CN114999682B - Passive residual heat hydraulic test device and method for polar environment nuclear power device - Google Patents
Passive residual heat hydraulic test device and method for polar environment nuclear power device Download PDFInfo
- Publication number
- CN114999682B CN114999682B CN202210663304.0A CN202210663304A CN114999682B CN 114999682 B CN114999682 B CN 114999682B CN 202210663304 A CN202210663304 A CN 202210663304A CN 114999682 B CN114999682 B CN 114999682B
- Authority
- CN
- China
- Prior art keywords
- ice
- test
- heat exchange
- tube
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/18—Emergency cooling arrangements; Removing shut-down heat
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/001—Mechanical simulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
技术领域technical field
本发明属于极地环境核动力装置非能动余热排出系统热工水力特性试验领域,具体涉及一种极地环境核动力装置非能动余排热工水力试验装置与方法。The invention belongs to the thermal-hydraulic characteristic test field of a passive waste heat discharge system of a nuclear power plant in a polar environment, and specifically relates to a thermal-hydraulic test device and a method for a passive waste heat discharge thermal-hydraulic test device and method of a nuclear power plant in a polar environment.
背景技术Background technique
随着全球气候变化,北极地区海域出现了较长的夏季无冰期,相较常规动力船只,核动力装置具有续航能力强、能量密度高、燃料体积小等优点,能够在极地的苛刻环境下执行各类航行任务。当前我国的极地核动力装置起步较晚,且大多基于能动的安全系统,在发生安全事故时,必须依靠外部的电力输入来驱动泵等机械装置为反应堆提供足够的冷却水,防止堆芯温度过高发生融毁事故。历史上的三次重大核事故都体现了能动安全装置具有很大的局限性。非能动的安全设计目的在于不依靠外部能源输入即可在一段时间内仅依靠重力、冷却剂自然循环、压缩空气膨胀做功等自然力作用使冷却剂注入堆芯中冷却,再将冷却剂的热量导出,保证堆芯得到充分而持续的冷却。非能动余热排出系统在正常余热排出系统失效后开始投入运行,利用冷却剂蒸发、冷凝的过程实现系统回路内的自然循环导出堆芯衰变余热。低温环境由于海水中混有固体冰晶,在换热性能不佳的情况下容易堵塞船只海水系统,造成冷却水无法流入,换热器无法有效冷却的影响。With global climate change, there is a longer summer ice-free period in the seas of the Arctic region. Compared with conventional powered ships, nuclear power devices have the advantages of strong endurance, high energy density, and small fuel volume, and can operate in the harsh environment of the polar regions. Various navigation missions. At present, my country's polar nuclear power plants started relatively late, and most of them are based on active safety systems. In the event of a safety accident, they must rely on external power input to drive pumps and other mechanical devices to provide sufficient cooling water for the reactor to prevent the core temperature from being too high. High occurrence of meltdown accidents. The three major nuclear accidents in history all reflect the great limitations of active safety devices. The purpose of the passive safety design is to inject the coolant into the core for cooling for a period of time by relying only on gravity, natural circulation of the coolant, expansion of compressed air and other natural forces without relying on external energy input, and then export the heat of the coolant , to ensure sufficient and continuous cooling of the core. The passive waste heat removal system is put into operation after the failure of the normal waste heat removal system, and uses the process of coolant evaporation and condensation to realize the natural circulation in the system loop to export the core decay waste heat. In the low-temperature environment, due to the solid ice crystals mixed in the seawater, it is easy to block the seawater system of the ship under the condition of poor heat transfer performance, resulting in the inability of cooling water to flow in and the effect that the heat exchanger cannot be effectively cooled.
