JP2003167089A - Nuclear energy facility internal cooling system - Google Patents

Nuclear energy facility internal cooling system

Info

Publication number
JP2003167089A
JP2003167089A JP2001364019A JP2001364019A JP2003167089A JP 2003167089 A JP2003167089 A JP 2003167089A JP 2001364019 A JP2001364019 A JP 2001364019A JP 2001364019 A JP2001364019 A JP 2001364019A JP 2003167089 A JP2003167089 A JP 2003167089A
Authority
JP
Japan
Prior art keywords
cooling
fuel pool
water
refrigerator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001364019A
Other languages
Japanese (ja)
Inventor
Takumi Yamamoto
匠 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001364019A priority Critical patent/JP2003167089A/en
Publication of JP2003167089A publication Critical patent/JP2003167089A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nuclear energy facility internal cooling system for enabling efficient operation in consideration of fluctuation of thermal load in a fuel pool. <P>SOLUTION: This nuclear energy facility internal cooling system has a fuel pool cooling and purifying heat exchanger 5 connected to the fuel pool 1 installed adjacent to a reactor to cool water in the fuel pool, a reactor auxiliary machine cooling system 7 for guiding secondary side cooling water heat- exchanged by a fuel pool cooling and purifying system heat exchanger by a secondary side cooling water pipe and discharging the heat of the secondary side cooling water to the outside, and a refrigerator 11 connected to branch off the secondary side cooling water pipe. The system has an ice heat storage tank 14 capable of at least temporarily supplying cold water to the secondary cooling water pipe. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原子力プラントに
おいて、原子炉停止時に発生する炉心または使用済燃料
プールの燃料崩壊熱、その他の機器から発生する熱を除
去するための原子力施設内冷却システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system in a nuclear facility for removing heat of fuel decay of a core or a spent fuel pool generated when a nuclear reactor is shut down and heat generated from other equipment in a nuclear power plant. .

【0002】[0002]

【従来の技術】従来の沸騰水型原子力プラントにおける
原子炉停止時の燃料プール等を冷却するための原子力施
設内冷却システムについて、図7を参照しながら説明す
る(特開2001−074874、特開2001−09
1684、特開2001−188094の各公報参
照)。
2. Description of the Related Art A conventional cooling system in a nuclear facility for cooling a fuel pool and the like when a nuclear reactor is shut down in a boiling water nuclear power plant will be described with reference to FIG. 7 (Japanese Patent Laid-Open No. 2001-074874, 2001-09
1684, Japanese Patent Laid-Open No. 2001-188094).

【0003】原子炉ウエルに隣接してプールゲートを介
して燃料プール1が設置されている。プラント通常運転
中は、燃料プール1内に貯蔵された使用済燃料から発生
する崩壊熱は、燃料プール1内のプール水に排熱され
る。加熱された燃料プール水はスキマサージタンク2に
流出して燃料プール冷却浄化系(FPC)ポンプ3を通
して燃料プール冷却浄化系ろ過脱塩装置4に流入して浄
化された後、燃料プール冷却浄化系熱交換器5によって
除熱される。この除熱冷却されたプール水を戻り配管1
aを通して再び燃料プール1内に戻される。
A fuel pool 1 is installed adjacent to the reactor well via a pool gate. During the normal operation of the plant, decay heat generated from the spent fuel stored in the fuel pool 1 is exhausted to pool water in the fuel pool 1. The heated fuel pool water flows out to the skimmer surge tank 2, flows into the fuel pool cooling / purification system (FPC) pump 3 into the fuel pool cooling / purification system filter desalting device 4, and is purified, and then the fuel pool cooling / purification system. The heat is removed by the heat exchanger 5. Return pipe 1 of this heat-cooled pool water
It is returned to the fuel pool 1 again through a.

【0004】ここで、燃料プール冷却浄化系熱交換器5
からの排熱は原子炉補機冷却水系(RCW)ポンプ6に
よって循環する冷却水により、原子炉補機冷却水系熱交
換器7で行われる。そして、原子炉補機冷却水系熱交換
器7には海水冷却系(RSW)ポンプ8により海水が通
水されており、熱を奪い最終的に海に放出して除熱され
る。
Here, the heat exchanger 5 for the fuel pool cooling purification system
Exhaust heat from the reactor auxiliary cooling water system (RCW) pump 6 is circulated in the reactor auxiliary cooling water system heat exchanger 7 by cooling water circulated by the reactor auxiliary cooling water system (RCW) pump 6. The seawater cooling system (RSW) pump 8 allows the seawater to pass through the reactor auxiliary equipment cooling water system heat exchanger 7 to remove the heat and finally release it to the sea for heat removal.

【0005】また、プラント定期検査(定検)中は、燃
料交換の際にプールゲートを開くため、原子炉圧力容器
内の使用中の燃料および燃料プール1に存在する使用済
燃料を同時に燃料プール冷却浄化系により冷却してい
る。
Further, during the periodical inspection (fixed inspection) of the plant, since the pool gate is opened at the time of refueling, the fuel in use in the reactor pressure vessel and the spent fuel existing in the fuel pool 1 are simultaneously collected in the fuel pool. It is cooled by a cooling purification system.

【0006】定検中の冷却方法については、通常運転中
と同様に行われるが、海水冷却系についてはプラントに
よっては取水口1箇所のみから海水を取水しているプラ
ントがあり、取水口点検の際には海水冷却系ポンプを全
て停止する必要がある。海水冷却系ポンプ8を停止すれ
ば、原子炉補機冷却水系熱交換器7での除熱ができない
ため、結果的に燃料プール冷却浄化系での使用済燃料の
冷却ができなくなる。そのため、海水冷却系点検時は燃
料プール冷却浄化系熱交換器5での除熱が可能となるよ
う、排熱側の原子炉補機冷却水系配管上の弁9を閉し、
弁19を開することによって原子炉補機冷却水系に接続
された冷凍機冷却系に切り替え、冷凍機ポンプ10によ
り冷凍機11に通水して除熱している。
The cooling method during regular inspection is the same as that during normal operation, but there are some plants that take seawater from only one intake port for seawater cooling systems. In that case, it is necessary to stop all the seawater cooling system pumps. If the seawater cooling system pump 8 is stopped, heat cannot be removed from the reactor auxiliary cooling water system heat exchanger 7, and as a result, spent fuel cannot be cooled in the fuel pool cooling / purification system. Therefore, at the time of inspection of the seawater cooling system, the valve 9 on the exhaust heat side reactor auxiliary cooling water system piping is closed so that heat can be removed by the fuel pool cooling purification system heat exchanger 5.
The valve 19 is opened to switch to the refrigerator cooling system connected to the reactor auxiliary cooling water system, and the refrigerator pump 10 passes water to the refrigerator 11 to remove heat.

【0007】また、原子炉補機冷却水系の供給先として
ドライウェル(D/W)クーラ44がある。原子炉運転
時においては、ドライウェル32内の空気冷却はドライ
ウェル32内に設置された5台のドライウェルクーラ4
4により行われている。5台の内4台のドライウェルク
ーラ44には原子炉補機冷却水系冷却水(35℃程
度)、1台にはドライウェル除湿系冷却水または換気空
調補機常用冷却水系(HVCW)(10℃程度)が通水
されており、通水されたコイルとドライウェル32内の
空気が熱交換することによりドライウェル32内の空気
が冷却されている。
A dry well (D / W) cooler 44 is provided as a supply destination of the reactor auxiliary cooling water system. During the reactor operation, the air in the drywell 32 is cooled by the five drywell coolers 4 installed in the drywell 32.
It is done by 4. Four of the five drywell coolers 44 have reactor auxiliary equipment cooling water system cooling water (about 35 ° C.) and one have drywell dehumidification system cooling water or ventilation air conditioning auxiliary equipment permanent cooling water system (HVCW) (10 (About .degree. C.) is passed, and the air in the dry well 32 is cooled by heat exchange between the passed coil and the air in the dry well 32.

【0008】[0008]

【発明が解決しようとする課題】使用済燃料および新規
に取り出した燃料による崩壊熱は、原子炉停止後の時間
の経過とともに減少する。冷凍機11は、使用済燃料お
よび新規に取り出した燃料の燃料プールに放出される最
大崩壊熱を除去する能力で設計されているため、崩壊熱
が減少した時は冷凍機の低負荷運転を行うこととなり、
効率が悪い。
The decay heat from the spent fuel and the newly extracted fuel decreases with the passage of time after the reactor shutdown. Since the refrigerator 11 is designed with the ability to remove the maximum decay heat released to the fuel pool of the spent fuel and the newly taken out fuel, when the decay heat is reduced, the refrigerator is operated at a low load. That means
ineffective.

【0009】また、冷凍機11に戻る冷水の温度につい
ては、崩壊熱の変化に伴い大きく変化するため、冷凍機
11の運転条件として非常に厳しいものとなっている。
また、冷凍機11はプラント定期検査中の海水冷却系の
点検時のみの限られた期間での運用となり、冷凍機11
の設備利用率が悪い。また、冷凍機11について空冷方
式を用いた場合、冬季の未使用時には凍結防止処置をす
る必要がある。
Further, the temperature of the cold water returning to the refrigerator 11 greatly changes with the change of the decay heat, so that the operating conditions of the refrigerator 11 are very severe.
In addition, the refrigerator 11 is operated for a limited period only during the inspection of the seawater cooling system during the plant regular inspection.
The equipment utilization rate is poor. Further, when the air-cooling method is used for the refrigerator 11, it is necessary to take anti-freezing measures when it is not used in winter.

【0010】さらに、ドライウェルクーラ44について
は、原子炉運転時におけるドライウェル32内の温度
が、保温材の剥れ等が原因で、建設時に比較して高くな
ってきているプラントが多く、温度を下げる必要があ
る。
Further, with regard to the drywell cooler 44, in many plants, the temperature inside the drywell 32 during operation of the reactor is higher than that at the time of construction due to peeling of the heat insulating material and the like. Need to lower.

【0011】本発明は上記種々の課題の少なくとも一部
を解決するものであって、燃料プールにおける熱負荷の
変動を考慮して、効率的な運用が可能な原子力施設内冷
却システムを提供することを目的とする。
The present invention solves at least a part of the above-mentioned various problems, and provides a cooling system in a nuclear facility capable of efficient operation in consideration of fluctuations in heat load in a fuel pool. With the goal.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するものであって、請求項1に記載の発明は、原子炉に
隣接して設置された燃料プールに接続されて前記燃料プ
ール内の水を冷却する燃料プール冷却浄化系熱交換器
と、前記燃料プール冷却浄化系熱交換器で熱交換した二
次側冷却水を二次側冷却水配管で導いてその二次側冷却
水の熱を外部に放出する原子炉補機冷却系と、前記二次
側冷却水配管から分岐して接続されて前記二次側冷却水
配管に冷水を供給する冷凍機と、を有する原子力施設内
冷却システムであって、冷熱を貯蔵して、少なくとも一
時的に前記二次側冷却水配管に冷水を供給できる冷熱貯
槽を有すること、を特徴とする。
The present invention achieves the above object, and the invention according to claim 1 is connected to a fuel pool installed adjacent to a nuclear reactor and is connected to the inside of the fuel pool. And a fuel pool cooling / purifying system heat exchanger for cooling the water of the secondary cooling water, and the secondary side cooling water that has exchanged heat with the fuel pool cooling / purifying system heat exchanger is guided by a secondary side cooling water pipe. Cooling in a nuclear facility having a nuclear reactor auxiliary equipment cooling system for releasing heat to the outside, and a refrigerator branched from the secondary side cooling water pipe and connected to supply cold water to the secondary side cooling water pipe The system is characterized by having a cold heat storage tank capable of storing cold heat and at least temporarily supplying cold water to the secondary side cooling water pipe.

