JP2003166080A - METHOD FOR IMPARTING HYDROGEN-GAS RESISTANCE ON R-Fe-B PERMANENT MAGNET - Google Patents

METHOD FOR IMPARTING HYDROGEN-GAS RESISTANCE ON R-Fe-B PERMANENT MAGNET

Info

Publication number
JP2003166080A
JP2003166080A JP2001366845A JP2001366845A JP2003166080A JP 2003166080 A JP2003166080 A JP 2003166080A JP 2001366845 A JP2001366845 A JP 2001366845A JP 2001366845 A JP2001366845 A JP 2001366845A JP 2003166080 A JP2003166080 A JP 2003166080A
Authority
JP
Japan
Prior art keywords
plating film
film
plating
magnet
metal plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001366845A
Other languages
Japanese (ja)
Other versions
JP2003166080A5 (en
Inventor
Kazuhide Oshima
一英 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2001366845A priority Critical patent/JP2003166080A/en
Publication of JP2003166080A publication Critical patent/JP2003166080A/en
Publication of JP2003166080A5 publication Critical patent/JP2003166080A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for imparting hydrogen-gas resistance on an R-Fe-B permanent magnet, so that the magnet might not cause decay even when used in an atmosphere of hydrogen gas with high pressure. <P>SOLUTION: This method imparts the hydrogen-gas resistance to the magnet, so as to prepare for the case when used in an atmosphere of hydrogen gas with a high pressure of 100 kPa or higher, by forming a multilayered structure of metal plated films on the surface of R-Fe-B permanent magnet, which satisfies the conditions of (1)-(4): (1) the multilayered structure consists of four or more metal plated films; (2) the multilayered structure comprises a Ni plated film and a Cu plated film; (3) the film thickness of the Cu plated film is 30% or more of all film thickness of the multilayered metal plated films; and (4) the total thickness of the multilayered metal plated films is 15-70 μm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、R−Fe−B系永
久磁石に対して耐水素ガス性を付与する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for imparting hydrogen gas resistance to R-Fe-B based permanent magnets.

【0002】[0002]

【従来の技術】Nd−Fe−B系永久磁石に代表される
R−Fe−B系永久磁石は、資源的に豊富で安価な材料
が用いられ、かつ、高い磁気特性を有していることか
ら、今日様々な分野で使用されている。しかしながら、
R−Fe−B系永久磁石は、反応性の高い希土類金属:
Rを含むため、大気中で酸化腐食されやすく、何の表面
処理をも行わずに使用した場合には、わずかな酸やアル
カリや水分などの存在によって表面から腐食が進行して
錆が発生し、それに伴って、磁石特性の劣化やばらつき
を招く。さらに、錆が発生した磁石を磁気回路などの装
置に組み込んだ場合、錆が飛散して周辺部品を汚染する
恐れがある。従って、R−Fe−B系永久磁石の表面に
各種の耐食性被膜を形成することが古くから行われてい
る。
2. Description of the Related Art R-Fe-B system permanent magnets, typified by Nd-Fe-B system permanent magnets, are made of a resource-rich and inexpensive material and have high magnetic properties. Therefore, it is used in various fields today. However,
The R-Fe-B based permanent magnet is a highly reactive rare earth metal:
Since it contains R, it is easily oxidatively corroded in the atmosphere, and when used without any surface treatment, corrosion progresses from the surface due to the presence of a slight amount of acid, alkali or moisture, and rust occurs. As a result, deterioration or variation in magnet characteristics is caused. Furthermore, when a magnet with rust is incorporated in a device such as a magnetic circuit, the rust may scatter to contaminate peripheral parts. Therefore, various corrosion resistant coatings have been formed on the surface of R-Fe-B permanent magnets for a long time.

【0003】[0003]

【発明が解決しようとする課題】ところで、今日、R−
Fe−B系永久磁石の用途については、通常の大気中雰
囲気下での用途に留まらず、特殊環境下における適用ニ
ーズが高まっている。このような特殊環境の代表例とし
ては、高い水素ガス圧雰囲気が挙げられる。その背景に
は、環境技術関連において、COによる地球温暖化防
止策として、これまで依存してきた石油系原料(化石燃
料)に代えて水素ガスを原料とした発電・冷凍・貯蔵を
はじめとする各種システムの開発が進められてきている
ことがある。これらのシステムにおいて、水素ガスの供
給や移送などのために使用される循環モータや磁気セン
サなどの部品に、R−Fe−B系永久磁石を適用するこ
とが、システムの小型化の観点などから期待されてい
る。しかしながら、R−Fe−B系永久磁石は、その製
造工程の中で磁粉の微細化のために水素加圧粉砕が取り
入れられていることからも明らかなように、水素吸蔵性
が非常に高いという特性を有する。従って、水素ガスし
か存在しない環境下における水素ガス圧であるか、水素
ガスと他のガスとの混合ガスにおける水素ガス分圧であ
るかを問わず、100kPa以上といったような高い水
素ガス圧雰囲気中においてR−Fe−B系永久磁石を使
用した場合、磁石は水素を吸蔵し、Rが水素と反応して
水素化合物を形成したり、発熱したりすることによって
脆化し、最終的に磁石が崩壊に至るという問題を有す
る。そこで本発明は、高い水素ガス圧雰囲気中で使用し
た場合でも、磁石が崩壊を引き起こさないようにするた
めの、R−Fe−B系永久磁石に対して耐水素ガス性を
付与する方法を提供することを目的とする。
By the way, today, R-
Regarding the use of the Fe-B system permanent magnet, the application needs are not limited to the use in a normal atmosphere, but the application needs under a special environment are increasing. A typical example of such a special environment is a high hydrogen gas pressure atmosphere. In the background of this, in the field of environmental technology, as a measure to prevent global warming by CO 2 , we will start power generation, freezing, and storage using hydrogen gas as a raw material instead of the petroleum-based raw material (fossil fuel) that we have been relying on. Development of various systems may be underway. In these systems, applying R-Fe-B system permanent magnets to parts such as a circulation motor and a magnetic sensor used for supplying and transferring hydrogen gas is effective in reducing the size of the system. Is expected. However, the R-Fe-B system permanent magnet has a very high hydrogen storage property, as is apparent from the fact that hydrogen pressure pulverization is introduced for making the magnetic particles fine during the manufacturing process. Have characteristics. Therefore, regardless of the hydrogen gas pressure in an environment where only hydrogen gas exists or the hydrogen gas partial pressure in a mixed gas of hydrogen gas and another gas, in a high hydrogen gas pressure atmosphere of 100 kPa or more. When an R-Fe-B system permanent magnet is used in, the magnet occludes hydrogen, and R reacts with hydrogen to form a hydrogen compound or generate heat, resulting in embrittlement, and eventually the magnet collapses. Have the problem of reaching. Therefore, the present invention provides a method for imparting hydrogen gas resistance to an R-Fe-B based permanent magnet so as to prevent the magnet from collapsing even when used in a high hydrogen gas pressure atmosphere. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】本発明者は上記の点に鑑
み、R−Fe−B系永久磁石の表面に耐食性被膜として
慣用的に形成されるNiめっき被膜とCuめっき被膜を
利用し、高い水素ガス圧雰囲気中においても磁石に耐水
素ガス性を付与する方法の検討を行うことにした。とこ
ろで、Cuは水素遮断性を有する金属であることが従来
から知られており、例えば、特開平5−29119号公
報には、磁石の表面にCuめっき被膜を形成し、さらに
その表面にNiめっき被膜などのCuよりも卑な金属か
らなる金属めっき被膜を形成することで磁石の水素吸蔵
を抑制する方法が記載されている。しかしながら、この
方法は、磁石の表面に金属めっき被膜を形成する際に発
生する水素ガスを磁石が吸蔵することを抑制するための
方法に過ぎない。従って、単に上記の積層構造を採用し
たということだけでは、100kPa以上といったよう
な高い水素ガス圧雰囲気中においては磁石に耐水素ガス
性を十分に付与することができず、特に金属めっき被膜
への水素の拡散と放出が繰り返されるような環境では、
被膜の膨れや剥離などの発生を招き、早期に磁石と金属
めっき被膜が一気に破裂崩壊するといったような事態が
発生することが判明した。
In view of the above points, the present inventor utilizes a Ni plating film and a Cu plating film which are conventionally formed as a corrosion resistant film on the surface of an R—Fe—B system permanent magnet, We decided to study a method of giving hydrogen resistance to hydrogen even in a high hydrogen gas pressure atmosphere. By the way, it has been conventionally known that Cu is a metal having a hydrogen barrier property. For example, in JP-A-5-29119, a Cu plating film is formed on the surface of a magnet, and further Ni plating is performed on the surface. It describes a method of suppressing hydrogen absorption of a magnet by forming a metal plating film made of a metal less base than Cu such as a film. However, this method is only a method for suppressing the occlusion of hydrogen gas generated when the metal plating film is formed on the surface of the magnet. Therefore, just by adopting the above-mentioned laminated structure, it is not possible to sufficiently impart hydrogen gas resistance to the magnet in an atmosphere of high hydrogen gas pressure such as 100 kPa or more, and especially to the metal plating film. In an environment where hydrogen diffusion and release are repeated,
It was found that the film causes swelling and peeling, and the magnet and the metal plating film burst and collapse at an early stage.

