JP2003164764A - Catalyst for oxidizing carbon monoxide, method for manufacturing the same and method for oxidizing carbon monoxide - Google Patents

Catalyst for oxidizing carbon monoxide, method for manufacturing the same and method for oxidizing carbon monoxide

Info

Publication number
JP2003164764A
JP2003164764A JP2001351831A JP2001351831A JP2003164764A JP 2003164764 A JP2003164764 A JP 2003164764A JP 2001351831 A JP2001351831 A JP 2001351831A JP 2001351831 A JP2001351831 A JP 2001351831A JP 2003164764 A JP2003164764 A JP 2003164764A
Authority
JP
Japan
Prior art keywords
catalyst
iron
carbon monoxide
alumina
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001351831A
Other languages
Japanese (ja)
Inventor
Katsuhiko Wakabayashi
勝彦 若林
Masahiro Kishida
昌浩 岸田
Terufusa Tako
輝興 多湖
Hiroki Hayashi
博樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2001351831A priority Critical patent/JP2003164764A/en
Publication of JP2003164764A publication Critical patent/JP2003164764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high performance catalyst having selective oxidation capacity with respect to a very small amount of carbon monoxide. <P>SOLUTION: The catalyst for oxidizing carbon monoxide comprises a noble metal/alumina having iron supported thereon. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一酸化炭素の酸化
用触媒、その製造方法及び一酸化炭素の酸化方法に関す
る。
TECHNICAL FIELD The present invention relates to a catalyst for oxidizing carbon monoxide, a method for producing the same, and a method for oxidizing carbon monoxide.

【0002】[0002]

【従来の技術】固体高分子型燃料電池(PEFC)は、
高分子膜を電解質として用いるため、電解質の逸散・保
持等に問題がなく、メンテナンスが容易である。また、
100℃以下で運転できるため起動時間が短いことなど
原理的に優れた特徴を持っている。燃料ガスとしては、
メタンやメタノールを改質した水素ガスが用いられてい
るが、燃料ガスに含まれる微量の一酸化炭素によって電
極触媒が被毒を受け、電池性能が大幅に低下することが
知られている。この問題の解決には、改質ガスを電池に
供給する前に予め一酸化炭素を選択的に低減させる方法
が有効である。このため水素を酸化することなく、微量
の一酸化炭素を選択的に酸化除去することが可能な高性
能触媒の開発が要望されている。
2. Description of the Related Art A polymer electrolyte fuel cell (PEFC) is
Since the polymer membrane is used as the electrolyte, there is no problem with the dissipation and retention of the electrolyte, and maintenance is easy. Also,
Since it can be operated at 100 ° C or below, it has the principle superior features such as a short starting time. As fuel gas,
Although hydrogen gas obtained by reforming methane or methanol is used, it is known that the electrode catalyst is poisoned by a small amount of carbon monoxide contained in the fuel gas, and the cell performance is significantly reduced. To solve this problem, a method of selectively reducing carbon monoxide in advance before supplying the reformed gas to the battery is effective. Therefore, there is a demand for the development of a high-performance catalyst capable of selectively oxidizing and removing a trace amount of carbon monoxide without oxidizing hydrogen.

【0003】[0003]