【0013】請求項1の発明によれば、燃料プールにお
ける熱負荷が小さいときに冷熱貯槽に冷熱を貯蔵してお
き、燃料プールにおける熱負荷が大きいときに、冷熱貯
槽に貯蔵された冷熱を利用することができる。例えば、
原子炉停止直後の崩壊熱の高い時期から海水冷却系を点
検する場合において、崩壊熱が高い時期は、冷凍機を用
いた冷却系と冷熱貯槽による冷却系を運転し、崩壊熱が
低くなった時期には冷凍機を用いた冷却系のみの運転に
切り替えることができる。このため、冷凍機の容量を従
来のものより小さくすることができ、効率的な運用が実
施できる。
According to the invention of claim 1, the cold heat is stored in the cold heat storage tank when the heat load in the fuel pool is small, and the cold heat stored in the cold heat storage tank is used when the heat load in the fuel pool is large. can do. For example,
When inspecting the seawater cooling system from the time when the decay heat was high immediately after the reactor shutdown, when the decay heat was high, the cooling system using the refrigerator and the cooling system using the cold heat storage tank were operated and the decay heat became low. It is possible to switch to operation of only the cooling system using the refrigerator at the time. Therefore, the capacity of the refrigerator can be made smaller than that of the conventional one, and efficient operation can be performed.

【0014】また、請求項2に記載の発明は、原子炉に
隣接して設置された燃料プールに接続されて前記燃料プ
ール内の水を冷却する燃料プール冷却浄化系熱交換器
と、前記燃料プール冷却浄化系熱交換器で熱交換した二
次側冷却水を二次側冷却水配管で導いてその二次側冷却
水の熱を外部に放出する原子炉補機冷却系と、前記燃料
プールに接続されて前記燃料プール内の水を冷却する冷
凍機と、を有する原子力施設内冷却システムであって、
冷熱を貯蔵して、少なくとも一時的に熱交換器を介さず
に直接前記燃料プールに冷水を供給できる冷熱貯槽を有
すること、を特徴とする。
The invention according to claim 2 is a heat exchanger for cooling and purifying a fuel pool, which is connected to a fuel pool installed adjacent to a nuclear reactor to cool water in the fuel pool, and the fuel. Pool cooling purification system Reactor auxiliary equipment cooling system that guides secondary side cooling water that has undergone heat exchange in a heat exchanger through a secondary side cooling water pipe to release the heat of the secondary side cooling water to the outside, and the fuel pool A refrigerator for cooling the water in the fuel pool connected to a cooling system in a nuclear facility,
It has a cold heat storage tank capable of storing cold heat and at least temporarily supplying cold water directly to the fuel pool without passing through a heat exchanger.

【0015】請求項2の発明によれば、燃料プール冷却
浄化系熱交換器、原子炉補機冷却系熱交換器を介さずに
直接燃料プール水を冷却できるため、効率的に燃料プー
ル水を冷却することができる。また、冷熱貯槽の利用に
より、冷凍機の容量を小さくすることができる。
According to the second aspect of the present invention, the fuel pool water can be directly cooled without passing through the fuel pool cooling / purification system heat exchanger and the reactor auxiliary equipment cooling system heat exchanger. Can be cooled. Further, by using the cold heat storage tank, the capacity of the refrigerator can be reduced.

【0016】また、請求項3に記載の発明は、原子炉に
隣接して設置された燃料プールに接続されて前記燃料プ
ール内の水を冷却する燃料プール冷却浄化系熱交換器
と、前記燃料プール冷却浄化系熱交換器で熱交換した二
次側冷却水を二次側冷却水配管で導いてその二次側冷却
水の熱を外部に放出する原子炉補機冷却系と、前記二次
側冷却水配管の途中に直列に接続されて前記二次側冷却
水配管に冷水を供給する冷凍機と、を有する原子力施設
内冷却システムであって、冷熱を貯蔵して、少なくとも
一時的に前記二次側冷却水配管に冷水を供給できる冷熱
貯槽を有すること、を特徴とする。
The invention according to claim 3 is a heat exchanger for cooling and purifying a fuel pool, which is connected to a fuel pool installed adjacent to a nuclear reactor to cool water in the fuel pool, and the fuel. A secondary cooling system for the reactor cooling system that guides the secondary cooling water that has undergone heat exchange in the pool cooling and purification system heat exchanger through the secondary cooling water pipe to release the heat of the secondary cooling water to the outside, and the secondary cooling system. A cooling system in a nuclear facility having a refrigerator connected in series in the middle of a side cooling water pipe and supplying cold water to the secondary side cooling water pipe, storing cold heat, and at least temporarily It has a cold heat storage tank capable of supplying cold water to the secondary side cooling water pipe.

【0017】請求項3の発明によれば、冷凍機用の冷却
系ポンプや配管、弁の数量を削減することができる。ま
た、冷熱貯槽の利用により、冷凍機の容量を小さくする
ことができる。
According to the third aspect of the present invention, it is possible to reduce the number of cooling system pumps, piping and valves for the refrigerator. Further, by using the cold heat storage tank, the capacity of the refrigerator can be reduced.

【0018】また、請求項4に記載の発明は、請求項1
ないし3のいずれかに記載の原子力施設内冷却システム
において、前記冷熱貯槽は氷蓄熱槽であること、を特徴
とする。
The invention described in claim 4 is the same as claim 1.
In the cooling system for a nuclear power facility according to any one of 1 to 3, the cold heat storage tank is an ice heat storage tank.

【0019】請求項4の発明によれば、請求項1ないし
3のいずれかの作用・効果が得られるほか、氷蓄熱を行
うことにより、冷熱貯槽の小型化、冷熱貯槽の温度変動
の抑制が可能である。
According to the invention of claim 4, in addition to the effects and advantages of any one of claims 1 to 3, by performing ice storage, downsizing of the cold heat storage tank and suppression of temperature fluctuation of the cold heat storage tank can be achieved. It is possible.

【0020】また、請求項5に記載の発明は、請求項1
ないし3のいずれかに記載の原子力施設内冷却システム
において、前記冷熱貯槽は貯水槽であること、を特徴と
する。請求項5の発明によれば、請求項1ないし3のい
ずれかの作用・効果が得られるほか、貯水槽を利用する
ことにより、設備・運用の簡単化を図ることができる。
The invention described in claim 5 is the same as claim 1.
In the cooling system for a nuclear facility according to any one of 1 to 3, the cold heat storage tank is a water storage tank. According to the invention of claim 5, in addition to the effects and advantages of any one of claims 1 to 3, the use of the water tank can simplify the facility and operation.

【0021】また、請求項6に記載の発明は、請求項1
ないし5のいずれかに記載の原子力施設内冷却システム
において、前記冷凍機とは別に、前記冷熱を貯蔵するた
めの冷熱貯槽用冷凍機を有すること、を特徴とする。
The invention according to claim 6 is the same as claim 1.
The nuclear power plant cooling system according to any one of items 1 to 5, further comprising a cold heat storage tank refrigerator for storing the cold heat, in addition to the refrigerator.

【0022】請求項6の発明によれば、請求項1ないし
5のいずれかの作用・効果が得られるほか、冷熱貯槽用
の冷凍機を別個に有することから、制御がしやすいとい
うという利点がある。
According to the invention of claim 6, in addition to the operation and effect of any one of claims 1 to 5, it has an advantage that it is easy to control because it has a separate refrigerator for a cold heat storage tank. is there.

【0023】また、請求項7に記載の発明は、請求項1
ないし5のいずれかに記載の原子力施設内冷却システム
において、前記冷凍機が、前記冷熱貯槽に冷熱を貯蔵す
るための冷熱貯槽用冷凍機を兼ねており、前記冷熱貯槽
に冷熱を貯蔵する運転と、前記冷熱貯槽に貯蔵された冷
熱を前記燃料プールの冷却に利用する運転とを、弁の切
替えによって切り替えられるように構成されているこ
と、を特徴とする。請求項7の発明によれば、請求項1
ないし5のいずれかの作用・効果が得られるほか、冷凍
機の数が少なくてすむという利点がある。
The invention described in claim 7 is the same as claim 1.
In the nuclear facility cooling system according to any one of 1 to 5, the refrigerator also serves as a cold heat storage refrigerator for storing cold heat in the cold heat storage tank, and an operation of storing cold heat in the cold heat storage tank is performed. The operation for utilizing the cold heat stored in the cold heat storage tank to cool the fuel pool is configured to be switched by switching a valve. According to the invention of claim 7, claim 1
In addition to the effect or effect of any one of 5 to 5, there is an advantage that the number of refrigerators can be small.

【0024】また、請求項8に記載の発明は、原子炉に
隣接して設置された燃料プールに接続されて前記燃料プ
ール内の水を冷却する燃料プール冷却浄化系熱交換器
と、前記燃料プール冷却浄化系熱交換器で熱交換した二
次側冷却水を二次側冷却水配管で導いてその二次側冷却
水の熱を外部に放出する原子炉補機冷却系と、前記燃料
プールに冷水を供給する冷凍機と、を有する原子力施設
内冷却システムであって、前記冷凍機で作られた冷却水
を、少なくとも前記原子炉の運転中に、前記燃料プール
以外の負荷先に供給できるように配管接続されているこ
と、を特徴とする。
The invention according to claim 8 is a heat exchanger for cooling and purifying a fuel pool, which is connected to a fuel pool installed adjacent to a nuclear reactor to cool water in the fuel pool, and the fuel. Pool cooling purification system Reactor auxiliary equipment cooling system that guides secondary side cooling water that has undergone heat exchange in a heat exchanger through a secondary side cooling water pipe to release the heat of the secondary side cooling water to the outside, and the fuel pool A cooling system for supplying cold water to the inside of a nuclear facility, which is capable of supplying the cooling water produced by the refrigerator to a load destination other than the fuel pool at least during operation of the reactor. It is characterized in that it is connected by pipes.

【0025】請求項8の発明によれば、原子炉運転中に
おいても燃料プール冷凍機冷却系を利用でき、効率的な
運用が実施できる。例えば、近年原子炉再循環ポンプの
制御方式を従来のMG(モータ・発電機)セット方式か
らVVVF(可変電圧可変周波数)方式に置き換えられ
ているがVVVF盤の冷却源として本冷凍機冷却系を使
用することができる。またドライウェルの冷却に利用す
ることもできる。
According to the invention of claim 8, the fuel pool refrigerator cooling system can be utilized even during the operation of the nuclear reactor, and efficient operation can be carried out. For example, in recent years, the control system of the reactor recirculation pump has been replaced from the conventional MG (motor / generator) set system to the VVVF (variable voltage variable frequency) system, but this refrigerator cooling system is used as a cooling source for the VVVF panel. Can be used. It can also be used for cooling dry wells.