【0005】そこで更なる検討を行った結果、Cuめっ
き被膜とNiめっき被膜を組み合わせ、全体として高い
水素遮断性と内部応力緩和性を有する特定の多層金属め
っき被膜構造とすることで、高い水素ガス雰囲気中でも
長期間にわたって金属めっき被膜の膨れや剥離などの発
生を抑制できること、そしてこれにより磁石の水素吸蔵
も効果的に抑制できること、ひいては磁石が崩壊を引き
起こさないようにすることができることを見出した。
As a result of further study, a high hydrogen gas content was obtained by combining the Cu plating film and the Ni plating film to form a specific multilayer metal plating film structure having high hydrogen barrier property and internal stress relaxation property as a whole. It has been found that it is possible to suppress the occurrence of swelling or peeling of the metal plating film even in an atmosphere for a long period of time, and to effectively suppress the hydrogen absorption of the magnet, thereby preventing the magnet from collapsing.

【0006】以上のような知見に基づいて完成された本
発明は、請求項1記載の通り、R−Fe−B系永久磁石
の表面に以下の(1)〜(4)の条件を満たす多層金属
めっき被膜構造を形成することにより、100kPa以
上の水素ガス圧雰囲気下における磁石の使用に際し、磁
石に対して耐水素ガス性を付与する方法である。 (1)多層金属めっき被膜構造が4層以上の金属めっき
被膜からなること。 (2)多層金属めっき被膜構造がNiめっき被膜とCu
めっき被膜を構成被膜とすること。 (3)Cuめっき被膜の膜厚が多層金属めっき被膜の全
膜厚の30%以上であること。 (4)多層金属めっき被膜の全膜厚が15μm〜70μ
mであること。また、請求項2記載の方法は、請求項1
記載の方法において、多層金属めっき被膜構造中に2層
以上のCuめっき被膜を有するものである。また、請求
項3記載の方法は、請求項1または2記載の方法におい
て、多層金属めっき被膜構造の最表層をCuめっき被膜
とするものである。また、請求項4記載の方法は、請求
項1乃至3のいずれかに記載の方法において、多層金属
めっき被膜構造の最表層の表面を加熱処理するものであ
る。また、請求項5記載の方法は、請求項1乃至3のい
ずれかに記載の方法において、多層金属めっき被膜構造
の最表層の表面にSnめっき被膜を形成するものであ
る。また、請求項6記載の方法は、請求項5記載の方法
において、Snめっき被膜の表面を加熱処理するもので
ある。また、本発明は、請求項7記載の通り、表面に以
下の(1)〜(4)の条件を満たす多層金属めっき被膜
構造を有する耐水素ガス性R−Fe−B系永久磁石であ
る。 (1)多層金属めっき被膜構造が4層以上の金属めっき
被膜からなること。 (2)多層金属めっき被膜構造がNiめっき被膜とCu
めっき被膜を構成被膜とすること。 (3)Cuめっき被膜の膜厚が多層金属めっき被膜の全
膜厚の30%以上であること。 (4)多層金属めっき被膜の全膜厚が15μm〜70μ
mであること。
The present invention completed on the basis of the above knowledge, as described in claim 1, has a multilayer structure satisfying the following conditions (1) to (4) on the surface of the R-Fe-B system permanent magnet. This is a method of imparting hydrogen gas resistance to the magnet when the magnet is used in a hydrogen gas pressure atmosphere of 100 kPa or more by forming a metal plating film structure. (1) The multilayer metal plating film structure is composed of four or more metal plating films. (2) Multi-layer metal plating film structure is Ni plating film and Cu
Use the plating film as a constituent film. (3) The film thickness of the Cu plating film is 30% or more of the total film thickness of the multilayer metal plating film. (4) The total thickness of the multilayer metal plating film is 15 μm to 70 μm
Must be m. The method according to claim 2 is the method according to claim 1.
In the method described, the multilayer metal plating film structure has two or more Cu plating films. The method according to claim 3 is the method according to claim 1 or 2, wherein the outermost layer of the multilayer metal plating film structure is a Cu plating film. The method according to claim 4 is the method according to any one of claims 1 to 3, wherein the surface of the outermost layer of the multilayer metal plating film structure is heat-treated. The method according to claim 5 is the method according to any one of claims 1 to 3, wherein an Sn plating film is formed on the surface of the outermost layer of the multilayer metal plating film structure. The method according to claim 6 is the method according to claim 5, wherein the surface of the Sn plating film is heat-treated. Further, according to claim 7, the present invention is a hydrogen gas resistant R-Fe-B system permanent magnet having a multilayer metal plating film structure satisfying the following conditions (1) to (4) on the surface. (1) The multilayer metal plating film structure is composed of four or more metal plating films. (2) Multi-layer metal plating film structure is Ni plating film and Cu
Use the plating film as a constituent film. (3) The film thickness of the Cu plating film is 30% or more of the total film thickness of the multilayer metal plating film. (4) The total thickness of the multilayer metal plating film is 15 μm to 70 μm
Must be m.

【0007】[0007]

【発明の実施の形態】本発明は、R−Fe−B系永久磁
石の表面に以下の(1)〜(4)の条件を満たす多層金
属めっき被膜構造を形成することにより、100kPa
以上の水素ガス圧雰囲気下における磁石の使用に際し、
磁石に対して耐水素ガス性を付与する方法である。 (1)多層金属めっき被膜構造が4層以上の金属めっき
被膜からなること。 (2)多層金属めっき被膜構造がNiめっき被膜とCu
めっき被膜を構成被膜とすること。 (3)Cuめっき被膜の膜厚が多層金属めっき被膜の全
膜厚の30%以上であること。 (4)多層金属めっき被膜の全膜厚が15μm〜70μ
mであること。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a multi-layer metal plating film structure satisfying the following conditions (1) to (4) is formed on the surface of an R-Fe-B system permanent magnet to obtain 100 kPa.
When using the magnet in the above hydrogen gas pressure atmosphere,
This is a method of imparting hydrogen gas resistance to the magnet. (1) The multilayer metal plating film structure is composed of four or more metal plating films. (2) Multi-layer metal plating film structure is Ni plating film and Cu
Use the plating film as a constituent film. (3) The film thickness of the Cu plating film is 30% or more of the total film thickness of the multilayer metal plating film. (4) The total thickness of the multilayer metal plating film is 15 μm to 70 μm
Must be m.

【0008】磁石の表面に形成される多層金属めっき被
膜構造は、4層以上の金属めっき被膜からなり、Niめ
っき被膜とCuめっき被膜を構成被膜とする。前述のよ
うに、Cuが水素遮断性を有する金属であることは公知
の事実であるが、後述する実施例から明らかなように、
磁石に対して十分な耐水素ガス性を付与するためには、
Cuめっき被膜をNiめっき被膜と如何に組み合わせて
多層金属めっき被膜構造とするかが重要である。単に、
単層Cuめっき被膜を厚く磁石の表面に形成したり、C
uめっき被膜とNiめっき被膜とで2層金属めっき被膜
構造にしても、それだけでは磁石に対して十分な耐水素
ガス性を付与することはできない。
The multilayer metal plating film structure formed on the surface of the magnet is composed of four or more metal plating films, and the Ni plating film and the Cu plating film are constituent films. As described above, it is a known fact that Cu is a metal having a hydrogen barrier property, but as is clear from the examples described later,
In order to impart sufficient hydrogen gas resistance to the magnet,
It is important how to combine the Cu plating film with the Ni plating film to form a multilayer metal plating film structure. simply,
Thickly form a single layer Cu plating film on the surface of the magnet, or C
Even if the two-layer metal plating film structure is composed of the u plating film and the Ni plating film, it is not possible to impart sufficient hydrogen gas resistance to the magnet by itself.