中国专利申请公开号CN106653109A公开了一种二次侧非能动余热排出系统的试验研究装置,包括三个水箱模拟体,蒸发器模拟体等装置,用于模拟三代反应堆技术中二次侧非能动余热排出系统设计的可靠性。该发明的模拟对象为陆上静止的反应堆非能动安全系统,无法模拟海洋运动环境对非能动余热排出系统的影响,同时该发明采用液态水进行冷却,不适用于模拟低温条件下余热排出换热器冰水混合物的传热流动试验。Chinese Patent Application Publication No. CN106653109A discloses a test and research device for secondary side passive waste heat removal system, including three water tank simulation bodies, evaporator simulation body and other devices, which are used to simulate secondary side passive waste heat in third-generation reactor technology Reliability of discharge system design. The simulation object of this invention is the static reactor passive safety system on land, and it is impossible to simulate the influence of the ocean movement environment on the passive waste heat removal system. At the same time, the invention uses liquid water for cooling, which is not suitable for simulating waste heat removal and heat transfer under low temperature conditions. Heat transfer flow test of ice-water mixture.
中国专利申请公开号CN209149828U公开了一种多回路耦合的非能动余热排出系统试验装置。非能动余热排出系统入口冷凝管与蒸汽发生器二次侧蒸汽出口连接,可对三个回路的自然循环工况进行模拟试验。该装置同样使用水箱中的液态水对余热排出换热器进行换热试验,没有制冰回路无法进行低温条件下的换热模拟试验。Chinese patent application publication number CN209149828U discloses a multi-loop coupled passive waste heat removal system test device. The condensing pipe at the inlet of the passive waste heat removal system is connected to the steam outlet on the secondary side of the steam generator, which can simulate the natural circulation conditions of the three circuits. This device also uses the liquid water in the water tank to conduct heat exchange tests on the waste heat discharge heat exchanger. Without an ice making circuit, it is impossible to conduct heat exchange simulation tests under low temperature conditions.
中国专利申请公开号CN201589481U公开了一种利用海水制取流化冰的系统,该装置主要由冷却压缩机、冷凝器、制冰换热器、干燥过滤器等设备组成,可利用海水的结晶技术原理可连续制成海水与冰晶的混合物,但该系统回路无法对海水中冰晶的比例进行调控,不适用于需要精确控制冰晶比例以进行低温环境换热试验的研究。Chinese Patent Application Publication No. CN201589481U discloses a system for producing fluidized ice using seawater. The device is mainly composed of cooling compressors, condensers, ice-making heat exchangers, drying filters and other equipment, and can use seawater crystallization technology. The principle can continuously make a mixture of seawater and ice crystals, but the system loop cannot regulate the proportion of ice crystals in seawater, so it is not suitable for research that requires precise control of the proportion of ice crystals for heat transfer experiments in low-temperature environments.
发明内容Contents of the invention
对于上述发明装置中不适用于核动力设备在海洋运动条件与低温条件叠加状态下热工水力特性试验的需求,提出了一种极地环境核动力装置非能动余排热工水力试验装置与方法,本发明可通过对应的运动平台设备模拟船只在海洋上遭遇的运动工况,研究倾斜摇摆运动对系统流动换热特性的影响。通过制冰回路与非能动余热排出系统回路耦合实现低温换热条件的模拟。其中制冰回路能够对制取的冰水混合物中冰晶比例进行调节,满足试验不同冰晶浓度对换热特性影响的需求。In view of the requirement that the above-mentioned inventive device is not applicable to the thermal-hydraulic characteristic test of nuclear power equipment under the superimposed state of ocean motion and low temperature conditions, a thermal-hydraulic test device and method for passive residual exhaust of nuclear power plant in polar environment are proposed. The present invention can simulate the motion working condition encountered by the ship on the ocean through the corresponding motion platform equipment, and study the influence of the tilting and rocking motion on the flow and heat transfer characteristics of the system. The simulation of low temperature heat transfer conditions is realized by coupling the ice making loop with the passive waste heat removal system loop. Among them, the ice-making circuit can adjust the proportion of ice crystals in the prepared ice-water mixture to meet the needs of testing the influence of different ice crystal concentrations on heat transfer characteristics.