【0026】また、請求項9に記載の発明は、請求項8
に記載の原子力施設内冷却システムにおいて、前記燃料
プール以外の負荷先は、前記原子炉を格納するドライウ
ェルを冷却するドライウェルクーラと、ドライウェル除
湿系と、換気空調補機常用冷却水系とのうちの少なくと
も一つを含むこと、を特徴とする。
The invention described in claim 9 is the same as that of claim 8.
In the nuclear facility cooling system according to claim 1, the load destinations other than the fuel pool are a drywell cooler that cools the drywell that stores the reactor, a drywell dehumidification system, and a ventilation air conditioning auxiliary equipment regular cooling water system. At least one of them is included.

【0027】請求項9の発明によれば、請求項8の作用
・効果が得られるほか、例えばプラント運転中に低温度
(例えば約10℃)の冷水がドライウェルクーラ等に供
給できるため、プラント運転中のドライウェルの環境を
改善することができる。
According to the invention of claim 9, in addition to the operation and effect of claim 8, cold water of low temperature (for example, about 10 ° C.) can be supplied to a drywell cooler or the like during operation of the plant. The dry well environment during operation can be improved.

【0028】また、請求項10に記載の発明は、原子炉
に隣接して設置された燃料プールに接続されて前記燃料
プール内の水を冷却する燃料プール冷却浄化系熱交換器
と、前記燃料プール冷却浄化系熱交換器で熱交換した二
次側冷却水を二次側冷却水配管で導いてその二次側冷却
水の熱を外部に放出する原子炉補機冷却系と、前記燃料
プールに冷水を供給する冷凍機と、を有する原子力施設
内冷却システムであって、前記冷凍機で作られた冷却水
を、少なくとも前記原子炉の運転中に、当該原子炉以外
の原子炉に関係する負荷先に供給できるように配管接続
されていること、を特徴とする。請求項10の発明によ
れば、燃料プール冷凍機冷却系の複数の原子炉間で共有
することで、利用頻度が高くなり効率的な運用が実施で
きる。
The invention according to claim 10 is a heat exchanger for cooling and purifying a fuel pool, which is connected to a fuel pool installed adjacent to a nuclear reactor to cool water in the fuel pool, and the fuel. Pool cooling purification system Reactor auxiliary equipment cooling system that guides secondary side cooling water that has undergone heat exchange in a heat exchanger through a secondary side cooling water pipe to release the heat of the secondary side cooling water to the outside, and the fuel pool A cooling system for supplying cold water to a nuclear power plant in a nuclear facility, the cooling water produced by the refrigerator being related to a nuclear reactor other than the nuclear reactor at least during operation of the nuclear reactor. It is characterized in that it is connected by piping so that it can be supplied to the load destination. According to the tenth aspect of the present invention, the fuel pool refrigerator cooling system is shared among a plurality of nuclear reactors, so that it is used more frequently and can be efficiently operated.

【0029】また、請求項11に記載の発明は、請求項
1ないし10のいずれかに記載の原子力施設内冷却シス
テムにおいて、前記冷水を供給する冷凍機の入口側に設
置された温度計と、この温度計の出力を目標値に近づけ
るべく制御する制御手段と、を有すること、を特徴とす
る。
The invention according to claim 11 is the cooling system in the nuclear facility according to any one of claims 1 to 10, further comprising a thermometer installed on the inlet side of the refrigerator for supplying the cold water, And a control means for controlling the output of the thermometer to approach the target value.

【0030】請求項11の発明によれば、請求項1ない
し10のいずれかの作用・効果が得られるほか、冷凍機
に戻る冷水の温度が設計値に対して高い場合においても
冷凍機に負担をかけず、安定した運転をすることができ
る。
According to the invention of claim 11, in addition to the operation and effect of any one of claims 1 to 10, even when the temperature of the cold water returning to the refrigerator is higher than the design value, the refrigerator is burdened. It is possible to drive stably without applying

【0031】[0031]

【発明の実施の形態】[第1の実施の形態](請求項
1、4、6、8、10、11等に関係) 図1により本発明に係る原子力施設内冷却システムの第
1の実施の形態を説明する。なお、図1中、図7と同一
または類似の部分には同一符号を付して、重複する部分
の説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION [First Embodiment] (Relevant to Claims 1, 4, 6, 8, 10, 11 etc.) FIG. 1 shows a first embodiment of a cooling system in a nuclear facility according to the present invention. The form of will be described. In FIG. 1, the same or similar parts as those in FIG. 7 are designated by the same reference numerals, and the description of the overlapping parts will be omitted.

【0032】本実施の形態は、図1に示すように、燃料
プール浄化系の燃料プール冷却浄化系熱交換器5の二次
側冷却水を導く原子炉補機冷却水系冷却水配管5aに接
続された冷凍機冷却水供給配管20に、氷蓄熱槽14を
冷却源とし、氷蓄熱槽冷却系ポンプ13により冷水供給
を行う氷蓄熱槽冷水供給配管23を接続する。また、冷
凍機冷水戻り配管21に、氷蓄熱槽14を冷却源とし蓄
熱槽冷却系ポンプ13により冷水供給を行う蓄熱槽冷水
戻り配管24を接続する。さらに、冷水供給配管23お
よび冷水戻り配管24上に氷蓄熱槽冷却系切替弁12を
設置する。氷蓄熱槽の氷はプラント停止前から製氷用冷
凍機22にて製造しておく。
In this embodiment, as shown in FIG. 1, it is connected to a reactor auxiliary cooling water system cooling water pipe 5a for guiding the secondary side cooling water of the fuel pool cooling and purification system heat exchanger 5 of the fuel pool purification system. An ice heat storage tank cold water supply pipe 23, which uses the ice heat storage tank 14 as a cooling source and supplies cold water by the ice heat storage tank cooling system pump 13, is connected to the refrigerator cooling water supply pipe 20 thus prepared. In addition, the refrigerator cold water return pipe 21 is connected to a heat storage tank cold water return pipe 24 which uses the ice heat storage tank 14 as a cooling source and supplies cold water by the heat storage tank cooling system pump 13. Further, the ice storage tank cooling system switching valve 12 is installed on the cold water supply pipe 23 and the cold water return pipe 24. The ice in the ice heat storage tank is manufactured by the ice making refrigerator 22 before the plant is stopped.

【0033】冷凍機冷水供給配管20と氷蓄熱槽冷却供
給配管23が合流した後の冷凍機冷水供給配管20上
に、プラント運転中冷却必要負荷16への冷水供給配管
25を接続し、冷凍機冷水戻り配管21と蓄熱槽冷却水
系戻り配管24が分岐する前の冷凍機冷水戻り配管21
上に、プラント運転中冷却必要負荷16からの冷水戻り
配管26を接続する。さらに、プラント運転中冷却必要
負荷16への冷水供給配管25およびプラント運転中冷
却必要負荷16からの冷水戻り配管26上に、プラント
運転中冷却必要負荷切替弁15を設置する。プラント運
転中冷却必要負荷16には、例えば、VVVF冷却装
置、タービン発電機励磁装置冷却装置、オフガスの復水
器冷却装置等がある。
The cold water supply pipe 25 to the cooling required load 16 during the plant operation is connected to the freezer cold water supply pipe 20 after the freezer cold water supply pipe 20 and the ice storage tank cooling supply pipe 23 have joined together, and the freezer is connected. The chiller cold water return pipe 21 before the chilled water return pipe 21 and the heat storage tank cooling water system return pipe 24 branch
The chilled water return pipe 26 from the cooling required load 16 during the plant operation is connected above. Further, the cooling required load switching valve 15 during plant operation is installed on the cold water supply pipe 25 to the cooling required load 16 during plant operation and the cold water return pipe 26 from the cooling required load 16 during plant operation. The cooling required load 16 during plant operation includes, for example, a VVVF cooling device, a turbine generator excitation device cooling device, an off-gas condenser cooling device, and the like.

【0034】冷凍機冷水供給配管20と蓄熱槽冷却供給
配管23が合流した後の冷凍機冷水供給配管20上に、
他プラント冷却必要負荷18への冷水供給配管27を接
続する。冷凍機冷水戻り配管21と氷蓄熱槽冷却供給配
管23が合流する前の冷凍機冷水戻り配管21上に、他
プラント冷却必要負荷18からの冷水戻り配管28を接
続する。さらに、他プラント冷却必要負荷18への冷水
供給配管27および他プラント冷却必要負荷18からの
冷水戻り配管28上に他プラント冷却必要負荷切替弁1
7を設置する。
On the refrigerator chilled water supply pipe 20 after the chiller chilled water supply pipe 20 and the heat storage tank cooling supply pipe 23 are joined,
The cold water supply pipe 27 to the other plant cooling required load 18 is connected. A chilled water return pipe 28 from another plant cooling required load 18 is connected to the chiller cold water return pipe 21 before the chiller chilled water return pipe 21 and the ice storage tank cooling supply pipe 23 join. Further, on the chilled water supply pipe 27 to the other plant cooling required load 18 and the chilled water return pipe 28 from the other plant cooling required load 18, the other plant cooling required load switching valve 1
Set up 7.

【0035】冷凍機冷水供給配管20と、冷凍機冷却系
ポンプ10の吸込側の冷凍機冷水戻り配管21との間に
冷凍機温度調節配管29を設置し、冷凍機温度調節配管
29上に温度調節弁31を設置する。また、冷凍機11
の入口に温度計30を設置する。温度計30の値が一定
となるように温度調節弁31は自動的に開度制御を行
う。
A refrigerator temperature adjusting pipe 29 is installed between the refrigerator cold water supply pipe 20 and the refrigerator cooling water return pipe 21 on the suction side of the refrigerator cooling system pump 10, and the temperature is adjusted on the refrigerator temperature adjusting pipe 29. The control valve 31 is installed. In addition, the refrigerator 11
A thermometer 30 is installed at the entrance of the. The temperature control valve 31 automatically controls the opening so that the value of the thermometer 30 becomes constant.

【0036】次に本実施の形態の作用を説明する。従来
と同様に原子炉停止時における、海水系点検時の燃料プ
ール1の除熱は、燃料プール冷却浄化系ポンプ3により
燃料プール冷却浄化系熱交換器5を介して、冷凍機冷却
系ポンプ10により冷却水を循環させ、冷凍機11にて
除熱を行う。
Next, the operation of this embodiment will be described. The heat removal from the fuel pool 1 at the time of inspection of the seawater system at the time of reactor shutdown as in the conventional case is performed by the fuel pool cooling / purification system heat exchanger 5 by the fuel pool cooling / purification system heat exchanger 5 and the refrigerator cooling system pump 10 The cooling water is circulated and the refrigerator 11 removes heat.

【0037】本実施の形態ではさらに、燃料プール1で
の崩壊熱量が大きいときには、燃料プール冷却浄化系熱
交換器5への冷却水を冷凍機冷却系ポンプ10と氷蓄熱
槽冷却系ポンプ13の2系統にて循環させ、従来よりも
小容量の冷凍機11およびプラント運転中に製氷した氷
蓄熱槽14にて除熱を行う。また、前述した2系統での
運転により氷蓄熱槽での冷却エネルギーが無くなった時
(製氷した氷が無くなった時)にはすでに燃料プール1
での崩壊熱量が小さくなっているため、氷蓄熱槽冷却系
ポンプ13を停止し、氷蓄熱槽冷却系弁12を閉し、冷
凍機冷却系のみの運転で除熱を行う。
Further, in the present embodiment, when the amount of decay heat in the fuel pool 1 is large, the cooling water to the fuel pool cooling / purifying system heat exchanger 5 is supplied to the refrigerator cooling system pump 10 and the ice storage tank cooling system pump 13. Heat is removed in the refrigerator 11 having a capacity smaller than that of the conventional system and in the ice heat storage tank 14 that makes ice during operation of the plant. Further, when the cooling energy in the ice heat storage tank is exhausted by the operation of the two systems described above (when the ice made is exhausted), the fuel pool 1 has already been consumed.
Since the amount of decay heat is small, the ice storage tank cooling system pump 13 is stopped, the ice storage tank cooling system valve 12 is closed, and heat is removed by operating only the refrigerator cooling system.