【0009】多層めっき被膜構造中におけるCuめっき
被膜の膜厚は、多層めっき被膜の全膜厚の30%以上と
する。後述する実施例から明らかなように、30%を下
回ると磁石に対して十分な耐水素ガス性を付与すること
ができないからである。
The film thickness of the Cu plating film in the multilayer plating film structure is 30% or more of the total film thickness of the multilayer plating film. This is because, as will be apparent from the examples described later, if it is less than 30%, sufficient hydrogen gas resistance cannot be given to the magnet.

【0010】多層金属めっき被膜の全膜厚は15μm〜
70μmとする。全膜厚が15μmを下回ると全体とし
て高い水素遮断性と内部応力緩和性を有する多層金属め
っき被膜構造にならず、磁石に対して十分な耐水素ガス
性を付与することができないからである。一方、全膜厚
が70μmを越えると磁石の有効体積に影響を及ぼすか
らである。磁石の有効体積に影響を及ぼすことなく磁石
に対して十分な耐水素ガス性を付与するとの観点から
は、多層金属めっき被膜の全膜厚は30μm〜50μm
とすることが望ましい。
The total thickness of the multi-layer metal plating film is 15 μm
70 μm. This is because if the total film thickness is less than 15 μm, a multilayer metal plating film structure having high hydrogen barrier properties and internal stress relaxation properties as a whole cannot be obtained, and sufficient hydrogen gas resistance cannot be imparted to the magnet. On the other hand, if the total film thickness exceeds 70 μm, it affects the effective volume of the magnet. From the viewpoint of giving sufficient magnet gas resistance to the magnet without affecting the effective volume of the magnet, the total thickness of the multilayer metal plating film is 30 μm to 50 μm.
Is desirable.

【0011】磁石に対してより十分な耐水素ガス性を付
与するためには、多層金属めっき被膜構造中に2層以上
のCuめっき被膜を有することが望ましい。この場合、
第一のCuめっき被膜と第二のCuめっき被膜が積層形
成される構造であってもよいが、全体としてより高い水
素遮断性と内部応力緩和性を有する多層金属めっき被膜
構造とするためには、両Cuめっき被膜は少なくとも1
層以上のNiめっき被膜で隔離されていることが望まし
い。
In order to impart more sufficient hydrogen gas resistance to the magnet, it is desirable to have two or more Cu plating films in the multilayer metal plating film structure. in this case,
It may have a structure in which the first Cu plating film and the second Cu plating film are laminated, but in order to obtain a multilayer metal plating film structure having higher hydrogen barrier properties and internal stress relaxation properties as a whole. , Both Cu plating films are at least 1
It is desirable to be separated by a Ni plating film of one layer or more.

【0012】また、多層金属めっき被膜構造の最表層は
Cuめっき被膜とすることが望ましい。最表層をNiめ
っき被膜としてもよいが、こうした場合、Niが有する
金属触媒作用によってその表面において水素原子が発生
し、多層金属めっき被膜構造中に水素ガスが拡散しやす
くなる恐れがあるからである。
The outermost layer of the multi-layer metal plating film structure is preferably a Cu plating film. The outermost layer may be a Ni plating film, but in such a case, hydrogen atoms may be generated on the surface due to the metal catalytic action of Ni, and hydrogen gas may easily diffuse into the structure of the multilayer metal plating film. .

【0013】また、多層金属めっき被膜構造の最表層の
表面を加熱処理し、最表層となる金属めっき被膜と、加
熱処理の程度によっては最表層となる金属めっき被膜と
同時に内部の金属めっき被膜を再結晶化やリフローする
ことで、被膜欠陥の封印を行うとともに内部応力緩和性
を向上させ、水素ガス遮断性を高めることができる。加
熱処理温度は最表層がCuめっき被膜の場合でもNiめ
っき被膜の場合でも150℃〜500℃であることが望
ましい。
The surface of the outermost layer of the multi-layer metal plating film structure is heat-treated to form the outermost metal plating film and the innermost metal plating film simultaneously with the outermost metal plating film depending on the degree of heat treatment. By recrystallizing or reflowing, it is possible to seal the film defects, improve the internal stress relaxation property, and enhance the hydrogen gas barrier property. The heat treatment temperature is preferably 150 ° C to 500 ° C regardless of whether the outermost layer is a Cu plating film or a Ni plating film.

【0014】多層金属めっき被膜構造の構成被膜となる
Niめっき被膜とCuめっき被膜の形成方法は、各々自
体公知の方法を採用すればよい。
As a method for forming the Ni plating film and the Cu plating film which are constituent films of the multi-layer metal plating film structure, a method known per se may be adopted.

【0015】Niめっき被膜は、例えば、ワット浴、ス
ルファミン酸ニッケル浴、塩化ニッケル浴、ホウフッ化
ニッケル浴、塩化アンモニウムニッケル浴などのめっき
浴を使用して電解めっき法にて形成すればよい。めっき
条件は個々のめっき浴に応じた自体公知の条件でよい。
The Ni plating film may be formed by an electrolytic plating method using a plating bath such as a Watt bath, a nickel sulfamate bath, a nickel chloride bath, a nickel borofluoride bath, and an ammonium nickel chloride bath. The plating conditions may be those known per se for each plating bath.

【0016】Cuめっき被膜は、電解めっき法や無電解
めっき法などの湿式めっき法により形成されたものであ
ってもよいし、気相めっき法により形成されたものであ
ってもよいが、被膜形成効率が優れている点からは電解
めっき法により形成されたものであることが望ましい。
電解めっき法に使用されるめっき浴としては、硫酸銅
浴、シアン化銅浴、ピロリン酸銅浴、ホウフッ化銅浴、
EDTA浴などのめっき浴が挙げられる。めっき条件は
個々のめっき浴に応じた自体公知の条件でよい。
The Cu plating film may be formed by a wet plating method such as an electrolytic plating method or an electroless plating method, or may be formed by a vapor phase plating method. From the viewpoint of excellent formation efficiency, it is desirable that the electrode be formed by the electrolytic plating method.
As the plating bath used in the electrolytic plating method, copper sulfate bath, copper cyanide bath, copper pyrophosphate bath, copper borofluoride bath,
A plating bath such as an EDTA bath may be used. The plating conditions may be those known per se for each plating bath.

【0017】多層金属めっき被膜構造の最表層の表面
に、更に別の被膜を積層形成してもよい。このような構
成を採用することによって、多層金属めっき被膜構造の
特性を増強・補完したり、更なる機能性を付与したりす
ることができる。例えば、Cuと同様に水素遮断性に優
れたSnのめっき被膜を多層金属めっき被膜構造の最表
層の表面に形成することで、磁石に対してより高い耐水
素ガス性を付与することができる。水素遮断性を高める
ためにSnめっき被膜の表面を加熱処理してもよい。こ
の場合、該被膜の加熱処理温度は70℃〜250℃であ
ることが望ましい。
Another coating may be laminated on the surface of the outermost layer of the multilayer metal plating coating structure. By adopting such a configuration, it is possible to enhance / complement the characteristics of the multi-layered metal plating film structure or to add further functionality. For example, by forming a Sn plating film, which has an excellent hydrogen barrier property similar to Cu, on the surface of the outermost layer of the multilayer metal plating film structure, it is possible to impart higher hydrogen gas resistance to the magnet. The surface of the Sn plating film may be heat-treated in order to enhance the hydrogen barrier property. In this case, the heat treatment temperature of the coating is preferably 70 ° C to 250 ° C.