为了满足上述试验目的,本发明采用如下的技术方案:In order to meet the above test purpose, the present invention adopts the following technical solutions:
一种极地环境核动力装置非能动余排热工水力试验装置,包括制冰循环回路与池式非能动余热排出系统试验回路,其中制冰循环回路包括制冰回路11和六自由度运动换热水池12,制冰回路11主要包含制冰机1,连接制冰机的储冰保温容器2和低温水箱301。低温水箱301的主要作用是调配海水为制冰机提供充足的水源,同时也能将低温海水注入到储冰保温容器2中调配试验所需冰晶比例的冰水混合物。A thermal-hydraulic test device for passive residual heat removal of a nuclear power plant in a polar environment, including an ice-making circulation loop and a pool-type passive waste heat removal system test loop, wherein the ice-making circulation loop includes an ice-
制冰回路11位于冰水混合物循环回路上游,其输出管道经过第二止回阀802连接第一离心泵401,将制取的固定比例混合物注入循环回路管道中,第一离心泵401下游出口管道连接第三控制阀门703和第一流量监测仪器901,用于控制试验换热水池入口管道流量输入以及检测试验循环回路上游流量。试验换热水池5入口设置第一温度监测仪器1001,监测入口流体的温度参数。试验换热水池5底部连接六自由度运动台架的上支撑面,采用螺栓固定,六自由度运动台架下支撑面同样使用螺栓固定在地面上,上下支撑面间通过六根活塞液压杆连接。位于试验换热水池底部的出口的第二温度监测仪器1002,监测试验换热水池出口流体的温度参数,试验换热水池出口管道连接第二流量监测仪器902和第四控制阀门704,用于监测试验换热水池下游流量,以及调节试验换热水池的输出流量,试验换热水池进出口管道之间由连接差压传感器18,作用为测量流体经过试验换热水池的压差变化。第四控制阀门704下游出口管道连接第二离心泵402,提供足够的驱动力实现冰水混合物流体的流动循环,第二离心泵402下游连接储冰保温容器入口管道最终构成循环回路。The ice-making
池式非能动余热排出系统试验回路包括电加热蒸发系统13、管束式换热器14、管壳式换热系统17和供水箱303。电加热蒸发系统13主要作用为将供水箱303中的液态水加热为试验所需的蒸汽,并根据试验需求控制对应的蒸汽参数,电加热蒸发系统13下游管道连接第五控制阀门705和第三流量计903,用于监测和控制蒸汽流量。第三流量计903下游管道连接管束式换热器14上端管侧入口,同时管侧入口管道设置第三温度传感器1003,监测进入管束式换热器管侧入口的蒸汽温度参数。管束式换热器14浸没在试验换热水池5中的冰水混合物流体中进行换热,并研究与低温流体的换热特性,管束式换热器出口管道位于管束式换热器14下端,与入口有一定的高度差便于形成自然循环。管束式换热器14下端出口管道连接第四流量计904和第六控制阀门706,控制和监测余热排出换热器出口流体流量,同时下端出口管道设置第四温度传感器1004,监测管束出口流体温度参数。第六控制阀门706下游连接管壳式换热系统17壳侧入口,管壳式换热系统17用于将管道中未完全冷凝的蒸汽冷凝为液态水便于重新加热为蒸汽,同时当试验回路中流体温度过高时进行冷却,防止事故的发生。管壳式换热系统17中电加热蒸发器15壳侧下游连接电加热蒸发系统13入口,将冷凝后的流体重新导入电加热蒸发器中加热构成循环回路。管壳式换热系统17中电加热蒸发器15管侧依次通过第七控制阀门707、水泵16和冷却水箱302构成闭合回路,使壳侧流体循环流动将管侧流体的热量导出。The test circuit of the pool-type passive waste heat removal system includes an electric
所述制冰回路11能够控制冰水混合物中冰晶含量。The ice-making
所述试验换热水池5中使用一个挡板将流动空间分为两部分,出口位于试验换热水池5底部。A baffle plate is used in the test
所述制冰循环回路中连接管道表面均覆盖有保温材料,能够使回路运行温度维持在-5℃—0℃范围内。The surfaces of the connecting pipes in the ice-making circulation loop are all covered with thermal insulation materials, which can maintain the operating temperature of the loop within the range of -5°C to 0°C.