【0038】従来、プラント運転中の冷凍機冷却系は使
用されずにいた。これに対し本実施の形態では、プラン
ト運転中においても、プラント運転中冷却必要負荷16
および他プラント冷却必要負荷18へ、冷凍機冷却系ポ
ンプ10と氷蓄熱槽冷却系ポンプ13の2系統(または
1系統)で循環させて冷水を供給し、各負荷での除熱を
行う。各冷却系および各負荷への切替えはそれぞれ、氷
蓄熱槽冷却系弁12および弁15、17の開閉により行
う。
Conventionally, the refrigerator cooling system during the operation of the plant has not been used. On the other hand, in the present embodiment, even when the plant is in operation, the cooling required load 16 during the plant operation is 16
The cold water is supplied to the other plant cooling required load 18 by two systems (or one system) of the refrigerator cooling system pump 10 and the ice storage tank cooling system pump 13 to remove the heat in each load. Switching to each cooling system and each load is performed by opening and closing the ice storage tank cooling system valve 12 and valves 15 and 17, respectively.

【0039】従来、冷凍機冷却系ポンプ10によって冷
凍機11から出た冷水は燃料プール冷却浄化系熱交換器
5を通り、熱交換された冷水は昇温されて冷凍機11に
戻ってくる。これに対し、冷凍機11から出た冷水の一
部を、冷凍機冷水供給配管20より分岐した冷凍機温度
調節配管29に通す。冷凍機温度調節配管29を通過す
る冷水の量は温度調節弁31により調整される。その方
法は、冷凍機温度調節配管29を通過した冷水と燃料プ
ール冷却浄化系熱交換器5を通過して昇温された冷水が
混合された後の温度を温度計30で計測し、この温度が
設定した目標温度範囲に近づくように温度調節弁31を
動作させるものである。
Conventionally, the cold water discharged from the refrigerator 11 by the refrigerator cooling system pump 10 passes through the fuel pool cooling / purifying system heat exchanger 5, and the heat-exchanged cold water is heated and returns to the refrigerator 11. On the other hand, a part of the cold water discharged from the refrigerator 11 is passed through the refrigerator temperature control pipe 29 branched from the refrigerator cold water supply pipe 20. The amount of cold water passing through the refrigerator temperature adjusting pipe 29 is adjusted by the temperature adjusting valve 31. The method is to measure the temperature after mixing the cold water that has passed through the refrigerator temperature control pipe 29 and the cold water that has passed through the fuel pool cooling and purification system heat exchanger 5 with the thermometer 30, and measure this temperature. The temperature control valve 31 is operated so as to approach the set target temperature range.

【0040】本実施の形態によれば、原子炉停止時にお
ける海水系点検時の燃料プール1の除熱を、冷凍機冷却
系と氷蓄熱冷却系の両方で分担することで、冷凍機11
の容量を小さくすることができる。氷蓄熱槽14での冷
却エネルギーが無くなる時には燃料プール1の崩壊熱量
も小さくなっており、氷蓄熱冷却系を停止し、冷凍機冷
却系のみの運転に切り替えることで効率的な運用ができ
る。
According to the present embodiment, the heat removal from the fuel pool 1 at the time of inspection of the seawater system at the time of reactor shutdown is shared by both the refrigerator cooling system and the ice heat storage cooling system, so that the refrigerator 11
The capacity of can be reduced. When the cooling energy in the ice heat storage tank 14 is exhausted, the amount of decay heat of the fuel pool 1 is also small, and efficient operation can be performed by stopping the ice heat storage cooling system and switching to operation of only the refrigerator cooling system.

【0041】プラント運転中においても冷凍機冷却系ポ
ンプ10および氷蓄熱槽冷却系ポンプ13を運転し、プ
ラント運転中冷却必要な熱負荷や他プラントでの冷却必
要な熱負荷に供給することで、冷凍機11および氷蓄熱
槽14を最大限に活用できる。
By operating the refrigerator cooling system pump 10 and the ice storage tank cooling system pump 13 even while the plant is operating, and supplying the heat load required for cooling during the plant operation and the heat load required for cooling in another plant, The refrigerator 11 and the ice heat storage tank 14 can be utilized to the maximum extent.

【0042】また、冷凍機温度調節配管29と温度計3
0、温度調節弁31を設置することにより冷凍機11に
戻る冷水温度の変動が小さくなり、安定した運転ができ
る。さらに、冷凍機冷却系や氷蓄熱槽冷却系配管がプラ
ント運転中および停止中において熱負荷を持つことによ
り、冬季においても凍結しにくいため、水抜きや配管保
温材の電気ヒータ敷設を実施せずにすみ、コストダウン
となる。なお、本実施の形態では、氷蓄熱槽14を設置
して、潜熱による冷熱貯蔵を行うことから、冷熱貯槽の
小型化、冷熱貯槽の温度変動の抑制が可能である。
Further, the refrigerator temperature control pipe 29 and the thermometer 3
0, by installing the temperature control valve 31, the fluctuation of the cold water temperature returning to the refrigerator 11 is reduced, and stable operation can be performed. In addition, since the refrigerator cooling system and the ice storage tank cooling system piping have a heat load during plant operation and shutdown, it is difficult to freeze even in winter, so draining water and installing an electric heater for piping heat insulation materials are not implemented. The cost is reduced. In this embodiment, since the ice heat storage tank 14 is installed to store cold heat by latent heat, it is possible to downsize the cold heat storage tank and suppress the temperature fluctuation of the cold heat storage tank.

【0043】[第2の実施の形態](請求項1、5、
7、8、10、11等に関係) 図2により、本発明に係る原子力施設内冷却システムの
第2の実施の形態を説明する。なお、図2中、図1また
は図7と同一または類似の部分には同一符号を付して、
重複する部分の説明は省略する。
[Second Embodiment] (Claims 1, 5,
7, 8, 10, 11, etc.) With reference to FIG. 2, a second embodiment of the cooling system in a nuclear facility according to the present invention will be described. In FIG. 2, parts that are the same as or similar to those in FIG. 1 or FIG.
A description of the overlapping parts will be omitted.

【0044】本実施の形態は、図2に示すように、燃料
プール冷却浄化系熱交換器5の二次側冷却水を導く原子
炉補機冷却水系冷却水配管5aに接続された冷凍機冷水
供給配管20に、冷熱貯槽としての貯水槽34(例え
ば、既設の復水貯蔵タンク)を設置する。また貯水槽3
4の先に、冷水供給を行うための貯水槽冷却系ポンプ3
3を設置し、貯水槽冷水供給配管36を通して燃料プー
ル冷却浄化系熱交換器5に戻す。
In this embodiment, as shown in FIG. 2, refrigerating machine cold water connected to a reactor auxiliary machine cooling water system cooling water pipe 5a for guiding the secondary side cooling water of the fuel pool cooling / purifying system heat exchanger 5. A water storage tank 34 (for example, an existing condensate storage tank) as a cold heat storage tank is installed in the supply pipe 20. Also water tank 3
4, a water tank cooling system pump 3 for supplying cold water
3 is installed and returned to the fuel pool cooling / purifying system heat exchanger 5 through the water storage tank cold water supply pipe 36.

【0045】さらに、貯水槽冷水供給配管36および貯
水槽冷水戻り配管37上に、貯水槽冷却系切替弁35を
設置する。また、貯水槽冷水供給配管36から分岐する
貯水槽冷却出口配管39を、冷凍機冷却系ポンプ10の
吸込み側に接続し、冷凍機冷水供給配管20より分岐す
る貯水槽冷却戻り配管40を、貯水槽34の上部に接続
する。さらに貯水槽冷却出口配管39および貯水槽冷却
戻り配管40上に貯水槽切替弁38を設置する。
Further, a water storage tank cooling system switching valve 35 is installed on the water storage tank cold water supply pipe 36 and the water storage tank cold water return pipe 37. Further, a water tank cooling outlet pipe 39 branched from the water tank cold water supply pipe 36 is connected to the suction side of the refrigerator cooling system pump 10, and a water tank cooling return pipe 40 branched from the refrigerator cold water supply pipe 20 is stored. Connect to the top of tank 34. Further, a water storage tank switching valve 38 is installed on the water storage tank cooling outlet pipe 39 and the water storage tank cooling return pipe 40.

【0046】冷凍機冷水供給配管20と貯水槽冷却供給
配管36が合流した後の冷凍機冷水供給配管20上に、
プラント運転中冷却必要負荷16(タービン発電機励磁
装置冷却装置、オフガスの復水器冷却装置等)への冷水
供給配管25を接続し、冷凍機冷水戻り配管21が貯水
槽冷却水系戻り配管37と分岐する前の冷凍機冷水戻り
配管21上に、プラント運転中冷却必要負荷16からの
冷水戻り配管26を接続する。さらに、プラント運転中
冷却必要負荷16への冷水供給配管25およびプラント
運転中冷却必要負荷16からの冷水戻り配管26上に、
プラント運転中冷却必要負荷切替弁15を設置する。
On the refrigerator chilled water supply pipe 20 after the chiller chilled water supply pipe 20 and the water storage tank cooling supply pipe 36 are joined,
The cold water supply pipe 25 to the cooling required load 16 (turbine generator exciting device cooling device, off-gas condenser cooling device, etc.) during plant operation is connected, and the refrigerator cold water return pipe 21 is connected to the water tank cooling water system return pipe 37. The chilled water return pipe 26 from the cooling required load 16 during plant operation is connected to the refrigerator chilled water return pipe 21 before branching. Further, on the cold water supply pipe 25 to the cooling required load 16 during plant operation and on the cold water return pipe 26 from the cooling required load 16 during plant operation,
A cooling required load switching valve 15 is installed during plant operation.

【0047】冷凍機冷水供給配管20と貯水槽冷却供給
配管36が合流した後の冷凍機冷水供給配管20上に、
他プラント冷却必要負荷18への冷水供給配管27を接
続し、冷凍機冷水戻り配管21と貯水槽冷却供給配管3
7が合流する前の冷凍機冷水戻り配管21上に、他プラ
ント冷却必要負荷18からの冷水戻り配管28を接続す
る。さらに、他プラント冷却必要負荷18への冷水供給
配管27および他プラント冷却必要負荷18からの冷水
戻り配管28上に、他プラント冷却必要負荷切替弁17
を設置する。
On the refrigerator chilled water supply pipe 20 after the chiller chilled water supply pipe 20 and the water storage tank cooling supply pipe 36 are joined,
The cold water supply pipe 27 to the other plant cooling required load 18 is connected, and the refrigerator cold water return pipe 21 and the water storage tank cooling supply pipe 3 are connected.
The chilled water return pipe 28 from the other plant cooling required load 18 is connected to the refrigerator chilled water return pipe 21 before the merging of the seven. Further, on the chilled water supply pipe 27 to the other plant cooling required load 18 and the chilled water return pipe 28 from the other plant cooling required load 18, the other plant cooling required load switching valve 17 is provided.
Set up.