【0018】Snめっき被膜は、電解めっき法や無電解
めっき法などの湿式めっき法により形成されたものであ
ってもよいし、気相めっき法により形成されたものであ
ってもよいが、被膜形成効率が優れている点からは電解
めっき法により形成されたものであることが望ましい。
電解めっき法に使用されるめっき浴としては、アルカリ
浴、フェロスタン浴、硫酸錫浴、ホウフッ化錫浴などの
めっき浴が挙げられるが、結晶微細化を目的として光沢
剤をめっき浴に適宜添加することが望ましい。めっき条
件は個々のめっき浴に応じた自体公知の条件でよい。
The Sn plating film may be formed by a wet plating method such as an electrolytic plating method or an electroless plating method, or may be formed by a vapor phase plating method. From the viewpoint of excellent formation efficiency, it is desirable that the electrode be formed by the electrolytic plating method.
Examples of the plating bath used in the electrolytic plating method include a plating bath such as an alkaline bath, a ferrostane bath, a tin sulfate bath, and a tin borofluoride bath. However, a brightening agent is appropriately added to the plating bath for the purpose of grain refinement. Is desirable. The plating conditions may be those known per se for each plating bath.

【0019】また、多層金属めっき被膜構造の最表層の
表面には、Alめっき被膜やCrめっき被膜やTiめっ
き被膜などの各種金属めっき被膜を自体公知の方法で形
成してもよい。この場合、水素遮断性を高めるためにそ
の表面を加熱処理してもよい。Alめっき被膜を加熱処
理する際の温度は150℃〜400℃であることが望ま
しい。Crめっき被膜やTiめっき被膜などを加熱処理
する際の温度は150℃〜500℃であることが望まし
い。また、エポキシ系樹脂被膜やフッ素系樹脂被膜など
の各種樹脂被膜を自体公知の方法で形成してもよい。
Further, various metal plating films such as Al plating film, Cr plating film and Ti plating film may be formed on the surface of the outermost layer of the multilayer metal plating film structure by a method known per se. In this case, the surface may be heat-treated in order to enhance the hydrogen barrier property. The temperature at which the Al plating film is heat-treated is preferably 150 ° C to 400 ° C. The temperature at the time of heat-treating the Cr plating film or the Ti plating film is preferably 150 ° C to 500 ° C. Further, various resin coatings such as an epoxy resin coating and a fluorine resin coating may be formed by a method known per se.

【0020】本発明に適用されるR−Fe−B系永久磁
石は、前述のように、磁気特性が高く、量産性や経済性
に優れている上に、被膜との優れた密着性を有する点に
おいて望ましいものである。R−Fe−B系永久磁石に
おける希土類元素(R)は、Nd、Pr、Dy、Ho、
Tb、Smのうち少なくとも1種、あるいはさらに、L
a、Ce、Gd、Er、Eu、Tm、Yb、Lu、Yの
うち少なくとも1種を含むものが望ましい。また、通常
はRのうち1種をもって足りるが、実用上は2種以上の
混合物(ミッシュメタルやジジムなど)を入手上の便宜
などの理由によって使用することもできる。さらに、A
l、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、
W、Sb、Ge、Sn、Zr、Ni、Si、Zn、H
f、Gaのうち少なくとも1種を添加することで、保磁
力や減磁曲線の角型性の改善、製造性の改善、低価格化
を図ることが可能となる。また、Feの一部をCoで置
換することによって、得られる磁石の磁気特性を損なう
ことなしに温度特性を改善することができる。なお、本
発明に適用されるR−Fe−B系永久磁石は、焼結磁石
であってもボンド磁石であってもよい。
As described above, the R-Fe-B system permanent magnet applied to the present invention has high magnetic properties, is excellent in mass productivity and economical efficiency, and has excellent adhesion to the coating film. It is desirable in terms. The rare earth element (R) in the R—Fe—B system permanent magnet is Nd, Pr, Dy, Ho,
At least one of Tb and Sm, or L
Those containing at least one of a, Ce, Gd, Er, Eu, Tm, Yb, Lu and Y are desirable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons of availability. Furthermore, A
l, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo,
W, Sb, Ge, Sn, Zr, Ni, Si, Zn, H
By adding at least one of f and Ga, it is possible to improve the squareness of the coercive force and demagnetization curve, improve the manufacturability, and reduce the cost. Further, by substituting a part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet. The R-Fe-B system permanent magnet applied to the present invention may be a sintered magnet or a bonded magnet.

【0021】[0021]

【実施例】本発明を以下の実施例によってさらに詳細に
説明するが、本発明はこれに限定されるものではない。
The present invention will be explained in more detail by the following examples, but the present invention is not limited thereto.

【0022】実施例A:例えば、米国特許477072
3号公報や米国特許4792368号公報に記載されて
いるようにして、公知の鋳造インゴットを粉砕し、微粉
砕後に成形、焼結、熱処理、表面加工を行うことによっ
て得られた14Nd−79Fe−6B−1Co組成(a
t%)の縦30mm×横15mm×高さ3mm寸法の平
板状焼結磁石(以下、磁石体試験片と称する)の表面
に、以下の、Niめっき被膜を形成するための3種類の
めっき浴とCuめっき被膜を形成するための2種類のめ
っき浴を使用して、バレルめっき法にて多層金属めっき
被膜構造を形成することとした。
Example A: For example, US Pat. No. 4,770,72
14Nd-79Fe-6B obtained by crushing a known casting ingot and performing molding, sintering, heat treatment and surface processing after pulverizing as described in Japanese Patent No. 3 and U.S. Pat. No. 4,792,368. -1Co composition (a
t%), the following three types of plating baths for forming a Ni plating film on the surface of a flat plate-shaped sintered magnet (hereinafter referred to as a magnet body test piece) having dimensions of 30 mm in length × 15 mm in width × 3 mm in height. And two types of plating baths for forming the Cu plating film were used to form the multilayer metal plating film structure by the barrel plating method.

【0023】 (1)Niめっき浴1: 液組成 硫酸ニッケル・6水和物 150g/L 塩化ニッケル・6水和物 40g/L 塩化アンモニウム 10g/L クエン酸アンモニウム 50g/L ホウ酸 20g/L 硫酸ナトリウム 50g/L 液温50℃ pH6.5 電流密度0.3A/dm (1) Ni Plating Bath 1: Liquid Composition Nickel Sulfate Hexahydrate 150 g / L Nickel Chloride Hexahydrate 40 g / L Ammonium Chloride 10 g / L Ammonium Citrate 50 g / L Boric Acid 20 g / L Sulfuric Acid Sodium 50 g / L Liquid temperature 50 ° C. pH 6.5 Current density 0.3 A / dm 2

【0024】 (2)Niめっき浴2: 液組成 硫酸ニッケル・6水和物 280g/L 塩化ニッケル・6水和物 40g/L ホウ酸 40g/L プロパギルアルコール 0.5g/L 液温50℃ pH4 電流密度0.15A/dm (2) Ni Plating Bath 2: Liquid Composition Nickel Sulfate Hexahydrate 280 g / L Nickel Chloride Hexahydrate 40 g / L Boric Acid 40 g / L Propagyl Alcohol 0.5 g / L Liquid Temperature 50 ° C. pH4 current density 0.15 A / dm 2

【0025】 (3)Niめっき浴3: 液組成 硫酸ニッケル・6水和物 300g/L 塩化ニッケル・6水和物 50g/L ホウ酸 20g/L クエン酸ナトリウム 10g/L 1,3,6ナフタレンスルホン酸ナトリウム 0.5g/L 2ブチン1,4ジオール 0.5g/L 液温50℃ pH4 電流密度0.15A/dm (3) Ni plating bath 3: Liquid composition nickel sulfate hexahydrate 300 g / L nickel chloride hexahydrate 50 g / L boric acid 20 g / L sodium citrate 10 g / L 1,3,6 naphthalene Sodium sulfonate 0.5 g / L 2 butyne 1,4 diol 0.5 g / L Liquid temperature 50 ° C. pH 4 Current density 0.15 A / dm 2

【0026】 (4)Cuめっき浴1: 液組成 硫酸銅 150g/L EDTA・2ナトリウム塩 56g/L 塩化アンモニウム 10g/L 液温50℃ pH12(水酸化ナトリウムを使用して調整) 電流密度0.2A/dm (4) Cu plating bath 1: Liquid composition Copper sulfate 150 g / L EDTA.2 sodium salt 56 g / L Ammonium chloride 10 g / L Liquid temperature 50 ° C. pH 12 (adjusted using sodium hydroxide) Current density 0. 2 A / dm 2