管束式换热器14管外与-5℃-0℃的冰水混合物直接接触,管内流动320℃-350℃的蒸汽。The outside of the tube
六自由度运动换热水池中试验换热水池5具有透明观测窗口用于观察冰水混合物流型变化。The test
六自由度运动台架6有多根活塞支撑杆连接上支撑面和下支撑面,试验换热水池5与上支撑面之间采用螺栓固定。The six-degree-of-
所述的一种极地环境核动力装置非能动余排热工水力试验装置的试验方法,进行极地低温环境模拟试验时开启制冰循环回路,同时开启电加热蒸发器15生成320℃-350℃的蒸汽,使管束式换热器管14内通过高温蒸汽,管外接触-5℃-0℃的冰水混合物,通过调节六自由度运动台架6上支撑面的水平角度模拟非能动余热排出系统在极地低温环境叠加海洋倾斜工况下的热工水力特性过程,该过程中各循环回路的流量、温度、压力参数通过第一至第四流量监测仪器、第一至第四温度监测仪器、差压传感器18测量;通过试验过程中从储冰保温容器2提取冰水混合物进行检测确定冰晶颗粒含量,透过试验换热水池5的观测窗观察测量冰水混合物流型变化,在试验换热水池5出入口分别采样,检测换热过程前后冰晶颗粒的含量变化,以研究冰晶颗粒在换热过程中的动力学特征。According to the test method of the thermal-hydraulic test device for the passive residual discharge of the nuclear power plant in the polar environment, the ice-making circulation loop is turned on when the polar low-temperature environment simulation test is carried out, and the
和现有技术相比较,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明的试验系统与方法可模拟海洋运动环境与低温环境叠加状态下核动力装置非能动余热排出系统的热工水力特性,对非能动余热排出系统在特殊环境下的性能与可靠性进行充分的试验研究;1. The test system and method of the present invention can simulate the thermal-hydraulic characteristics of the passive waste heat removal system of the nuclear power plant under the superimposed state of the ocean motion environment and the low temperature environment, and conduct an investigation on the performance and reliability of the passive waste heat removal system in a special environment. Sufficient experimental research;
2、本发明的制冰循环回路可通过试验换热水池的透明观测窗口与储冰保温容器中的采样数据,研究不同冰水混合物流型特征对换热特性的影响,以及冰晶在换热融化过程中的动力学行为特征。2. The ice-making circulation circuit of the present invention can study the influence of flow pattern characteristics of different ice-water mixtures on the heat transfer characteristics, and the melting of ice crystals during heat transfer by testing the transparent observation window of the heat transfer pool and the sampling data in the ice storage insulation container. The dynamic behavior characteristics of the process.
3、通过运动平台实现对船只在海洋工况的模拟,六自由度运动平台可通过倾斜摇摆的方式模拟船只在海洋中的沿坐标系不同坐标轴的横摇、纵摇、横倾、纵倾等运动对非能动余热排出系统的影响。3. Realize the simulation of the ship's working conditions in the ocean through the motion platform. The six-degree-of-freedom motion platform can simulate the roll, pitch, heel, and trim of the ship along the different coordinate axes of the coordinate system in the ocean by tilting and swinging. Effect of isomotion on passive waste heat removal system.
附图说明Description of drawings
图1为制冰循环回路系统图。Figure 1 is a system diagram of the ice making cycle loop.
图2为非能动余热排出系统图。Figure 2 is a diagram of the passive waste heat removal system.
