1
9.6gをイオン交換水中に分散させ、これにPd量0.
4g相当の硝酸パラジウム水溶液を加えた後、濃縮乾
固、乾燥、粉砕した後に、450℃で2時間焼成した。<Catalyst preparation: Palladium (Pd) loading>
Hollandite-type manganese oxide powder 1 produced above
9.6 g was dispersed in ion-exchanged water, and the amount of Pd was 0.1.
After adding 4 g of an aqueous palladium nitrate solution, the mixture was concentrated to dryness, dried, pulverized, and then calcined at 450 ° C. for 2 hours.
【0022】これにより、ホーランダイト型マンガン酸
化物から成る担体に、メタン燃焼のための活性種として
のパラジウム(Pd)が担持された粉末状の排気ガス浄
化触媒が得られた。As a result, a powdery exhaust gas purifying catalyst was obtained in which palladium (Pd) as an active species for methane combustion was supported on a carrier made of hollandite type manganese oxide.
【0023】この触媒粉末を直径1〜2mmのペレット
に成形して、試験に供した。This catalyst powder was molded into pellets having a diameter of 1 to 2 mm and used for the test.
【0024】〔比較例〕比較のために、従来のγ−アル
ミナ(γ−Al2O3)から成る担体に、メタン燃焼の
ための活性主としてパラジウム(Pd)を担持した排気
ガス浄化触媒を下記の手順で作製した。[Comparative Example] For comparison, an exhaust gas purifying catalyst having a conventional carrier composed of γ-alumina (γ-Al 2 O 3 ) carrying mainly active palladium (Pd) for methane combustion is shown below. It was produced by the procedure of.
【0025】γ−アルミナ(γ−Al2O3)粉末1
9.6gをイオン交換水中に分散させ、これにPd量0.
4g相当の硝酸パラジウム水溶液を加えた後、濃縮乾
固、乾燥、粉砕した後に、450℃で2時間焼成した。Γ-Alumina (γ-Al 2 O 3 ) powder 1
9.6 g was dispersed in ion-exchanged water, and the amount of Pd was 0.1.
After adding 4 g of an aqueous palladium nitrate solution, the mixture was concentrated to dryness, dried, pulverized, and then calcined at 450 ° C. for 2 hours.
【0026】これにより、γ−アルミナから成る担体に
パラジウム(Pd)が担持された粉末状の排気ガス浄化
触媒が得られた。As a result, a powdery exhaust gas purifying catalyst in which palladium (Pd) was supported on a carrier composed of γ-alumina was obtained.
【0027】実施例および比較例により作製した触媒ペ
レットについて、下記試験および測定を行った。The following tests and measurements were carried out on the catalyst pellets produced in the examples and comparative examples.
【0028】<モデルガス評価試験>触媒ペレットを反
応容器内に配置し下記組成のモデル排気ガスを導入・流
通させた。<Model Gas Evaluation Test> A catalyst pellet was placed in a reaction vessel and a model exhaust gas having the following composition was introduced and distributed.
【0029】モデルガス組成
CH4:1000ppm
NO :800ppm
CO :0.2%
CO2:10%
O2 :4.0%
H2O:10%
N2 :残部
触媒床温度を20℃/分の速度で上昇させ、反応容器か
らの排出ガスのCH4濃度が反応容器への導入ガスのC
H4濃度の50%になる温度(50%浄化温度)を測定
した。結果を図2に比較して示す。The model gas composition CH 4: 1000ppm NO: 800ppm CO : 0.2% CO 2: 10% O 2: 4.0% H 2 O: 10% N 2: balance the catalyst bed temperature of 20 ° C. / min And the CH 4 concentration of the exhaust gas from the reaction container is increased at a rate of C
The temperature at which the H 4 concentration reached 50% (50% purification temperature) was measured. The results are shown in comparison with FIG.
【0030】図2に示したように、本発明によりホーラ
ンダイト型マンガン酸化物を担体として用いた実施例の
排気ガス浄化触媒は50%浄化温度が379℃であり、
従来のγ−アルミナを担体とした比較例の場合の404
℃に比較して、遥かに低温で浄化作用を発揮することが
分かる。As shown in FIG. 2, the exhaust gas purifying catalyst of the example of the present invention using hollandite type manganese oxide as a carrier has a 50% purification temperature of 379 ° C.
404 in the case of the comparative example using the conventional γ-alumina as a carrier
It can be seen that the purifying action is exerted at a much lower temperature as compared with the case of ℃.