【0027】 (5)Cuめっき浴2: 液組成 ピロリン酸カリウム 160g/L ピロリン酸銅・3水和物 28g/L 光沢剤 0.3mL/L 液温50℃ pH8.5(アンモニアと水酸化カリウムを使用して調整) 電流密度0.2A/dm (5) Cu plating bath 2: Liquid composition potassium pyrophosphate 160 g / L copper pyrophosphate trihydrate 28 g / L brightener 0.3 mL / L liquid temperature 50 ° C. pH 8.5 (ammonia and potassium hydroxide Current density 0.2 A / dm 2

【0028】磁石体試験片の表面に、磁石表面から順に
膜厚3μmのNiめっき被膜1(Niめっき浴1使用)
/膜厚xμmのCuめっき被膜1(Cuめっき浴1使
用)/膜厚3μmのNiめっき被膜2(Niめっき浴2
使用)/膜厚yμmのCuめっき被膜2(Cuめっき浴
2使用)/膜厚3μmのNiめっき被膜3(Niめっき
浴3使用)の5層金属めっき被膜構造を形成した。この
際、Cuめっき被膜1とCuめっき被膜2については種
々の膜厚の被膜を形成し、全膜厚が20μm〜25μm
となるようした。
On the surface of the magnet test piece, a Ni plating film 1 (using Ni plating bath 1) having a film thickness of 3 μm in this order from the magnet surface
/ Cu plating film 1 of film thickness x μm (using Cu plating bath 1) / Ni plating film 2 of film thickness 3 μm (Ni plating bath 2
Use) / Cu plating film 2 having a film thickness of y μm (using Cu plating bath 2) / Ni plating film 3 having a film thickness of 3 μm (using Ni plating bath 3), a 5-layer metal plating film structure was formed. At this time, the Cu plating film 1 and the Cu plating film 2 are formed to have various film thicknesses so that the total film thickness is 20 μm to 25 μm.
I tried to be.

【0029】5層金属めっき被膜の全膜厚(9+x+y
μm)に対するCuめっき被膜1とCuめっき被膜2の
合計膜厚(x+yμm)の比率と耐水素ガス性との関係
を次のような水素ガス加圧試験により評価した(n=1
00)。まず、ステンレス容器にサンプルを収容し、真
空ポンプを用いて一旦容器内を真空にしてから、容器内
の水素ガス圧が1×10kPaとなるように水素ガス
を充填した。水素ガス加圧試験はこの時点から開始し、
容器内温度20℃で16時間保持してから容器を温水で
加熱して容器内温度60℃で4時間保持した後、温度を
そのままに保って容器内を−100kPaにまで減圧し
てさらに2時間保持し、その後2時間をかけて容器内に
水素ガスを充填して容器内の水素ガス圧を1×10
Paに戻すとともに容器を水で冷却して容器内温度を2
0℃に戻すというサイクルを1サイクルとし、被膜の膨
れや剥離などが発生したり、サンプルが崩壊を引き起こ
すまでのサイクル数を測定し、15サイクル経過後も前
記のような現象を引き起こさないサンプルを合格サンプ
ルと評価した。結果を図1に示す。図1から明らかなよ
うに、Cuめっき被膜1とCuめっき被膜2の合計膜厚
が多層金属めっき被膜の全膜厚の30%を下回る場合、
合格サンプル率が80%を上回ることはなかったが、3
0%以上の場合はすべてのサンプルにおいて合格サンプ
ル率が100%であった。
Total thickness of five-layer metal plating film (9 + x + y
The relationship between the ratio of the total film thickness (x + y μm) of the Cu plating film 1 and the Cu plating film 2 to the hydrogen gas resistance was evaluated by the following hydrogen gas pressurization test (n = 1).
00). First, a sample was placed in a stainless steel container, the inside of the container was once evacuated using a vacuum pump, and then hydrogen gas was filled so that the hydrogen gas pressure inside the container became 1 × 10 3 kPa. Hydrogen gas pressurization test starts from this point,
After holding the container temperature at 20 ° C for 16 hours, heating the container with warm water and holding at the container temperature of 60 ° C for 4 hours, the temperature was kept as it was, and the pressure inside the container was reduced to -100 kPa for another 2 hours. The container is kept for 2 hours, and then hydrogen gas is filled into the container to adjust the hydrogen gas pressure in the container to 1 × 10 3 k.
Return the temperature to Pa and cool the container with water to increase the temperature inside the container to 2
The cycle of returning to 0 ° C is defined as one cycle, and the number of cycles until the film swells or peels off or the sample disintegrates is measured. It was evaluated as a passing sample. The results are shown in Fig. 1. As is clear from FIG. 1, when the total film thickness of the Cu plating film 1 and the Cu plating film 2 is less than 30% of the total film thickness of the multilayer metal plating film,
The passing sample rate did not exceed 80%, but 3
In the case of 0% or more, the acceptable sample rate was 100% in all the samples.

【0030】実施例B 実施例Aで使用した磁石体試験片とめっき浴を使用し、
磁石体試験片の表面に各種の金属めっき被膜を形成し
た。
Example B Using the magnet test piece and plating bath used in Example A,
Various metal plating films were formed on the surface of the magnet test piece.

【0031】B−1:磁石体試験片の表面に、磁石表面
から順に膜厚3μmのNiめっき被膜1(Niめっき浴
1使用)/膜厚10μmのCuめっき被膜1(Cuめっ
き浴1使用)/膜厚3μmのNiめっき被膜2(Niめ
っき浴2使用)/膜厚3μmのCuめっき被膜2(Cu
めっき浴2使用)/膜厚3μmのNiめっき被膜3(N
iめっき浴3使用)の5層金属めっき被膜構造を形成し
た。
B-1: Ni plating film 1 having a film thickness of 3 μm (using Ni plating bath 1) / Cu plating film 1 having a film thickness of 10 μm (using Cu plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 2 having a film thickness of 3 μm (using Ni plating bath 2) / Cu plating film 2 having a film thickness of 3 μm (Cu
Plating bath 2 used) / Ni plating film 3 (N
A 5-layer metal plating film structure (using i plating bath 3) was formed.

【0032】B−2:B−1で得られたサンプルを窒素
ガス雰囲気下にて300℃で1時間存置することにより
5層金属めっき被膜構造の最表層であるNiめっき被膜
3の表面を加熱処理した。
B-2: The sample obtained in B-1 was left in a nitrogen gas atmosphere at 300 ° C. for 1 hour to heat the surface of the Ni plating film 3 which is the outermost layer of the five-layer metal plating film structure. Processed.

【0033】B−3:磁石体試験片の表面に、磁石表面
から順に膜厚3μmのNiめっき被膜1(Niめっき浴
1使用)/膜厚15μmのCuめっき被膜1(Cuめっ
き浴1使用)/膜厚3μmのNiめっき被膜2(Niめ
っき浴2使用)/膜厚5μmのCuめっき被膜2(Cu
めっき浴2使用)の4層金属めっき被膜構造を形成し、
さらにCuめっき被膜2の表面に膜厚6μmのAlめっ
き被膜を気相めっき法で形成した。
B-3: Ni plating film 1 having a film thickness of 3 μm (using Ni plating bath 1) / Cu plating film 1 having a film thickness of 15 μm (using Cu plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 2 having a film thickness of 3 μm (using Ni plating bath 2) / Cu plating film 2 having a film thickness of 5 μm (Cu
Plating bath 2 is used) to form a 4-layer metal plating film structure,
Further, an Al plating film having a film thickness of 6 μm was formed on the surface of the Cu plating film 2 by a vapor phase plating method.

【0034】B−4:磁石体試験片の表面に、磁石表面
から順に膜厚3μmのNiめっき被膜1(Niめっき浴
1使用)/膜厚10μmのCuめっき被膜1(Cuめっ
き浴1使用)/膜厚5μmのCuめっき被膜2(Cuめ
っき浴2使用)/膜厚5μmのNiめっき被膜2(Ni
めっき浴2使用)/膜厚5μmのNiめっき被膜3(N
iめっき浴3使用)の5層金属めっき被膜構造を形成し
た。
B-4: Ni plating film 1 with a film thickness of 3 μm (using Ni plating bath 1) / Cu plating film 1 with a film thickness of 10 μm (using Cu plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Cu plating film 2 having a film thickness of 5 μm (using Cu plating bath 2) / Ni plating film 2 having a film thickness of 5 μm (Ni
Plating bath 2 used) / Ni plating film 3 (N
A 5-layer metal plating film structure (using i plating bath 3) was formed.