【0048】次に本実施の形態の作用を説明する。従来
と同様に、原子炉停止時における海水系点検時の燃料プ
ール1の除熱は、燃料プール冷却浄化系ポンプ3により
燃料プール冷却浄化系熱交換器5を介して、冷凍機冷却
系ポンプ10により冷却水を循環させ、冷凍機11にて
除熱を行う。
Next, the operation of this embodiment will be described. As in the conventional case, the heat removal of the fuel pool 1 at the time of inspection of the seawater system at the time of reactor shutdown is performed by the fuel pool cooling / purification system pump 3 via the fuel pool cooling / purification system heat exchanger 5 and the refrigerator cooling system pump The cooling water is circulated and the refrigerator 11 removes heat.

【0049】本実施の形態ではさらに、燃料プール1で
の崩壊熱量が大きいときには、燃料プール冷却浄化系熱
交換器5への冷却水を冷凍機冷却系ポンプ10と貯水槽
冷却系ポンプ33の2系統にて循環させ、従来よりも小
容量の冷凍機11およびプラント運転中に冷却した貯水
槽34にて除熱を行う。また、前述2系統での運転によ
り貯水槽の冷却エネルギーが無くなった時は燃料プール
1での崩壊熱量が小さくなっているため、貯水槽冷却系
ポンプ33を停止し、貯水槽冷却系弁35を閉し、冷凍
機冷却系のみの運転で除熱を行う。
Further, in the present embodiment, when the amount of decay heat in the fuel pool 1 is large, the cooling water for the fuel pool cooling / purifying system heat exchanger 5 is supplied to the refrigerator cooling system pump 10 and the water tank cooling system pump 33. Heat is removed from the refrigerator 11 having a smaller capacity than the conventional system and the water storage tank 34 that is cooled during the plant operation. Further, when the cooling energy of the water storage tank is exhausted due to the operation in the two systems described above, the amount of decay heat in the fuel pool 1 is small, so the water storage tank cooling system pump 33 is stopped and the water storage tank cooling system valve 35 is turned on. Close and remove heat only by operating the refrigerator cooling system.

【0050】なお、このとき貯水槽34の水温が冷水と
して十分機能する程度低くなくてはならないので、プラ
ント運転中に、貯水槽冷却系弁35を閉し、貯水槽弁3
8を開し、冷凍機冷却系ポンプ10を起動することで、
貯水槽34の水を冷却する。
At this time, since the water temperature of the water storage tank 34 must be low enough to function as cold water, the water storage tank cooling system valve 35 is closed and the water storage tank valve 3 is closed during plant operation.
By opening 8 and starting the refrigerator cooling system pump 10,
The water in the water storage tank 34 is cooled.

【0051】従来、プラント運転中の冷凍機冷却系は使
用されずにいた。これに対し本実施の形態では、プラン
ト運転中においても、プラント運転中冷却必要負荷16
および他プラント冷却必要負荷18へ、冷凍機冷却系ポ
ンプ10と氷蓄熱槽冷却系ポンプ13の2系統(または
1系統)を循環させて冷水を供給し、各負荷での除熱を
行う。各冷却系および各負荷への切替えはそれぞれ、貯
水槽冷却系弁35および弁15、17の開閉により行
う。
Conventionally, the refrigerator cooling system during plant operation has not been used. On the other hand, in the present embodiment, even when the plant is in operation, the cooling required load 16 during the plant operation is 16
Also, two systems (or one system) of the refrigerator cooling system pump 10 and the ice storage tank cooling system pump 13 are circulated to the other plant cooling required load 18 to supply cold water, and heat is removed at each load. Switching to each cooling system and each load is performed by opening and closing the water tank cooling system valve 35 and the valves 15 and 17, respectively.

【0052】本実施の形態によれば、原子炉停止時にお
ける海水系点検時の燃料プール1の除熱を冷凍機冷却系
と貯水槽冷却系の両方で分担することで、冷凍機11の
容量を小さくすることができる。貯水槽冷却系の冷却エ
ネルギーが無くなる時には燃料プール1での崩壊熱量が
小さくなっているため、貯水槽冷却系を停止し、冷凍機
冷却系のみの運転に切り替えることで効率的な運用がで
きる。
According to the present embodiment, both the refrigerator cooling system and the water tank cooling system share the heat removal of the fuel pool 1 at the time of inspection of the seawater system at the time of reactor shutdown, so that the capacity of the refrigerator 11 is increased. Can be made smaller. When the cooling energy of the water storage tank cooling system is exhausted, the amount of decay heat in the fuel pool 1 is small, so efficient operation can be performed by stopping the water storage tank cooling system and switching to operation of only the refrigerator cooling system.

【0053】プラント運転中においても冷凍機冷却系ポ
ンプ10および貯水槽冷却系ポンプ33を運転し、プラ
ント運転中において冷却が必要な熱負荷や他プラントで
の冷却が必要な熱負荷に供給する、または貯水槽34の
水温を冷凍機11を運転し冷却することで、冷凍機11
および貯水槽34を最大限に活用できる。また、第1の
実施の形態(図1)に比べて冷凍機の数を少なくでき
る。さらに、冷熱貯槽として貯水槽を用いるので、氷蓄
熱の場合に比べて設備・運用が簡単である。
The refrigerator cooling system pump 10 and the water storage tank cooling system pump 33 are operated even during the operation of the plant, and the heat load required for cooling during the operation of the plant or the heat load required for cooling in another plant is supplied. Alternatively, by operating the refrigerator 11 to cool the water temperature of the water storage tank 34, the refrigerator 11
And the water tank 34 can be utilized to the maximum extent. Also, the number of refrigerators can be reduced as compared with the first embodiment (FIG. 1). Further, since the water storage tank is used as the cold heat storage tank, the facility and operation are simpler than the case of storing ice heat.

【0054】また、冷凍機冷却系や貯水槽冷却系の配管
がプラント運転中および停止中において熱負荷を持つこ
とにより冬季においても凍結しにくいため、水抜きや配
管保温材の電気ヒータ敷設を実施せずにすみ、コストダ
ウンとなる。
Further, since the piping of the refrigerator cooling system and the water storage tank cooling system has a heat load during plant operation and shutdown, it is difficult to freeze even in the winter season, so draining water and installing an electric heater for piping heat insulating material are carried out. Without doing so, the cost will be reduced.

【0055】以上述べたように、第2の実施の形態(図
2)では第1の実施の形態(図1)に比べて次の2点が
異なる。 氷蓄熱槽14の代わりに貯水槽34を用いる。 専用の製氷用(冷熱貯槽用)冷凍機22を用いる代わ
りに配管40と弁38を設けて、冷凍機11を、冷熱貯
蔵運転と、冷熱排出運転を切り替えて実施する。 第2の実施の形態の変形例として、上記またはの一
方だけを採用して他は第1の実施の形態と同様とするこ
と(両方の実施の形態の折衷)も可能である(図示せ
ず)。さらに、上記、は、その一方または両方を、
後述の第5、第6の実施の形態に適用することもできる
(図示せず)。
As described above, the second embodiment (FIG. 2) is different from the first embodiment (FIG. 1) in the following two points. A water storage tank 34 is used instead of the ice heat storage tank 14. Instead of using the dedicated ice making (for cold heat storage tank) refrigerator 22, the pipe 40 and the valve 38 are provided, and the refrigerator 11 is switched between the cold heat storage operation and the cold heat discharge operation. As a modification of the second embodiment, it is also possible to adopt the above or only one and make the other similar to the first embodiment (an eclectic combination of both embodiments) (not shown). ). Furthermore, above, one or both of
It can also be applied to fifth and sixth embodiments described later (not shown).

【0056】[第3の実施の形態](請求項8、9、1
0、11等に関係) 図3により本発明に係る原子力施設内冷却システムの第
3の実施の形態を説明する。なお、図3中、図1または
図7と同一または類似の部分には同一符号を付して、重
複する部分の説明は省略する。
[Third Embodiment] (Claims 8, 9, and 1)
0, 11 etc.) A third embodiment of the cooling system in a nuclear facility according to the present invention will be described with reference to FIG. In FIG. 3, parts that are the same as or similar to those in FIG. 1 or FIG. 7 are given the same reference numerals, and descriptions of overlapping parts will be omitted.

【0057】本実施の形態は、図3に示すように、燃料
プール浄化系の燃料プール冷却浄化系熱交換器5の二次
側冷却水を導く原子炉補機冷却水系冷却水配管5aのう
ち、ドライウェルクーラ44の冷水として使用されてい
るドライウェルクーラ供給配管41上に冷凍機冷却水供
給配管20を接続し、ドライウェルクーラ戻り配管42
上に冷凍機冷却系戻り配管21を接続する。また、ドラ
イウェルクーラ供給配管41、ドライウェルクーラ戻り
配管42上にそれぞれ、ドライウェルクーラ切替弁4
3、48を設置する。
In this embodiment, as shown in FIG. 3, among the reactor auxiliary cooling water system cooling water pipes 5a for guiding the secondary side cooling water of the fuel pool cooling / purifying system heat exchanger 5 of the fuel pool cleaning system. The refrigerator cooling water supply pipe 20 is connected to the drywell cooler supply pipe 41 used as cold water for the drywell cooler 44, and the drywell cooler return pipe 42 is connected.
The refrigerator cooling system return pipe 21 is connected to the top. Further, the drywell cooler switching valve 4 is provided on the drywell cooler supply pipe 41 and the drywell cooler return pipe 42, respectively.
Install 3, 48.

【0058】次に本実施の形態の作用を説明する。原子
炉運転中は、ドライウェルクーラ切替弁48を閉し、冷
凍機冷却系切替弁19とドライウェルクーラ切替弁43
を開し、冷凍機11により10℃程度の冷水を冷凍機供
給配管20、ドライウェルクーラ供給配管41を通じ、
ドライウェルクーラ44に通水する。ドライウェルクー
ラ44にてドライウェル内の空気と熱交換し、温度上昇
した冷水がドライウェルクーラ戻り配管42、冷凍機冷
却系戻り配管21を通じて冷凍機11に戻る。
Next, the operation of this embodiment will be described. During the reactor operation, the dry well cooler switching valve 48 is closed, and the refrigerator cooling system switching valve 19 and the dry well cooler switching valve 43 are closed.
Open, and cool water of about 10 ° C. by the refrigerator 11 through the refrigerator supply pipe 20 and the drywell cooler supply pipe 41,
Water is passed through the drywell cooler 44. The drywell cooler 44 exchanges heat with the air in the drywell, and the cold water whose temperature has risen returns to the refrigerator 11 through the drywell cooler return pipe 42 and the refrigerator cooling system return pipe 21.