【0031】<TPD−Mass分析>TPD−Mas
s分析により、5℃/minの昇温速度で酸素昇温脱離
スペクトルを測定した。結果を図3に示す。<TPD-Mass Analysis> TPD-Mas
The oxygen temperature programmed desorption spectrum was measured by s analysis at a temperature rising rate of 5 ° C./min. The results are shown in Fig. 3.
【0032】図3に示したように、本発明によるホーラ
ンダイト型マンガン酸化物を担体とした実施例の排気ガ
ス浄化触媒は、従来のγ−アルミナを担体とした比較例
の場合に比較して、酸素脱離量が大幅に増加しメタン燃
焼活性を促進していることが分かる。As shown in FIG. 3, the exhaust gas purifying catalyst of the embodiment using the hollandite-type manganese oxide according to the present invention as compared with the catalyst of the comparative example using γ-alumina as a carrier is compared with the conventional example. It can be seen that the oxygen desorption amount is greatly increased and the methane combustion activity is promoted.
【0033】<BET比表面積測定およびPd分散度測
定>表1にBET比表面積測定結果を示し、表2にPd
分散度測定結果を示す。なお、Pd分散度はCOパルス
法で測定したCO吸着量から算出した。<BET specific surface area measurement and Pd dispersity measurement> Table 1 shows the BET specific surface area measurement results, and Table 2 shows Pd.
The dispersion degree measurement result is shown. The Pd dispersity was calculated from the CO adsorption amount measured by the CO pulse method.
【0034】表1 BET比表面積測定値(m2/g)
実施例:121
比較例:150.3
表2 Pd分散度(%)
実施例:24.06
比較例:26.21
表1、表2に示したように、本発明によるホーランダイ
ト型マンガン酸化物から成る担体は、従来のγ−アルミ
ナから成る担体と同等の比表面積およびPd分散度を確
保できることが分かる。Table 1 BET specific surface area measurement value (m 2 / g) Example: 121 Comparative example: 150.3 Table 2 Pd dispersity (%) Example: 24.06 Comparative example: 26.21 Table 1, table As shown in FIG. 2, the carrier composed of the hollandite type manganese oxide according to the present invention can secure the same specific surface area and Pd dispersity as those of the conventional carrier composed of γ-alumina.
【0035】なお、参考として、ホーランダイト型結晶
構造を持たない通常のマンガン酸化物についてBET比
表面積測定を行ったところ、11.2m2/gであり、
これに対して本発明のホーランダイト型マンガン酸化物
は比表面積が10倍以上に増大していることが分かっ
た。As a reference, the BET specific surface area of a normal manganese oxide having no hollandite type crystal structure was measured and found to be 11.2 m 2 / g.
On the other hand, it was found that the hollandite type manganese oxide of the present invention has a specific surface area increased by 10 times or more.
【0036】[0036]
【発明の効果】本発明によれば、ホーランダイト型結晶
構造を有するマンガン酸化物を担体としたことにより、
担体の酸化数変化による酸素放出と、メタン燃焼浄化た
めの活性種の高分散担持とを同時に実現して、排気ガス
中のメタンに対する浄化能力を高めた排気ガス浄化触媒
が提供される。According to the present invention, by using manganese oxide having a hollandite type crystal structure as a carrier,
An exhaust gas purification catalyst is provided which simultaneously realizes oxygen release due to a change in the oxidation number of a carrier and high-dispersion loading of active species for methane combustion purification, thereby enhancing the purification ability for methane in exhaust gas.
【図1】図1は、本発明による排気ガス浄化触媒の担体
を構成するホーランダイト型マンガン酸化物のX線回折
チャートの一例を示すグラフである。FIG. 1 is a graph showing an example of an X-ray diffraction chart of hollandite-type manganese oxide which constitutes a carrier of an exhaust gas purification catalyst according to the present invention.
【図2】図2は、本発明による排気ガス浄化触媒のメタ
ン50%浄化温度を従来の排気ガス浄化触媒と比較して
示すグラフである。FIG. 2 is a graph showing a 50% methane purification temperature of an exhaust gas purification catalyst according to the present invention in comparison with a conventional exhaust gas purification catalyst.