【0035】B−5:磁石体試験片の表面に、磁石表面
から順に膜厚5μmのCuめっき被膜1(Cuめっき浴
1使用)/膜厚8μmのNiめっき被膜1(Niめっき
浴1使用)/膜厚5μmのCuめっき被膜2(Cuめっ
き浴2使用)/膜厚2μmのNiめっき被膜2(Niめ
っき浴2使用)の4層金属めっき被膜構造を形成した。
B-5: Cu plating film 1 having a film thickness of 5 μm (using Cu plating bath 1) / Ni plating film 1 having a film thickness of 8 μm (using Ni plating bath 1) on the surface of the magnet test piece in order from the magnet surface A 4-layer metal plating film structure of / Cu plating film 2 having a film thickness of 5 μm (using Cu plating bath 2) / Ni plating film 2 having a film thickness of 2 μm (using Ni plating bath 2) was formed.

【0036】B−6:B−5で得られたサンプルを大気
中雰囲気下にて250℃で1時間存置することにより4
層金属めっき被膜構造の最表層であるNiめっき被膜2
の表面を加熱処理した。
B-6: By allowing the sample obtained in B-5 to stand at 250 ° C. for 1 hour in the atmosphere, 4
Ni plating film 2 which is the outermost layer of the two-layer metal plating film structure
Was heat-treated.

【0037】B−7:磁石体試験片の表面に、磁石表面
から順に膜厚5μmのCuめっき被膜1(Cuめっき浴
1使用)/膜厚10μmのCuめっき被膜2(Cuめっ
き浴2使用)/膜厚3μmのNiめっき被膜1(Niめ
っき浴1使用)/膜厚3μmのNiめっき被膜2(Ni
めっき浴2使用)の4層金属めっき被膜構造を形成し、
さらにNiめっき被膜2の表面に膜厚4μmのSnめっ
き被膜を電解めっき法で形成した。
B-7: Cu plating film 1 having a film thickness of 5 μm (using Cu plating bath 1) / Cu plating film 2 having a film thickness of 10 μm (using Cu plating bath 2) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 1 having a film thickness of 3 μm (using Ni plating bath 1) / Ni plating film 2 having a film thickness of 3 μm (Ni
Plating bath 2 is used) to form a 4-layer metal plating film structure,
Further, a Sn plating film having a film thickness of 4 μm was formed on the surface of the Ni plating film 2 by electrolytic plating.

【0038】B−8:磁石体試験片の表面に、磁石表面
から順に膜厚3μmのNiめっき被膜1(Niめっき浴
1使用)/膜厚15μmのCuめっき被膜1(Cuめっ
き浴1使用)/膜厚8μmのNiめっき被膜2(Niめ
っき浴2使用)/膜厚4μmのCuめっき被膜2(Cu
めっき浴2使用)の4層金属めっき被膜構造を形成し
た。
B-8: Ni plating film 1 having a film thickness of 3 μm (using Ni plating bath 1) / Cu plating film 1 having a film thickness of 15 μm (using Cu plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 2 having a film thickness of 8 μm (using Ni plating bath 2) / Cu plating film 2 having a film thickness of 4 μm (Cu
A 4-layer metal plating film structure (using plating bath 2) was formed.

【0039】B−9:磁石体試験片の表面に、磁石表面
から順に膜厚5μmのNiめっき被膜1(Niめっき浴
1使用)/膜厚15μmのCuめっき被膜1(Cuめっ
き浴1使用)/膜厚5μmのNiめっき被膜2(Niめ
っき浴2使用)/膜厚5μmのNiめっき被膜3(Ni
めっき浴3使用)の4層金属めっき被膜構造を形成し、
さらにNiめっき被膜3の表面に膜厚0.5μmのCr
めっき被膜を電解めっき法で形成した。
B-9: Ni plating film 1 having a film thickness of 5 μm (using Ni plating bath 1) / Cu plating film 1 having a film thickness of 15 μm (using Cu plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 2 having a film thickness of 5 μm (using Ni plating bath 2) / Ni plating film 3 having a film thickness of 5 μm (Ni
4 layer metal plating film structure of plating bath 3) is formed,
Further, the surface of the Ni plating film 3 has a thickness of 0.5 μm of Cr.
The plating film was formed by the electrolytic plating method.

【0040】B−10:磁石体試験片の表面に、磁石表
面から順に膜厚8μmのCuめっき被膜1(Cuめっき
浴1使用)/膜厚5μmのNiめっき被膜2(Niめっ
き浴2使用)/膜厚3μmのNiめっき被膜3(Niめ
っき浴3使用)/膜厚15μmのCuめっき被膜2(C
uめっき浴2使用)の4層金属めっき被膜構造を形成し
た。
B-10: Cu plating film 1 having a film thickness of 8 μm (using Cu plating bath 1) / Ni plating film 2 having a film thickness of 5 μm (using Ni plating bath 2) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 3 with a film thickness of 3 μm (using Ni plating bath 3) / Cu plating film 2 with a film thickness of 15 μm (C
u plating bath 2 was used) to form a 4-layer metal plating film structure.

【0041】B−11:磁石体試験片の表面に、磁石表
面から順に膜厚3μmのNiめっき被膜1(Niめっき
浴1使用)/膜厚10μmのCuめっき被膜1(Cuめ
っき浴1使用)/膜厚8μmのNiめっき被膜2(Ni
めっき浴2使用)/膜厚3μmのNiめっき被膜3(N
iめっき浴3使用)の4層金属めっき被膜構造を形成
し、さらにNiめっき被膜3の表面に膜厚25μmのエ
ポキシ系樹脂被膜を塗布形成した。
B-11: Ni plating film 1 having a film thickness of 3 μm (using Ni plating bath 1) / Cu plating film 1 having a film thickness of 10 μm (using Cu plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 2 (Ni
Plating bath 2 used) / Ni plating film 3 (N
A four-layer metal plating film structure (using i plating bath 3) was formed, and an epoxy resin film having a film thickness of 25 μm was applied and formed on the surface of the Ni plating film 3.

【0042】B−12:磁石体試験片の表面に、磁石表
面から順に膜厚3μmのNiめっき被膜1(Niめっき
浴1使用)/膜厚10μmのCuめっき被膜1(Cuめ
っき浴1使用)/膜厚8μmのNiめっき被膜2(Ni
めっき浴2使用)/膜厚3μmのNiめっき被膜3(N
iめっき浴3使用)の4層金属めっき被膜構造を形成
し、さらにNiめっき被膜3の表面に膜厚25μmのフ
ッ素系樹脂被膜を塗布形成した。
B-12: Ni plating film 1 having a film thickness of 3 μm (using Ni plating bath 1) / Cu plating film 1 having a film thickness of 10 μm (using Cu plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 2 (Ni
Plating bath 2 used) / Ni plating film 3 (N
A four-layer metal plating film structure (using i plating bath 3) was formed, and a fluorine-based resin film having a film thickness of 25 μm was applied and formed on the surface of the Ni plating film 3.

【0043】B−13:磁石体試験片の表面に、磁石表
面から順に膜厚2μmのCuめっき被膜1(Cuめっき
浴1使用)/膜厚10μmのNiめっき被膜1(Niめ
っき浴1使用)/膜厚2μmのCuめっき被膜2(Cu
めっき浴2使用)/膜厚6μmのNiめっき被膜2(N
iめっき浴2使用)の4層金属めっき被膜構造を形成し
た。
B-13: Cu plating film 1 having a film thickness of 2 μm (using Cu plating bath 1) / Ni plating film 1 having a film thickness of 10 μm (using Ni plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Cu plating film 2 (Cu
Plating bath 2 used) / Ni plating film 2 (N
i plating bath 2 was used) to form a 4-layer metal plating film structure.

【0044】B−14:磁石体試験片の表面に、磁石表
面から順に膜厚3μmのNiめっき被膜1(Niめっき
浴1使用)/膜厚7μmのCuめっき被膜1(Cuめっ
き浴1使用)/膜厚10μmのNiめっき被膜2(Ni
めっき浴2使用)の3層金属めっき被膜構造を形成し
た。
B-14: Ni plating film 1 having a film thickness of 3 μm (using Ni plating bath 1) / Cu plating film 1 having a film thickness of 7 μm (using Cu plating bath 1) on the surface of the magnet test piece in order from the magnet surface / Ni plating film 2 (Ni
A three-layer metal plating film structure (using plating bath 2) was formed.