【0059】また、定期検査中で海水冷却系定期検査時
は、原子炉補機冷却水系切替弁9とドライウェルクーラ
切替弁43を閉し、ドライウェルクーラ切替弁48と冷
凍機冷却系切替弁19を開することで、従来どおり燃料
プール冷却浄化系熱交換器5に通水し、燃料プール1の
水を冷却できる。
During the periodic inspection during the seawater cooling system regular inspection, the reactor auxiliary equipment cooling water system switching valve 9 and the drywell cooler switching valve 43 are closed, and the drywell cooler switching valve 48 and the refrigerator cooling system switching valve. By opening 19, the water can be passed through the fuel pool cooling / purifying system heat exchanger 5 as in the conventional case, and the water in the fuel pool 1 can be cooled.

【0060】本実施の形態によれば、新規に冷凍機を設
置しドライウェル32内に通水するためにドライウェル
32に貫通口を開けることなく、既設の原子炉補機冷却
水系配管(ドライウェルクーラ供給配管41およびドラ
イウェルクーラ戻り配管42)と冷凍機冷却系を利用す
ることによって、ドライウェルクーラ44に10℃程度
の冷水を供給することができ、ドライウェル内の温度を
低下することができる。
According to the present embodiment, a new refrigerator is installed and water is passed through the dry well 32 without opening a through hole in the dry well 32. By using the well cooler supply pipe 41 and the dry well cooler return pipe 42) and the refrigerator cooling system, cold water of about 10 ° C. can be supplied to the dry well cooler 44 and the temperature inside the dry well is lowered. You can

【0061】[第4の実施の形態](請求項8、9、1
0、11等に関係) 図4により本発明に係る原子力施設内冷却システムの第
4の実施の形態を説明する。なお、図4中、図1、図
3、図7と同一または類似の部分には同一符号を付し
て、重複する部分の説明は省略する。
[Fourth Embodiment] (Claims 8, 9, and 1)
0, 11 etc.) A fourth embodiment of the cooling system in a nuclear facility according to the present invention will be described with reference to FIG. In FIG. 4, parts that are the same as or similar to those in FIG. 1, FIG. 3, and FIG. 7 are given the same reference numerals, and descriptions of overlapping parts will be omitted.

【0062】本実施の形態では、図4に示すように、換
気空調補機常用冷却水系供給配管45、換気空調補機常
用冷却水系戻り配管46が3台のドライウェルクーラ4
4に接続されている。換気空調補機常用冷却水系に3台
のドライウェルクーラ44が接続されているが、この換
気空調補機常用冷却水系冷水が供給できるのは、このう
ちの1台分に供給する能力しかない。
In the present embodiment, as shown in FIG. 4, the dry well cooler 4 is provided with three ventilation air conditioning air conditioner auxiliary working cooling water system supply pipes 45 and three ventilation air conditioning air conditioner auxiliary working water cooling system return pipes 46.
4 is connected. Three drywell coolers 44 are connected to the ventilation air conditioning auxiliary equipment regular cooling water system, but the ventilation air conditioning auxiliary equipment regular cooling water system cold water can only be supplied to one of these units.

【0063】このため、換気空調補機常用冷却水系供給
配管45に冷凍機冷却水供給配管20を接続し、ドライ
ウェルクーラ44に燃料プール浄化系の燃料プール冷却
浄化系熱交換器5の二次側冷却水である原子炉補機冷却
水系冷却水配管のうち、ドライウェルクーラ44の冷水
として使用されているドライウェルクーラ供給配管41
に冷凍機冷却水供給配管20を接続し、換気空調補機常
用冷却水系戻り配管46に冷凍機冷却系戻り配管21を
接続し、換気空調補機常用冷却水系供給配管45、換気
空調補機常用冷却水系戻り配管46上にそれぞれ換気空
調補機常用冷却水系切替弁47を設置する。
For this reason, the refrigerator cooling water supply pipe 20 is connected to the ventilation cooling air conditioner auxiliary cooling water system supply pipe 45, and the secondary well of the fuel pool cooling purification system heat exchanger 5 of the fuel pool purification system is connected to the dry well cooler 44. Of the reactor auxiliary equipment cooling water system cooling water piping that is the side cooling water, the drywell cooler supply piping 41 is used as the cold water of the drywell cooler 44.
Is connected to the refrigerator cooling water supply pipe 20, the ventilation air conditioning auxiliary device normal cooling water system return pipe 46 is connected to the refrigerator cooling system return pipe 21, and the ventilation air conditioning auxiliary device normal cooling water system supply pipe 45 and the ventilation air conditioning auxiliary device normal Ventilation and air conditioning auxiliary equipment regular cooling water system switching valves 47 are installed on the cooling water system return pipes 46, respectively.

【0064】次に本実施の形態の作用を説明する。原子
炉運転中は、冷凍機冷却系切替弁19を閉し、換気空調
補機常用冷却水系切替弁47を開し、冷凍機11により
10℃程度の冷水を冷凍機冷却水供給配管20、換気空
調補機常用冷却水系供給配管45を通じ、ドライウェル
クーラ44に通水する。ドライウェルクーラ44にてド
ライウェル32内の空気と熱交換し、温度上昇した冷水
が換気空調補機常用冷却水系戻り配管46、冷凍機冷却
系戻り配管21を通じて冷凍機11に戻る。
Next, the operation of this embodiment will be described. During the reactor operation, the refrigerator cooling system switching valve 19 is closed, the ventilation air conditioning auxiliary equipment normal cooling water system switching valve 47 is opened, and cold water of about 10 ° C. is cooled by the refrigerator 11 to the refrigerator cooling water supply pipe 20 and the ventilation. Water is supplied to the drywell cooler 44 through an air conditioning auxiliary equipment regular cooling water system supply pipe 45. The dry well cooler 44 exchanges heat with the air in the dry well 32, and the cold water whose temperature has risen returns to the refrigerator 11 through the ventilation air conditioning auxiliary equipment regular cooling water system return pipe 46 and the refrigerator cooling system return pipe 21.

【0065】また、定期検査中で海水冷却系定期検査時
は、換気空調補機常用冷却水系切替弁47、原子炉補機
冷却水系切替弁9を閉し、冷凍機冷却系切替弁19を開
することで、従来どおり燃料プール冷却浄化系熱交換器
5に通水し、燃料プール水を冷却できる。
During the periodic inspection, during the periodic inspection of the seawater cooling system, the ventilation air conditioning auxiliary equipment regular cooling water system switching valve 47, the reactor auxiliary equipment cooling water system switching valve 9 are closed, and the refrigerator cooling system switching valve 19 is opened. By doing so, water can be passed through the fuel pool cooling / purifying system heat exchanger 5 as in the conventional case, and the fuel pool water can be cooled.

【0066】本実施の形態によれば、新規に冷凍機を設
置しドライウェル32内に通水するためにドライウェル
32に貫通口を開けることなく、既設の換気空調補機常
用冷却水系配管(換気空調補機常用冷却水系供給配管4
5、換気空調補機常用冷却水系戻り配管46)と冷凍機
冷却系を利用することによって、ドライウェルクーラ4
4に10℃程度の冷水を供給することができ、ドライウ
ェル内の温度を低下させることができる。
According to the present embodiment, a new refrigerating machine is installed and water is passed through the dry well 32 without opening a through hole in the dry well 32. Ventilation and air conditioning auxiliary equipment Regular cooling water system supply pipe 4
5. Ventilation and air conditioning auxiliary equipment Regular cooling water system return pipe 46) and refrigerator cooling system
It is possible to supply cold water of about 10 ° C. to 4 and to lower the temperature in the dry well.

【0067】[第5の実施の形態](請求項2、4、
6、8、10、11等に関係) 図5により本発明に係る原子力施設内冷却システムの第
5の実施の形態を説明する。なお、図5中、図1または
図7と同一または類似の部分には同一符号を付して、重
複する部分の説明は省略する。
[Fifth Embodiment] (claims 2, 4,
6, 8, 10, 11, etc.) A fifth embodiment of the cooling system in a nuclear facility according to the present invention will be described with reference to FIG. In FIG. 5, parts that are the same as or similar to those in FIG. 1 or 7 are given the same reference numerals, and descriptions of overlapping parts will be omitted.

【0068】本実施の形態は、図5に示すように燃料プ
ール浄化系の燃料プール冷却浄化系熱交換器5の二次側
冷却水を導く原子炉補機冷却水系配管5aに接続された
冷凍機冷却系を取り除き、燃料プール1に冷凍機冷水供
給配管20および冷凍機冷水戻り配管21を接続し、冷
凍機冷却系ポンプ10を冷凍機冷水供給配管20上に設
置する。
In this embodiment, as shown in FIG. 5, refrigeration connected to the reactor auxiliary cooling water system pipe 5a for guiding the secondary side cooling water of the fuel pool cooling / purification system heat exchanger 5 of the fuel pool purification system. The machine cooling system is removed, the refrigerator cold water supply pipe 20 and the refrigerator cold water return pipe 21 are connected to the fuel pool 1, and the refrigerator cooling system pump 10 is installed on the refrigerator cold water supply pipe 20.

【0069】次に本実施形態の作用を説明する。燃料プ
ール1に接続した冷凍機冷水供給配管20から、燃料プ
ール1のプール水を、冷凍機冷却系ポンプ10を起動し
て冷凍機11に送る。冷凍機11にて燃料プール1のプ
ール水が除熱され、この冷水が冷凍機冷水戻り配管21
を通って燃料プール1に戻る。
Next, the operation of this embodiment will be described. From the refrigerator chilled water supply pipe 20 connected to the fuel pool 1, pool water of the fuel pool 1 is sent to the refrigerator 11 by activating the refrigerator cooling system pump 10. The pool water of the fuel pool 1 is removed by the refrigerator 11, and the cold water is returned to the refrigerator cold water return pipe 21.
Return to Fuel Pool 1 through.

【0070】本実施の形態によれば、原子炉停止時にお
ける海水系点検時の燃料プール1の除熱を直接冷凍機冷
却系および氷蓄熱冷却系により冷却することで、燃料プ
ール冷却浄化系熱交換器を介すことなく効率的に燃料プ
ール1の除熱を行うことができる。また燃料プール1の
熱量が小さくなったときには氷蓄熱冷却系を停止し、冷
凍機冷却系のみの運転に切り替えることで効率的な運用
ができる。
According to the present embodiment, the heat removal from the fuel pool 1 during the inspection of the seawater system at the time of reactor shutdown is directly cooled by the refrigerator cooling system and the ice storage cooling system, so that the heat of the fuel pool cooling and purification system is reduced. The heat of the fuel pool 1 can be efficiently removed without passing through the exchanger. Further, when the heat quantity of the fuel pool 1 becomes small, the ice heat storage cooling system is stopped and switched to the operation of only the refrigerator cooling system, whereby efficient operation can be performed.

【0071】さらに、冷凍機冷却系や氷蓄熱槽冷却系配
管が熱負荷を持つため、冬季においても凍結しないた
め、水抜きや配管保温材の電気ヒータ敷設を実施せずに
すみ、コストダウンとなる。
Furthermore, since the refrigerator cooling system and the ice storage tank cooling system piping have a heat load, they do not freeze even in the winter, so it is not necessary to drain water or lay an electric heater for the pipe heat insulating material, which leads to cost reduction. Become.

【0072】[第6の実施の形態](請求項3、4、
6、8、10、11等に関係) 図6により本発明に係る原子力施設内冷却システムの第
6の実施の形態を説明する。なお、図6中、図1または
図7と同一または類似の部分には同一符号を付して、重
複する部分の説明は省略する。
[Sixth Embodiment] (claims 3, 4,
6, 8, 10, 11, etc.) A sixth embodiment of the cooling system for a nuclear facility according to the present invention will be described with reference to FIG. In FIG. 6, parts that are the same as or similar to those in FIG. 1 or FIG. 7 are given the same reference numerals, and descriptions of overlapping parts will be omitted.