【図3】図3は、本発明による排気ガス浄化触媒の酸素
昇温脱離スペクトルを従来の排気ガス浄化触媒と比較し
て示すグラフである。FIG. 3 is a graph showing an oxygen temperature programmed desorption spectrum of an exhaust gas purifying catalyst according to the present invention in comparison with a conventional exhaust gas purifying catalyst.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D048 AA18 AB01 BA28X BA30Y BA31X BA33Y BA41X BB01 4G069 AA03 BB04A BB04B BC62A BC62B BC71A BC72A BC72B BC74A BC75A CA02 CA03 CA07 CA15 EA02Y EB18Y EC22X EC22Y EC25 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4D048 AA18 AB01 BA28X BA30Y BA31X BA33Y BA41X BB01 4G069 AA03 BB04A BB04B BC62A BC62B BC71A BC72A BC72B BC74A BC75A CA02 CA03 CA07 CA15 EA02Y EB18Y EC22X EC22Y EC25
Claims (2)
ガン酸化物に貴金属を担持して成ることを特徴とする排
気ガス浄化触媒。1. An exhaust gas purifying catalyst comprising a manganese oxide having a hollandite type crystal structure carrying a noble metal.
Irから成る群から選択されることを特徴とする請求項
1記載の排気ガス浄化触媒。2. The exhaust gas purifying catalyst according to claim 1, wherein the noble metal is selected from the group consisting of Pd, Pt, Rh and Ir.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001375958A JP2003170049A (en) | 2001-12-10 | 2001-12-10 | Exhaust gas cleaning catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001375958A JP2003170049A (en) | 2001-12-10 | 2001-12-10 | Exhaust gas cleaning catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003170049A true JP2003170049A (en) | 2003-06-17 |
Family
ID=19184244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001375958A Pending JP2003170049A (en) | 2001-12-10 | 2001-12-10 | Exhaust gas cleaning catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003170049A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106423213A (en) * | 2016-11-17 | 2017-02-22 | 北京工业大学 | Three-dimensional orderly macroporous cobalt ferrate loaded manganese oxide and noble metal catalyst capable of efficiently oxidizing methane |
CN114653367A (en) * | 2022-03-11 | 2022-06-24 | 青岛大学 | Preparation and application of iridium-supported catalyst with different carriers |
-
2001
- 2001-12-10 JP JP2001375958A patent/JP2003170049A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106423213A (en) * | 2016-11-17 | 2017-02-22 | 北京工业大学 | Three-dimensional orderly macroporous cobalt ferrate loaded manganese oxide and noble metal catalyst capable of efficiently oxidizing methane |
CN106423213B (en) * | 2016-11-17 | 2018-12-07 | 北京工业大学 | A kind of three-dimensional ordered macroporous cobalt ferrite load manganese oxide and noble metal catalyst of efficient oxidation methane |
CN114653367A (en) * | 2022-03-11 | 2022-06-24 | 青岛大学 | Preparation and application of iridium-supported catalyst with different carriers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6486360B2 (en) | Carbon monoxide and / or oxidation catalyst for volatile organic compounds | |
JP4959129B2 (en) | Exhaust gas purification catalyst | |
US6492298B1 (en) | Ordinary-temperature purifying catalyst | |
JP5706546B1 (en) | Ceria-zirconia composite oxide and method for producing the same | |
JP4759739B2 (en) | Ethylene decomposition catalyst | |
US9687817B2 (en) | Carrier for exhaust gas purification catalyst, and exhaust gas purification catalyst | |
JP4381071B2 (en) | Method for producing exhaust gas treatment catalyst | |
JP2003170049A (en) | Exhaust gas cleaning catalyst | |
JP2003313011A (en) | Method for producing metal oxide | |
JPH0838889A (en) | Adsorbent of nitrogen oxide and removal of nitrogen oxide using the same | |
JP3031823B2 (en) | Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent | |
JP3222184B2 (en) | Method for producing exhaust gas purifying catalyst | |
JP4254444B2 (en) | Exhaust gas purification catalyst for internal combustion engine and method for producing the same | |
US9144788B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP6851225B2 (en) | Exhaust gas purification catalyst, its manufacturing method, and exhaust gas purification equipment using it | |
JP2006341152A (en) | Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst | |
JP4123644B2 (en) | Exhaust gas purification catalyst | |
JP2003275588A (en) | Co shift reaction catalyst | |
EP2210861A1 (en) | Cerium-containing complex oxide, method of producing the same, pm combustion catalyst and diesel particulate filter | |
JP2001347166A (en) | Catalyst for co shift reaction | |
KR102240551B1 (en) | Nitrogen oxide storage material and exhaust gas purification method | |
JP2003170050A (en) | Exhaust gas cleaning catalyst | |
JPH0975733A (en) | Oxide catalytic material for removal of nox and method for removing nox | |
JP2016131942A (en) | Alloy catalyst for exhaust purification and method for producing the same | |
JP2022073362A (en) | Adsorption material of nitrogen oxide, and catalyst for automobile exhaust gas |