【0045】B−15:磁石体試験片の表面に、磁石表
面から順に膜厚10μmのCuめっき被膜1(Cuめっ
き浴1使用)/膜厚15μmのNiめっき被膜1(Ni
めっき浴1使用)の2層金属めっき被膜構造を形成し
た。
B-15: Cu plating film 1 having a film thickness of 10 μm (using Cu plating bath 1) / Ni plating film 1 having a film thickness of 15 μm (Ni
A two-layer metal plating film structure (using plating bath 1) was formed.

【0046】B−16:磁石体試験片の表面に、膜厚2
5μmのCuめっき被膜1(Cuめっき浴1使用)を形
成した。
B-16: Film thickness of 2 on the surface of the magnet test piece
A Cu plating film 1 (using Cu plating bath 1) of 5 μm was formed.

【0047】B−17:磁石体試験片の表面に、膜厚2
0μmのNiめっき被膜1(Niめっき浴1使用)を形
成した。
B-17: Film thickness of 2 on the surface of the magnet test piece
A Ni plating film 1 (using Ni plating bath 1) of 0 μm was formed.

【0048】評価:上記の17種類のサンプルについ
て、実施例Aと同じ水素ガス加圧試験を行い、被膜の膨
れや剥離などが発生したり、サンプルが崩壊を引き起こ
すまでのサイクル数を測定した。結果を表1に示す。表
1から明らかなように、磁石に対して十分な耐水素ガス
性(サンプルが前記のような現象を引き起こすまでのサ
イクル数が15サイクル以上)を付与するためには、4
層以上の金属めっき被膜構造とすること、Cuめっき被
膜の膜厚を多層金属めっき被膜の全膜厚の30%以上と
すること、多層金属めっき被膜の全膜厚を15μm以上
とすることが必須であることが判明した。また、多層金
属めっき被膜構造の最表層の表面を加熱処理することに
より、磁石に対してより高い耐水素ガス性を付与できる
ことがわかった。
Evaluation: The above 17 kinds of samples were subjected to the same hydrogen gas pressurization test as in Example A, and the number of cycles until the swelling and peeling of the coating film and the sample collapse were measured. The results are shown in Table 1. As is clear from Table 1, in order to provide the magnet with sufficient hydrogen gas resistance (the number of cycles until the sample causes the phenomenon as described above is 15 cycles or more), 4 is required.
It is essential to have a metal plating film structure of more than one layer, the Cu plating film thickness to be 30% or more of the total film thickness of the multilayer metal plating film, and the total film thickness of the multilayer metal plating film to be 15 μm or more. It turned out to be Further, it was found that by heat-treating the surface of the outermost layer of the multilayer metal plating film structure, higher hydrogen gas resistance can be given to the magnet.

【0049】[0049]

【表1】 [Table 1]

【0050】上記の水素ガス加圧試験では、金属めっき
被膜は水素の拡散と放出に基づく膨張と収縮を繰り返し
て、水素応力誘起割れを起こしやすくなる(一種の被膜
の水素脆性)。特に、Niめっき被膜においてその傾向
が強く現れ、水素ガス加圧によりNi結晶格子(fcc
構造)の中に水素が侵入拡散し、逆に減圧することによ
り水素が放出される。この現象により結晶格子がミクロ
的に膨張と収縮を繰り返すことになり、ミクロ的な内部
応力が誘発される。Niめっき被膜中で発生・残存され
た応力は水素の拡散(格子間ジャンプ)を速め、被膜寿
命の低下(崩壊)を招く。その結果、被膜にクラックが
入るなどして劣化し、膨れや剥離を生じ、磁石の崩壊に
至る。しかしながら、Niめっき被膜とCuめっき被膜
を組み合わせて多層金属めっき被膜構造とすることによ
り、全体として高い水素遮断性と内部応力緩和性が発揮
され、水素応力誘起割れなどを抑制することが可能とな
る。さらに、Cuの優れた水素遮断性がNiめっき被膜
内における水素の拡散を速めるミクロ的な内部応力を残
存させにくくしているものと推察される。さらにCuめ
っき被膜を形成するためのめっき浴はアルカリ性である
ので水素との反応性を有する。従って、磁石やCuめっ
き被膜を形成する前工程で形成された金属めっき被膜が
水素を吸蔵していても、Cuめっき被膜形成時に吸蔵し
た水素を放出させて反応することで、磁石や金属めっき
被膜の水素吸蔵量を減少させる。その結果、Niめっき
被膜やCuめっき被膜の析出被膜結晶の健全性が高まっ
て磁石の崩壊抑制に結びつくものと思われる。また、多
層金属めっき被膜構造による金属めっき被膜と金属めっ
きの界面における水素遮断効果や各被膜におけるピンホ
ールなどの欠陥の遮断効果も磁石に対する耐水素ガス性
付与に寄与しているものと思われる。
In the above hydrogen gas pressure test, the metal plating film repeats expansion and contraction due to diffusion and release of hydrogen, and hydrogen stress-induced cracking is likely to occur (hydrogen embrittlement of a kind of film). In particular, this tendency appears strongly in the Ni plating film, and the Ni crystal lattice (fcc
Hydrogen penetrates into the structure and diffuses, and conversely the pressure is reduced to release hydrogen. This phenomenon causes the crystal lattice to repeat microscopic expansion and contraction, which induces microscopic internal stress. The stress generated / remained in the Ni-plated coating accelerates the diffusion of hydrogen (interstitial jump) and shortens the lifetime of the coating (collapse). As a result, the coating is cracked and deteriorated, causing swelling and peeling, resulting in the collapse of the magnet. However, by combining the Ni plating film and the Cu plating film to form a multilayer metal plating film structure, high hydrogen barrier property and internal stress relaxation property are exhibited as a whole, and it becomes possible to suppress hydrogen stress-induced cracking and the like. . Furthermore, it is presumed that the excellent hydrogen barrier property of Cu makes it difficult for the micro internal stress that accelerates the diffusion of hydrogen in the Ni plating film to remain. Further, since the plating bath for forming the Cu plating film is alkaline, it has reactivity with hydrogen. Therefore, even if the metal plating film formed in the previous step of forming the magnet or the Cu plating film absorbs hydrogen, the hydrogen absorbed during the formation of the Cu plating film is released to react with the magnet and the metal plating film. Reduce the hydrogen storage capacity of. As a result, it is considered that the soundness of the deposited film crystals of the Ni-plated film and the Cu-plated film is enhanced, which leads to suppression of the collapse of the magnet. Further, it is considered that the effect of blocking hydrogen at the interface between the metal plating film and the metal plating due to the structure of the multilayer metal plating film and the effect of blocking defects such as pinholes in each film contribute to imparting hydrogen gas resistance to the magnet.

【0051】[0051]