具体实施方式Detailed ways
下面结合附图和实例对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing and example:
如图1和图2所示,本发明一种极地环境核动力装置非能动余排热工水力试验装置,低温水箱301出口管道上游连接第二控制阀门702,第二控制阀门702下游连接位于较低高度的储冰保温容器2入口,该设置的主要作用是通过重力将低温水箱301中配置的低温海水注入储冰保温容器2中调节冰晶颗粒和水的比例。低温水箱301出口通过保温管道经过第一控制阀门701后连接位于较低高度的制冰机1入口管道,为制冰机1提供制冰所需的海水。进行试验时优先开启低温水箱301与制冰机1之间的第一控制阀门701将低温海水注入到制冰机1中开始制冰,当制冰机中的冰晶颗粒满足试验基本需求后,开启制冰机输出口,使混合物流体进入储冰保温容器2,测量其中冰水混合物冰晶含量。该过程同时打开低温水箱301出口管道第二控制阀门702向储冰保温容器2中注入低温海水进一步调控冰晶含量。制冰机1和储冰保温容器2间的保温管道上设置第一止回阀801防止冰水混合物倒流。As shown in Fig. 1 and Fig. 2, the present invention is a thermal-hydraulic test device for passive residual discharge of a nuclear power plant in a polar environment. The main function of the low-height ice storage and
如图1所示,储冰保温容器2出口管道下游连接第二止回阀802,以及第一离心泵401,在冰水混合物调配过程中关闭储冰保温容器2输出口,当冰晶采样结果满足试验需求后,开启储冰保温容器2输出口与第三控制阀门703与第一离心泵401将冰水混合物导入制冰循环回路管道,并保持控制第三控制阀门703开启的状态,保持第四控制阀门704的关闭状态,当冰水混合物流体在试验换热水池5中的水位达到试验需求后,调节第四控制阀门704的开度以及第二离心泵402的功率,使试验换热水池5进出口流量保持平衡,内部水位始终在试验要求范围内。在水位保持稳定的过程中由第一流量监测仪器901与第二流量监测仪器902记录试验换热水池5进出口流量数据,通过第一温度监测仪器1001和第二温度监测仪器1002,记录试验换热水池5进出口流体温度数据,由差压传感器18记录流体通过试验换热水池后的压降数据。As shown in Figure 1, the downstream of the outlet pipeline of the ice storage and
图2为池式非能动余热排出系统试验回路,进行试验操作时,依次开启第七控制阀门707,水泵16,使管壳式换热系统17管侧冷却水进行循环。当制冰循环回路能够维持换热水池水位稳定后,开启第八控制阀门708根据试验的蒸汽参数需求使供水箱303注入对应的水量,随后保持第五控制阀门705与第六控制阀门706的开启,逐步提高电加热蒸发器功率产生蒸汽,记录第三流量计903与第四流量计904显示的流量数据,当蒸汽需求达到试验要求参数后关闭管壳式换热系统17独立回路水泵16,仅由试验换热水池5对管内蒸汽进行冷却并建立自然循环。试验装置完全启动后,通过试验换热水池5的透明窗口观测冰晶融化现象,判断冰水混合物流型特征,通过各监测系统记录试验换热水池5与管束式换热器14,进出口流量,压力,温度参数变化。试验停机阶段,开启管壳式换热系统17独立回路水泵16,进行额外冷凝,逐步降低电加热蒸发系统13功率。电加热蒸发系统13完全关闭后,关闭制冰机1以及低温水池第二控制阀门702,同时关闭第一控制阀门701,以及第一离心泵401,保持第四控制阀门704与第二离心泵402的开启,直至将回路管道中冰水混合物全部抽入储冰保温容器2中,最终关闭第四控制阀门704与第二离心泵402,清理试验换热水池底部残留杂物。Figure 2 is the test circuit of the pool-type passive waste heat removal system. During the test operation, the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210663304.0A CN114999682B (en) | 2022-06-13 | 2022-06-13 | Passive residual heat hydraulic test device and method for polar environment nuclear power device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210663304.0A CN114999682B (en) | 2022-06-13 | 2022-06-13 | Passive residual heat hydraulic test device and method for polar environment nuclear power device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114999682A CN114999682A (en) | 2022-09-02 |
CN114999682B true CN114999682B (en) | 2023-06-20 |
Family
ID=83033252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210663304.0A Expired - Fee Related CN114999682B (en) | 2022-06-13 | 2022-06-13 | Passive residual heat hydraulic test device and method for polar environment nuclear power device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114999682B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115312214B (en) * | 2022-09-16 | 2024-08-20 | 中国核动力研究设计院 | Self-resetting type inclination-resistant swinging CIS water inlet heat-insulating valve device |
CN116884655B (en) * | 2023-09-08 | 2023-11-10 | 中国核动力研究设计院 | Method and device for determining influence of external force field on thermal safety, nuclear reactor and equipment |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07181279A (en) * | 1993-12-24 | 1995-07-21 | Hitachi Ltd | Floating nuclear power plant |