【0073】本実施の形態は、図6に示すように、原子
炉補機冷却水系ポンプ6を冷凍機冷水系戻り配管21上
に設置し、冷凍機冷水系戻り配管21を原子炉補機冷却
水系熱交換器7出口側に接続する。また、冷凍機冷却水
供給配管20を原子炉補機冷却水系熱交換器7入口側に
接続する。
In this embodiment, as shown in FIG. 6, the reactor auxiliary cooling water system pump 6 is installed on the refrigerator cold water system return pipe 21, and the refrigerator cold water system return pipe 21 is cooled. Connected to the outlet side of the water-based heat exchanger 7. Further, the refrigerator cooling water supply pipe 20 is connected to the inlet side of the reactor auxiliary cooling water system heat exchanger 7.

【0074】次に本実施の形態の作用を説明する。従来
と同様に、原子炉停止時における海水系点検時の燃料プ
ール1の除熱は燃料プール冷却浄化系ポンプ3により燃
料プール冷却浄化系熱交換器5を介して冷凍機冷却系ポ
ンプ10により冷却水を循環させ冷凍機11にて除熱を
行う。
Next, the operation of this embodiment will be described. As in the conventional case, the heat removal from the fuel pool 1 at the time of inspection of the seawater system at the time of reactor shutdown is cooled by the fuel pool cooling / purification system pump 3 via the fuel pool cooling / purification system heat exchanger 5 by the refrigerator cooling system pump 10. Heat is removed from the refrigerator 11 by circulating water.

【0075】本実施の形態ではさらに、原子炉停止時に
おける海水系点検時は、原子炉補機冷却水系ポンプ6を
起動し、燃料プール冷却浄化系熱交換器5にて熱交換さ
れ昇温された原子炉補機冷却水系冷水は、原子炉補機冷
却水系熱交換器7および原子炉補機冷却水系ポンプ6を
通過し、冷凍機11に送られて除熱される。
Further, in the present embodiment, when inspecting the seawater system when the reactor is shut down, the reactor auxiliary cooling water system pump 6 is started, and heat is exchanged in the fuel pool cooling and purification system heat exchanger 5 to raise the temperature. The cold water of the reactor auxiliary cooling water system passes through the reactor auxiliary cooling water system heat exchanger 7 and the reactor auxiliary cooling water system pump 6, and is sent to the refrigerator 11 to remove heat.

【0076】本実施の形態によれば、原子炉補機冷却水
系ポンプ6を従来の冷凍機冷却系ポンプ10の代用とし
て用いることができ、従来に比べて弁数、配管物量とも
に削減でき、経済的な系統となる。
According to the present embodiment, the reactor auxiliary cooling water system pump 6 can be used as a substitute for the conventional refrigerating machine cooling system pump 10, and the number of valves and the amount of pipes can be reduced as compared with the conventional one, which is economical. System.

【0077】[0077]

【発明の効果】以上説明したように、本発明によれば、
燃料プールにおける熱負荷の変動を考慮して、効率的な
運用が可能な原子力施設内冷却システムを提供すること
ができる。
As described above, according to the present invention,
A cooling system in a nuclear facility capable of efficient operation can be provided in consideration of fluctuations in heat load in the fuel pool.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子力施設内冷却システムの第1
の実施の形態の系統図。
FIG. 1 is a first cooling system in a nuclear facility according to the present invention.
3 is a systematic diagram of the embodiment of FIG.

【図2】本発明に係る原子力施設内冷却システムの第2
の実施の形態の系統図。
FIG. 2 is a second cooling system in a nuclear facility according to the present invention.
3 is a systematic diagram of the embodiment of FIG.

【図3】本発明に係る原子力施設内冷却システムの第3
の実施の形態の系統図。
FIG. 3 is a third cooling system in a nuclear facility according to the present invention.
3 is a systematic diagram of the embodiment of FIG.

【図4】本発明に係る原子力施設内冷却システムの第4
の実施の形態の系統図。
FIG. 4 is a fourth cooling system in a nuclear facility according to the present invention.
3 is a systematic diagram of the embodiment of FIG.

【図5】本発明に係る原子力施設内冷却システムの第5
の実施の形態の系統図。
FIG. 5 is a fifth example of the cooling system in the nuclear facility according to the present invention.
3 is a systematic diagram of the embodiment of FIG.

【図6】本発明に係る原子力施設内冷却システムの第6
の実施の形態の系統図。
FIG. 6 is a sixth view of the cooling system in a nuclear facility according to the present invention.
3 is a systematic diagram of the embodiment of FIG.

【図7】従来の原子力施設内冷却システムの系統図。FIG. 7 is a system diagram of a conventional cooling system in a nuclear facility.

【符号の説明】[Explanation of symbols]