【発明の効果】本発明によれば、水素ガスしか存在しな
い環境下における水素ガス圧であるか、水素ガスと他の
ガスとの混合ガスにおける水素ガス分圧であるかを問わ
ず、100kPa以上といったような高い水素ガス圧雰
囲気中で使用した場合でも、磁石が崩壊を引き起こさな
いようにするための、R−Fe−B系永久磁石に対して
耐水素ガス性を付与する方法が提供される。
According to the present invention, 100 kPa or more regardless of the hydrogen gas pressure in an environment where only hydrogen gas exists or the hydrogen gas partial pressure in a mixed gas of hydrogen gas and another gas. A method for imparting hydrogen gas resistance to an R-Fe-B based permanent magnet is provided in order to prevent the magnet from collapsing even when used in a high hydrogen gas pressure atmosphere. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 多層金属めっき被膜の全膜厚に対するCuめ
っき被膜の膜厚の比率と耐水素ガス性の関係を示す図。
FIG. 1 is a diagram showing the relationship between the ratio of the thickness of a Cu plating film to the total thickness of a multilayer metal plating film and hydrogen gas resistance.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K024 AA03 AA07 AA09 AB04 BA01 BB14 BC07 CA01 CA02 CA03 CA04 CA06 CA16 DB01 GA04 GA16 4K044 AA02 AB05 BA06 BA10 BB05 BB06 BC02 CA15 CA18 CA62 5E040 AA04 BC01 BC08 CA01 HB14 NN05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K024 AA03 AA07 AA09 AB04 BA01                       BB14 BC07 CA01 CA02 CA03                       CA04 CA06 CA16 DB01 GA04                       GA16                 4K044 AA02 AB05 BA06 BA10 BB05                       BB06 BC02 CA15 CA18 CA62                 5E040 AA04 BC01 BC08 CA01 HB14                       NN05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系永久磁石の表面に以下の
(1)〜(4)の条件を満たす多層金属めっき被膜構造
を形成することにより、100kPa以上の水素ガス圧
雰囲気下における磁石の使用に際し、磁石に対して耐水
素ガス性を付与する方法。 (1)多層金属めっき被膜構造が4層以上の金属めっき
被膜からなること。 (2)多層金属めっき被膜構造がNiめっき被膜とCu
めっき被膜を構成被膜とすること。 (3)Cuめっき被膜の膜厚が多層金属めっき被膜の全
膜厚の30%以上であること。 (4)多層金属めっき被膜の全膜厚が15μm〜70μ
mであること。
1. A magnet under a hydrogen gas pressure atmosphere of 100 kPa or more by forming a multilayer metal plating film structure satisfying the following conditions (1) to (4) on the surface of an R-Fe-B system permanent magnet. A method of imparting hydrogen gas resistance to a magnet when used. (1) The multilayer metal plating film structure is composed of four or more metal plating films. (2) Multi-layer metal plating film structure is Ni plating film and Cu
Use the plating film as a constituent film. (3) The film thickness of the Cu plating film is 30% or more of the total film thickness of the multilayer metal plating film. (4) The total thickness of the multilayer metal plating film is 15 μm to 70 μm
Must be m.
【請求項2】 多層金属めっき被膜構造中に2層以上の
Cuめっき被膜を有する請求項1記載の方法。
2. The method according to claim 1, wherein the multi-layer metal plating film structure has two or more Cu plating films.
【請求項3】 多層金属めっき被膜構造の最表層をCu
めっき被膜とする請求項1または2記載の方法。
3. The outermost layer of the multilayer metal plating film structure is Cu
The method according to claim 1 or 2, which is a plating film.
【請求項4】 多層金属めっき被膜構造の最表層の表面
を加熱処理する請求項1乃至3のいずれかに記載の方
法。
4. The method according to claim 1, wherein the surface of the outermost layer of the multilayer metal plating film structure is heat treated.
【請求項5】 多層金属めっき被膜構造の最表層の表面
にSnめっき被膜を形成する請求項1乃至3のいずれか
に記載の方法。
5. The method according to claim 1, wherein the Sn plating film is formed on the surface of the outermost layer of the multilayer metal plating film structure.
【請求項6】 Snめっき被膜の表面を加熱処理する請
求項5記載の方法。
6. The method according to claim 5, wherein the surface of the Sn plating film is heat treated.
【請求項7】 表面に以下の(1)〜(4)の条件を満
たす多層金属めっき被膜構造を有する耐水素ガス性R−
Fe−B系永久磁石。 (1)多層金属めっき被膜構造が4層以上の金属めっき
被膜からなること。 (2)多層金属めっき被膜構造がNiめっき被膜とCu
めっき被膜を構成被膜とすること。 (3)Cuめっき被膜の膜厚が多層金属めっき被膜の全
膜厚の30%以上であること。 (4)多層金属めっき被膜の全膜厚が15μm〜70μ
mであること。
7. A hydrogen gas resistance R- having a multi-layer metal plating film structure satisfying the following conditions (1) to (4) on the surface:
Fe-B system permanent magnet. (1) The multilayer metal plating film structure is composed of four or more metal plating films. (2) Multi-layer metal plating film structure is Ni plating film and Cu
Use the plating film as a constituent film. (3) The film thickness of the Cu plating film is 30% or more of the total film thickness of the multilayer metal plating film. (4) The total thickness of the multilayer metal plating film is 15 μm to 70 μm
Must be m.
JP2001366845A 2001-11-30 2001-11-30 METHOD FOR IMPARTING HYDROGEN-GAS RESISTANCE ON R-Fe-B PERMANENT MAGNET Pending JP2003166080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366845A JP2003166080A (en) 2001-11-30 2001-11-30 METHOD FOR IMPARTING HYDROGEN-GAS RESISTANCE ON R-Fe-B PERMANENT MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366845A JP2003166080A (en) 2001-11-30 2001-11-30 METHOD FOR IMPARTING HYDROGEN-GAS RESISTANCE ON R-Fe-B PERMANENT MAGNET

Publications (2)

Publication Number Publication Date
JP2003166080A true JP2003166080A (en) 2003-06-13
JP2003166080A5 JP2003166080A5 (en) 2005-06-23

Family

ID=19176683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366845A Pending JP2003166080A (en) 2001-11-30 2001-11-30 METHOD FOR IMPARTING HYDROGEN-GAS RESISTANCE ON R-Fe-B PERMANENT MAGNET

Country Status (1)

Country Link
JP (1) JP2003166080A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120734A (en) * 2005-09-27 2007-05-17 Jtekt Corp Cage for roller bearing, and the roller bearing
JP4760706B2 (en) * 2004-04-15 2011-08-31 日立金属株式会社 Method for imparting hydrogen resistance to articles
JP2012517695A (en) * 2009-02-10 2012-08-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Actuator having at least one magnet for projection exposure system, manufacturing method thereof, and projection exposure system having magnet
CN113451038A (en) * 2021-06-07 2021-09-28 杭州永磁集团有限公司 Preparation method of samarium-cobalt permanent magnet suitable for high-temperature high-pressure pure hydrogen environment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760706B2 (en) * 2004-04-15 2011-08-31 日立金属株式会社 Method for imparting hydrogen resistance to articles
DE112005000842B4 (en) 2004-04-15 2022-09-15 Hitachi Metals, Ltd. Method of imparting hydrogen resistance to an article
JP2007120734A (en) * 2005-09-27 2007-05-17 Jtekt Corp Cage for roller bearing, and the roller bearing
JP4514151B2 (en) * 2005-09-27 2010-07-28 株式会社ジェイテクト Roller bearing cage and roller bearing
JP2012517695A (en) * 2009-02-10 2012-08-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Actuator having at least one magnet for projection exposure system, manufacturing method thereof, and projection exposure system having magnet
JP2014064017A (en) * 2009-02-10 2014-04-10 Carl Zeiss Smt Gmbh Actuator including at least one magnet for projection exposure system
US9025128B2 (en) 2009-02-10 2015-05-05 Carl Zeiss Smt Gmbh Actuator including magnet for a projection exposure system and projection exposure system including a magnet
CN113451038A (en) * 2021-06-07 2021-09-28 杭州永磁集团有限公司 Preparation method of samarium-cobalt permanent magnet suitable for high-temperature high-pressure pure hydrogen environment

Similar Documents

Publication Publication Date Title
KR100740066B1 (en) Rare earth magnet
JP2003166080A (en) METHOD FOR IMPARTING HYDROGEN-GAS RESISTANCE ON R-Fe-B PERMANENT MAGNET
JP5708116B2 (en) Rare earth magnets
JP4983619B2 (en) permanent magnet
WO2006054617A1 (en) Rare earth sintered magnet
JP4760706B2 (en) Method for imparting hydrogen resistance to articles
JP2004137533A (en) Method for manufacturing rare earth system permanent magnet having copper plating film on surface
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH06290935A (en) Rare earth magnet
JPH0569282B2 (en)
JP2968605B2 (en) Manufacturing method of permanent magnet
JP3914557B2 (en) Rare earth sintered magnet
JP2001295091A (en) Surface-treating method and method for manufacturing magnet
JP2004289021A (en) Method of producing rare earth magnet
JP3734479B2 (en) Rare earth magnet manufacturing method
JP4089948B2 (en) Method for manufacturing permanent magnet for hard disk drive
JPS61281850A (en) Permanent magnet material
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JP2006219696A (en) Method for producing magnet
JPH0831363B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JP5708123B2 (en) Magnet member
JPS63198305A (en) High corrosion resistance rare earth element permanent magnet
JP2007273556A (en) Magnet
JP2003321795A (en) Method for manufacturing rare earth permanent magnet having laminated metal plating films on surface

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418