JP2003167089A (en) * | 2001-11-29 | 2003-06-13 | Toshiba Corp | Nuclear energy facility internal cooling system |
JP2004084964A (en) * | 2002-08-22 | 2004-03-18 | Toyo Eng Works Ltd | Ice heat accumulator |
CN201589481U (en) * | 2009-09-25 | 2010-09-22 | 天津商业大学 | A system for producing fluidized ice from seawater |
CN104021823A (en) * | 2014-05-23 | 2014-09-03 | 中国核动力研究设计院 | Waste heat long-term passive lead-out system of floating-type nuclear power station |
CN106653109A (en) * | 2016-12-30 | 2017-05-10 | 福建福清核电有限公司 | Experimental research device for secondary side passive residual heat removal system (PRS) |
KR101815958B1 (en) * | 2016-11-25 | 2018-02-21 | 한국과학기술원 | Passive containment cooling system for pressurized water reactor using phase-change material |
CN108109708A (en) * | 2017-12-08 | 2018-06-01 | 西安交通大学 | Villiaumite cools down ball bed high-temperature heap reactor core fluid interchange experimental system for simulating |
FR3061709A1 (en) * | 2017-01-08 | 2018-07-13 | Claude Favy | DEVICE FOR THE PRODUCTION OF A MIXTURE OF CRYSTALS OF ICE AND FRESHWATER. |
CN110021447A (en) * | 2018-01-10 | 2019-07-16 | 中广核(北京)仿真技术有限公司 | A kind of secondary side passive residual heat deriving system |
CN209149828U (en) * | 2018-11-13 | 2019-07-23 | 中国舰船研究设计中心 | A kind of passive residual heat removal system experimental rig of multiple-loop coupling |
CN110164569A (en) * | 2019-05-14 | 2019-08-23 | 中国舰船研究设计中心 | A kind of long timeliness secondary circuit passive residual heat removal system of water surface atomic-powered ship |
CN111446013A (en) * | 2020-04-24 | 2020-07-24 | 上海核工程研究设计院有限公司 | Marine environment secondary side passive waste heat removal system and use method |
CN112880967A (en) * | 2021-01-11 | 2021-06-01 | 西安交通大学 | Multi-loop natural circulation experimental device and method under six-degree-of-freedom motion condition |
CN112881386A (en) * | 2021-01-11 | 2021-06-01 | 西安交通大学 | Narrow slit channel visualization experiment device and method under six-degree-of-freedom motion condition |
CN112885491A (en) * | 2021-01-11 | 2021-06-01 | 西安交通大学 | Loop cycle characteristic experiment system and method under six-degree-of-freedom motion condition |
RU2758159C1 (en) * | 2020-12-29 | 2021-10-26 | Акционерное Общество "Атомэнергопроект" | Passive heat removal system |
-
2022
- 2022-06-13 CN CN202210663304.0A patent/CN114999682B/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07181279A (en) * | 1993-12-24 | 1995-07-21 | Hitachi Ltd | Floating nuclear power plant |
JP2003167089A (en) * | 2001-11-29 | 2003-06-13 | Toshiba Corp | Nuclear energy facility internal cooling system |
JP2004084964A (en) * | 2002-08-22 | 2004-03-18 | Toyo Eng Works Ltd | Ice heat accumulator |
CN201589481U (en) * | 2009-09-25 | 2010-09-22 | 天津商业大学 | A system for producing fluidized ice from seawater |
CN104021823A (en) * | 2014-05-23 | 2014-09-03 | 中国核动力研究设计院 | Waste heat long-term passive lead-out system of floating-type nuclear power station |