1…燃料プール、2…スキマサージタンク、3…燃料プ
ール冷却浄化系ポンプ、4…燃料プール冷却浄化系ろ過
脱塩装置、5…燃料プール冷却浄化系熱交換器、6…原
子炉補機冷却水系ポンプ、7…原子炉補機冷却水系熱交
換器、8…海水冷却系ポンプ、9…原子炉補機冷却水系
切替弁、10…冷凍機冷却系ポンプ、11…冷凍機、1
2…氷蓄熱槽冷却系切替弁、13…氷蓄熱槽冷却系ポン
プ、14…氷蓄熱槽、15…運転中冷却必要負荷切替
弁、16…運転中冷却必要負荷、17…他プラント冷却
必要負荷切替弁、18…他プラント冷却必要負荷、19
…冷凍機冷却系切替弁、20…冷凍機冷水供給配管、2
1…冷凍機冷水系戻り配管(1)、22…製氷用冷凍機、
23…氷蓄熱槽冷水系供給配管、24…氷蓄熱槽冷水系
戻り配管、25…運転中冷却必要負荷供給配管、26…
運転中冷却必要負荷戻り配管、27…他プラント冷却必
要負荷供給配管、28…他プラント冷却必要負荷戻り配
管、29…冷凍機温度調節配管、30…温度計、31…
温度調節弁、32…ドライウェル、33…貯水槽冷却系
ポンプ、34…貯水槽、35…貯水槽冷却系切替弁、3
6…貯水槽冷水系供給配管、37…貯水槽冷水系戻り配
管、38…貯水槽弁、39…貯水槽冷却系出口配管、4
0…貯水槽冷却系戻り配管、41…ドライウェルクーラ
供給配管、42…ドライウェルクーラ戻り配管、43…
ドライウェルクーラ切替弁、44…ドライウェルクー
ラ、45…換気空調補機常用冷却水系供給配管、46…
換気空調補機常用冷却水系戻り配管、47…換気空調補
機常用冷却水系切替弁、48…ドライウェルクーラ切替
弁。
1 ... Fuel pool, 2 ... skimmer surge tank, 3 ... fuel pool cooling / purification system pump, 4 ... fuel pool cooling / purification system filter desalting device, 5 ... fuel pool cooling / purification system heat exchanger, 6 ... reactor auxiliary equipment cooling Water system pump, 7 ... Reactor auxiliary machine cooling water system heat exchanger, 8 ... Seawater cooling system pump, 9 ... Reactor auxiliary machine cooling water system switching valve, 10 ... Refrigerator cooling system pump, 11 ... Refrigerator, 1
2 ... Ice storage tank cooling system switching valve, 13 ... Ice storage tank cooling system pump, 14 ... Ice storage tank, 15 ... Cooling required load switching valve during operation, 16 ... Cooling required load during operation, 17 ... Other plant cooling required load Switching valve, 18 ... Other plant cooling required load, 19
... Refrigerator cooling system switching valve, 20 ... Refrigerator cold water supply pipe, 2
1 ... Refrigerator Cold water system return pipe (1), 22 ... Refrigerator for ice making,
23 ... Ice heat storage tank cold water system supply pipe, 24 ... Ice heat storage tank cold water system return pipe, 25 ... Cooling required load supply pipe during operation, 26 ...
Cooling required load return pipe during operation, 27 ... Other plant cooling required load supply pipe, 28 ... Other plant cooling required load return pipe, 29 ... Refrigerator temperature control pipe, 30 ... Thermometer, 31 ...
Temperature control valve, 32 ... Dry well, 33 ... Water tank cooling system pump, 34 ... Water tank, 35 ... Water tank cooling system switching valve, 3
6 ... Water tank cold water system supply pipe, 37 ... Water tank cold water system return pipe, 38 ... Water tank valve, 39 ... Water tank cooling system outlet pipe, 4
0 ... Water tank cooling system return pipe, 41 ... Drywell cooler supply pipe, 42 ... Drywell cooler return pipe, 43 ...
Drywell cooler switching valve, 44 ... Drywell cooler, 45 ... Ventilation and air conditioning auxiliary equipment regular cooling water system supply pipe, 46 ...
Ventilation and air conditioning auxiliary equipment regular cooling water system return pipe, 47 ... Ventilation and air conditioning auxiliary equipment regular cooling water system switching valve, 48 ... Drywell cooler switching valve.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 原子炉に隣接して設置された燃料プール
に接続されて前記燃料プール内の水を冷却する燃料プー
ル冷却浄化系熱交換器と、前記燃料プール冷却浄化系熱
交換器で熱交換した二次側冷却水を二次側冷却水配管で
導いてその二次側冷却水の熱を外部に放出する原子炉補
機冷却系と、前記二次側冷却水配管から分岐して接続さ
れて前記二次側冷却水配管に冷水を供給する冷凍機と、
を有する原子力施設内冷却システムであって、 冷熱を貯蔵して、少なくとも一時的に前記二次側冷却水
配管に冷水を供給できる冷熱貯槽を有すること、 を特徴とする原子力施設内冷却システム。
1. A fuel pool cooling / purifying system heat exchanger connected to a fuel pool installed adjacent to a nuclear reactor to cool water in the fuel pool, and heat in the fuel pool cooling / purifying system heat exchanger. Branching from the secondary side cooling water pipe to the reactor auxiliary equipment cooling system that guides the exchanged secondary side cooling water through the secondary side cooling water pipe to release the heat of the secondary side cooling water to the outside A refrigerator for supplying cold water to the secondary side cooling water pipe,
A cooling system in a nuclear facility, comprising a cold heat storage tank capable of storing cold heat and at least temporarily supplying cold water to the secondary side cooling water pipe.
【請求項2】 原子炉に隣接して設置された燃料プール
に接続されて前記燃料プール内の水を冷却する燃料プー
ル冷却浄化系熱交換器と、前記燃料プール冷却浄化系熱
交換器で熱交換した二次側冷却水を二次側冷却水配管で
導いてその二次側冷却水の熱を外部に放出する原子炉補
機冷却系と、前記燃料プールに接続されて前記燃料プー
ル内の水を冷却する冷凍機と、を有する原子力施設内冷
却システムであって、 冷熱を貯蔵して、少なくとも一時的に熱交換器を介さず
に直接前記燃料プールに冷水を供給できる冷熱貯槽を有
すること、 を特徴とする原子力施設内冷却システム。
2. A fuel pool cooling / purifying system heat exchanger that is connected to a fuel pool installed adjacent to a nuclear reactor and cools water in the fuel pool, and heat in the fuel pool cooling / purifying system heat exchanger. Reactor auxiliary equipment cooling system that guides the exchanged secondary side cooling water through the secondary side cooling water pipe to release the heat of the secondary side cooling water to the outside, and in the fuel pool connected to the fuel pool A cooling system for a nuclear facility, comprising a refrigerator for cooling water, and having a cold heat storage tank capable of storing cold heat and at least temporarily supplying the cold water directly to the fuel pool without using a heat exchanger. , A cooling system for nuclear facilities.
【請求項3】 原子炉に隣接して設置された燃料プール
に接続されて前記燃料プール内の水を冷却する燃料プー
ル冷却浄化系熱交換器と、前記燃料プール冷却浄化系熱
交換器で熱交換した二次側冷却水を二次側冷却水配管で
導いてその二次側冷却水の熱を外部に放出する原子炉補
機冷却系と、前記二次側冷却水配管の途中に直列に接続
されて前記二次側冷却水配管に冷水を供給する冷凍機
と、を有する原子力施設内冷却システムであって、 冷熱を貯蔵して、少なくとも一時的に前記二次側冷却水
配管に冷水を供給できる冷熱貯槽を有すること、 を特徴とする原子力施設内冷却システム。
3. A fuel pool cooling / purifying system heat exchanger that is connected to a fuel pool installed adjacent to a nuclear reactor and cools water in the fuel pool, and heat in the fuel pool cooling / purifying system heat exchanger. A reactor auxiliary cooling system that guides the exchanged secondary side cooling water through the secondary side cooling water pipe and releases the heat of the secondary side cooling water to the outside, and in series in the middle of the secondary side cooling water pipe. A cooling system in a nuclear facility having a refrigerator connected to supply cold water to the secondary side cooling water pipe, which stores cold heat and at least temporarily supplies cold water to the secondary side cooling water pipe. A cooling system in a nuclear facility, characterized by having a cold heat storage tank that can be supplied.
【請求項4】 前記冷熱貯槽は氷蓄熱槽であること、を
特徴とする請求項1ないし3のいずれかに記載の原子力
施設内冷却システム。
4. The cooling system in a nuclear facility according to claim 1, wherein the cold heat storage tank is an ice heat storage tank.
【請求項5】 前記冷熱貯槽は貯水槽であること、を特
徴とする請求項1ないし3のいずれかに記載の原子力施
設内冷却システム。
5. The cooling system for a nuclear power facility according to claim 1, wherein the cold heat storage tank is a water storage tank.
【請求項6】 前記冷凍機とは別に、前記冷熱を貯蔵す
るための冷熱貯槽用冷凍機を有すること、を特徴とする
請求項1ないし5のいずれかに記載の原子力施設内冷却
システム。
6. The cooling system for a nuclear power facility according to claim 1, further comprising a refrigerator for a cold heat storage tank for storing the cold heat, separately from the refrigerator.
【請求項7】 前記冷凍機が、前記冷熱貯槽に冷熱を貯
蔵するための冷熱貯槽用冷凍機を兼ねており、前記冷熱
貯槽に冷熱を貯蔵する運転と、前記冷熱貯槽に貯蔵され
た冷熱を前記燃料プールの冷却に利用する運転とを、弁
の切替えによって切り替えられるように構成されている
こと、を特徴とする請求項1ないし5のいずれかに記載
の原子力施設内冷却システム。
7. The refrigerator also serves as a cold heat storage refrigerator for storing cold heat in the cold heat storage tank, and stores the cold heat in the cold heat storage tank and the cold heat stored in the cold heat storage tank. The cooling system in the nuclear facility according to any one of claims 1 to 5, wherein the operation used for cooling the fuel pool is configured to be switched by switching a valve.
【請求項8】 原子炉に隣接して設置された燃料プール
に接続されて前記燃料プール内の水を冷却する燃料プー
ル冷却浄化系熱交換器と、前記燃料プール冷却浄化系熱
交換器で熱交換した二次側冷却水を二次側冷却水配管で
導いてその二次側冷却水の熱を外部に放出する原子炉補
機冷却系と、前記燃料プールに冷水を供給する冷凍機
と、を有する原子力施設内冷却システムであって、 前記冷凍機で作られた冷却水を、少なくとも前記原子炉
の運転中に、前記燃料プール以外の負荷先に供給できる
ように配管接続されていること、 を特徴とする原子力施設内冷却システム。
8. A heat exchanger in a fuel pool cooling / purification system heat exchanger, which is connected to a fuel pool installed adjacent to a nuclear reactor to cool water in the fuel pool, and heat in the fuel pool cooling / purification system heat exchanger. A reactor auxiliary equipment cooling system that guides the exchanged secondary side cooling water through a secondary side cooling water pipe to release the heat of the secondary side cooling water to the outside, and a refrigerator that supplies the cooling water to the fuel pool. In a nuclear facility cooling system having, cooling water made by the refrigerator, at least during operation of the nuclear reactor, is connected by piping so as to be able to supply to a load destination other than the fuel pool, A cooling system for nuclear facilities.
【請求項9】 前記燃料プール以外の負荷先は、前記原
子炉を格納するドライウェルを冷却するドライウェルク
ーラと、ドライウェル除湿系と、換気空調補機常用冷却
水系とのうちの少なくとも一つを含むこと、 を特徴とする請求項8に記載の原子力施設内冷却システ
ム。
9. The load destination other than the fuel pool is at least one of a drywell cooler that cools a drywell that stores the nuclear reactor, a drywell dehumidification system, and a ventilation water system for a ventilation air conditioning auxiliary equipment. The cooling system in the nuclear facility according to claim 8, wherein the cooling system is included.
【請求項10】 原子炉に隣接して設置された燃料プー
ルに接続されて前記燃料プール内の水を冷却する燃料プ
ール冷却浄化系熱交換器と、前記燃料プール冷却浄化系
熱交換器で熱交換した二次側冷却水を二次側冷却水配管
で導いてその二次側冷却水の熱を外部に放出する原子炉
補機冷却系と、前記燃料プールに冷水を供給する冷凍機
と、を有する原子力施設内冷却システムであって、 前記冷凍機で作られた冷却水を、少なくとも前記原子炉
の運転中に、当該原子炉以外の原子炉に関係する負荷先
に供給できるように配管接続されていること、 を特徴とする原子力施設内冷却システム。
10. A fuel pool cooling / purifying system heat exchanger connected to a fuel pool installed adjacent to a nuclear reactor to cool water in the fuel pool, and heat in the fuel pool cooling / purifying system heat exchanger. A reactor auxiliary equipment cooling system that guides the exchanged secondary side cooling water through a secondary side cooling water pipe to release the heat of the secondary side cooling water to the outside, and a refrigerator that supplies the cooling water to the fuel pool. A cooling system in a nuclear facility having a pipe connection so that the cooling water produced by the refrigerator can be supplied to a load destination related to a nuclear reactor other than the nuclear reactor at least during operation of the nuclear reactor. The cooling system in a nuclear facility, which is characterized by
【請求項11】 前記冷水を供給する冷凍機の入口側に
設置された温度計と、この温度計の出力を目標値に近づ
けるべく制御する制御手段と、を有すること、を特徴と
する請求項1ないし10のいずれかに記載の原子力施設
内冷却システム。
11. A thermometer installed on the inlet side of the refrigerator for supplying the cold water, and a control means for controlling the output of the thermometer so as to approach the target value. 11. The cooling system in a nuclear facility according to any one of 1 to 10.
JP2001364019A 2001-11-29 2001-11-29 Nuclear energy facility internal cooling system Withdrawn JP2003167089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364019A JP2003167089A (en) 2001-11-29 2001-11-29 Nuclear energy facility internal cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364019A JP2003167089A (en) 2001-11-29 2001-11-29 Nuclear energy facility internal cooling system

Publications (1)

Publication Number Publication Date
JP2003167089A true JP2003167089A (en) 2003-06-13

Family

ID=19174266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364019A Withdrawn JP2003167089A (en) 2001-11-29 2001-11-29 Nuclear energy facility internal cooling system

Country Status (1)

Country Link
JP (1) JP2003167089A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203023A (en) * 2007-02-19 2008-09-04 Toshiba Corp Cooling system of nuclear power plant
KR101229953B1 (en) * 2011-09-08 2013-02-06 한전원자력연료 주식회사 Passive cooling device of spent fuel pool
CN109298690A (en) * 2018-09-25 2019-02-01 浙江浙能技术研究院有限公司 A kind of open circulating water cold end system optimal control method
CN114999682A (en) * 2022-06-13 2022-09-02 西安交通大学 Hydraulic test device and method for passive residual heat removal of polar region environment nuclear power device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203023A (en) * 2007-02-19 2008-09-04 Toshiba Corp Cooling system of nuclear power plant
JP4653763B2 (en) * 2007-02-19 2011-03-16 株式会社東芝 Nuclear plant cooling system
KR101229953B1 (en) * 2011-09-08 2013-02-06 한전원자력연료 주식회사 Passive cooling device of spent fuel pool
WO2013035917A1 (en) * 2011-09-08 2013-03-14 한전원자력연료 주식회사 Passive apparatus for cooling spent fuel storage tub
US9640286B2 (en) 2011-09-08 2017-05-02 Kepco Nuclear Fuel Co., Ltd. Passive cooling apparatus of spent fuel pool
CN109298690A (en) * 2018-09-25 2019-02-01 浙江浙能技术研究院有限公司 A kind of open circulating water cold end system optimal control method
CN114999682A (en) * 2022-06-13 2022-09-02 西安交通大学 Hydraulic test device and method for passive residual heat removal of polar region environment nuclear power device
CN114999682B (en) * 2022-06-13 2023-06-20 西安交通大学 Passive residual heat hydraulic test device and method for polar environment nuclear power device

Similar Documents

Publication Publication Date Title
EP3295088B1 (en) Using liquid to air membrane energy exchanger for liquid cooling
KR100750375B1 (en) Cooling or heating combined system using 2-passline waste water exchanger and heat pump
CN107110570A (en) Heat storage type air conditioner
EA023211B1 (en) Hybrid cooling system
KR20130032228A (en) Energy saving system of ship by using waste heat
JP2009192088A (en) Cooling system
US20120247114A1 (en) Water Cooling System For Intercooled Turbines
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JP2003167089A (en) Nuclear energy facility internal cooling system
JP6569096B2 (en) Open circulation cooling system and tube anticorrosion method of heat exchanger during operation stop
KR20180078898A (en) cooling system for converter unit of a electric propulsion ship and control method for thereof
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
JP3593480B2 (en) Seawater cooling system
JP2009063190A (en) Heat medium supply system and modification method of heat medium supply system
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JPH11341740A (en) Cooling apparatus and method for power plant
KR20120034837A (en) A cleaning equipment of heat exchanger with heat accumulator
JP3723943B2 (en) Gas turbine plant and intake air cooling method thereof
JP3467407B2 (en) Refrigeration equipment
JP2507642B2 (en) Moisture collection device
CN216974941U (en) Cooling water system of turboset
JPH08338648A (en) Cooling water supplying system
KR102411439B1 (en) Chilled water direct cooling apparatus for saving energy
JPH06185765A (en) Cooling facility in power plant
JP2007051835A (en) Waste heat using system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201