KR101815958B1 (en) * | 2016-11-25 | 2018-02-21 | 한국과학기술원 | Passive containment cooling system for pressurized water reactor using phase-change material |
CN106653109A (en) * | 2016-12-30 | 2017-05-10 | 福建福清核电有限公司 | Experimental research device for secondary side passive residual heat removal system (PRS) |
FR3061709A1 (en) * | 2017-01-08 | 2018-07-13 | Claude Favy | DEVICE FOR THE PRODUCTION OF A MIXTURE OF CRYSTALS OF ICE AND FRESHWATER. |
CN108109708A (en) * | 2017-12-08 | 2018-06-01 | 西安交通大学 | Villiaumite cools down ball bed high-temperature heap reactor core fluid interchange experimental system for simulating |
CN110021447A (en) * | 2018-01-10 | 2019-07-16 | 中广核(北京)仿真技术有限公司 | A kind of secondary side passive residual heat deriving system |
CN209149828U (en) * | 2018-11-13 | 2019-07-23 | 中国舰船研究设计中心 | A kind of passive residual heat removal system experimental rig of multiple-loop coupling |
CN110164569A (en) * | 2019-05-14 | 2019-08-23 | 中国舰船研究设计中心 | A kind of long timeliness secondary circuit passive residual heat removal system of water surface atomic-powered ship |
CN111446013A (en) * | 2020-04-24 | 2020-07-24 | 上海核工程研究设计院有限公司 | Marine environment secondary side passive waste heat removal system and use method |
RU2758159C1 (en) * | 2020-12-29 | 2021-10-26 | Акционерное Общество "Атомэнергопроект" | Passive heat removal system |
CN112880967A (en) * | 2021-01-11 | 2021-06-01 | 西安交通大学 | Multi-loop natural circulation experimental device and method under six-degree-of-freedom motion condition |
CN112881386A (en) * | 2021-01-11 | 2021-06-01 | 西安交通大学 | Narrow slit channel visualization experiment device and method under six-degree-of-freedom motion condition |
CN112885491A (en) * | 2021-01-11 | 2021-06-01 | 西安交通大学 | Loop cycle characteristic experiment system and method under six-degree-of-freedom motion condition |
Non-Patent Citations (15)
Title |
---|
Comparison of flow instabilities under static condition and marine motion conditions based on experiments;Yu Tang;Annals of Nuclear Energy;第70卷;全文 * |
Experimental study on thermal hydraulic characteristics of natural circulation loop under motion condition;Zhixian Lai;Applied Thermal Engineering;207;全文 * |
Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions;Sichao Tan;Experimental Thermal and Fluid Science;第50卷;全文 * |
Research on thermal hydraulic characteristics of integrated reactor in natural circulation operation under ocean motions;Wu Jianbang;Progress in Nuclear Energy;第126卷;全文 * |
Study on the natural circulation characteristics of the integral type reactor for vertical and inclined conditions;Jae-Hak Kim;Nuclear Engineering and Design;第207卷(第1期);全文 * |
二次侧非能动余热排出系统传热能力试验研究;徐海岩;吴小航;卢冬华;苏前华;;原子能科学技术(03);全文 * |
二次侧非能动余热排出系统运行及换热特性研究;李亮国;苏前华;郝陈玉;余健明;孟祥飞;吴小航;卢冬华;朱峰;;核科学与工程(04);全文 * |
先进堆非能动余热排出系统综合试验研究;卓文彬;黄彦平;肖泽军;刘军;卢姗姗;荚川;;中国核科技报告(02);全文 * |
摇摆条件下非能动余热排出系统运行特性的试验与理论研究;李勇全;鄢炳火;于雷;;原子能科学技术(05);全文 * |
海水淡化堆非能动余热排出特性模拟实验研究;聂常华;许世杰;刘逊;卓文彬;李长林;郑华;李朋洲;余庆林;;核动力工程(06);全文 * |
海洋条件对船用核动力堆余热排出系统特性的影响;苏光辉,张金玲,郭玉君秋穗正,喻真烷,贾斗南;原子能科学技术(06);全文 * |
自流冷却在船用堆非能动余热排出系统中的初步应用研究;袁添鸿;蔡琦;于雷;傅晟威;郝建立;;海军工程大学学报(02);全文 * |
舰船核动力装置非能动余热排出系统运行特性;彭军;于雷;;舰船科学技术(07);全文 * |
非能动余热排出系统数学模型研究与运行特性分析;于雷;谢海燕;蔡章生;;核科学与工程(03);全文 * |
非能动安全壳冷却系统瞬态特性试验研究;程诚;文青龙;卢冬华;吴小航;牛文华;魏淑虹;;核动力工程(01);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114999682A (en) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114999682B (en) | Passive residual heat hydraulic test device and method for polar environment nuclear power device | |
CN104966536B (en) | A kind of high temperature refrigerant heat transfer experiments system and method with conduction oil as hot fluid | |
CN109473187B (en) | Visualization experiment system and method for two-layer fluid turbulence process and heat transfer characteristics under ocean conditions | |
CN108761022B (en) | Liquid lead bismuth alloy thermal hydraulic characteristic and corrosion characteristic experiment system | |
CN107238627B (en) | Comprehensive experiment loop system for forced circulation of heat conduction oil working medium | |
CN107402231A (en) | One kind is applied under dynamic condition hot-working hydraulic characteristic research experiment device in heating rod beam passage | |
CN108918175B (en) | Thermal performance test system | |
CN106248673A (en) | A Visual Research Device for Bubble Dynamics under Dynamic Motion Conditions | |
CN202216925U (en) | Open heat exchanger pilot test platform | |
CN107632042B (en) | Shell and tube heat exchanger single-phase heat transfer experimental test platform and test method | |
CN110223790B (en) | External cooling test bed for pressure vessel for retention in melt pile | |
CN109520915B (en) | Low-pressure low-altitude difference natural circulation test device | |
CN114441587B (en) | An experimental device for measuring the performance of phase change materials in temperature difference utilization processes | |
CN108732304A (en) | A kind of non-metallic pipe pipe water delivery dynamic scale formation experiment circuit and method | |
CN204760047U (en) | Structural integrity test platform under reactor pressure vessel IVR condition | |
CN207423766U (en) | A kind of experimental rig | |
CN207623492U (en) | A kind of battery performance test device based on liquid cooling technology | |
CN107860704A (en) | A kind of salt resistance class erosion test device | |
CN118837505A (en) | Gas phase leading flowing system hydrate loop experiment system and test method | |
CN114965566B (en) | A universal experimental bench and experimental method for high-temperature heat pipe startup and flow heat transfer | |
CN208736687U (en) | A thermal performance testing system | |
CN216285014U (en) | A Visualized CO2 Mixed Working Fluid Saturation State Point Test System | |
CN115541280A (en) | Thermal performance and flow resistance testing rack for small-temperature-difference plate heat exchanger | |
CN115013139B (en) | A simulation test system for performance analysis of welded pipe fittings in marine cooling water systems | |
CN219121940U (en) | An experimental device for investigating the shear behavior of rocks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230620 |