【発明が解決しようとする課題】本発明は、微量の一酸
化炭素に対して選択的酸化能を持つ高性能触媒および該
触媒の製造方法並びに該触媒を用いた一酸化炭素の酸化
方法を提供することをその課題とする。
DISCLOSURE OF THE INVENTION The present invention provides a high-performance catalyst having a selective oxidizing ability for a trace amount of carbon monoxide, a method for producing the catalyst, and a method for oxidizing carbon monoxide using the catalyst. The task is to do.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記の課
題を解決するために鋭意検討をした結果、本発明を完成
するに至った。即ち、本発明によれば、以下に示す方法
が提供される。 (1)貴金属/アルミナに鉄を担持させたことを特徴と
する一酸化炭素酸化用触媒。 (2)該鉄の割合が、該貴金属1モル当たり、0.00
5〜0.2モルであることを特徴とする前記(1)に記
載の一酸化炭素酸化用触媒。 (3)該貴金属が白金又はルテニウムであることを特徴
とする前記(1)又は(2)に記載の一酸化炭素酸化用
触媒。 (4)貴金属/アルミナに鉄カルボニル錯体を添加した
後、水素気流下で該鉄カルボニルを加熱分解することを
特徴とする一酸化炭素酸化用触媒の製造方法。 (5)貴金属/アルミナに鉄塩を添加した後、空気気流
下で焼成し、水素還元することを特徴とする一酸化炭素
酸化用触媒の製造方法。 (6)一酸化炭素の選択的酸化方法において、該触媒と
して前記(1)〜(3)のいずれかに記載の触媒を用い
ることを特徴とする一酸化炭素酸化方法。
The present inventors have completed the present invention as a result of extensive studies to solve the above-mentioned problems. That is, according to the present invention, the following method is provided. (1) A carbon monoxide oxidation catalyst characterized in that iron is supported on a noble metal / alumina. (2) The ratio of the iron is 0.00 per mol of the noble metal.
The carbon monoxide oxidation catalyst according to (1) above, wherein the amount is 5 to 0.2 mol. (3) The carbon monoxide oxidation catalyst according to (1) or (2), wherein the noble metal is platinum or ruthenium. (4) A method for producing a carbon monoxide oxidation catalyst, which comprises adding an iron carbonyl complex to a noble metal / alumina and then thermally decomposing the iron carbonyl in a hydrogen stream. (5) A method for producing a carbon monoxide oxidation catalyst, which comprises adding an iron salt to a noble metal / alumina, followed by firing in an air stream and hydrogen reduction. (6) A method for selectively oxidizing carbon monoxide, characterized in that the catalyst according to any one of (1) to (3) is used as the catalyst.

【0005】[0005]

【発明の実施の形態】本発明の触媒は、貴金属/アルミ
ナに鉄を担持させた、鉄−貴金属/アルミナ触媒であ
る。この触媒における、貴金属/アルミナは、市販の貴
金属/アルミナ触媒を用いることができる。その場合、
貴金属の担持量は、アルミナに対して0.1〜5重量%
が好ましく、さらには0.1〜0.5重量%が好まし
い。前記貴金属/アルミナは、下記の方法の貴金属を含
むアルミナゲルとして調製することができる。本発明で
用いる貴金属には、ロジウム、パラジウム、オスミウ
ム、イリジウム、白金、ルテニウム等が挙げられるが、
白金、ロジウム、パラジウム又はルテニウムの使用がさ
らに好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention is an iron-noble metal / alumina catalyst in which iron is supported on a noble metal / alumina. As the noble metal / alumina in this catalyst, a commercially available noble metal / alumina catalyst can be used. In that case,
The amount of precious metal supported is 0.1 to 5% by weight with respect to alumina.
Is preferable, and 0.1 to 0.5% by weight is more preferable. The noble metal / alumina can be prepared as an alumina gel containing a noble metal according to the following method. Examples of the noble metal used in the present invention include rhodium, palladium, osmium, iridium, platinum and ruthenium.
More preferred is the use of platinum, rhodium, palladium or ruthenium.

【0006】該貴金属/アルミナゲルを調製するには、
先ず、貴金属塩の水溶液を、界面活性剤を含む有機溶媒
に加え、攪拌して、油中水滴型(W/O)のマイクロエ
マルジョンを作る。この場合、水滴粒子の直径は10〜
100Åであり、一つの水滴に含まれる貴金属イオンの
数は5〜50が好ましく、さらに5〜20であることが
望ましい。このマイクロエマルジョンを安定的に得るた
めには、界面活性剤および有機溶媒の選定が重要であ
る。該界面活性剤としては、非イオン界面活性剤である
アルキルポリエチレンエーテルが好ましく、さらには、
ポリオキシエチレンノニルフェニルエーテルの使用が望
ましい。前記ポリオキシエチレンノニルフェニルエーテ
ルのポリオキシエチレン基において、そのオキシエチレ
ンの平均付加モル数は3〜10が好ましく、さらに好ま
しくは4〜6である。
To prepare the noble metal / alumina gel,
First, an aqueous solution of a noble metal salt is added to an organic solvent containing a surfactant and stirred to form a water-in-oil (W / O) microemulsion. In this case, the diameter of the water droplet particles is 10
It is 100Å, and the number of noble metal ions contained in one water droplet is preferably 5 to 50, and more preferably 5 to 20. In order to obtain this microemulsion stably, it is important to select the surfactant and the organic solvent. The surfactant is preferably a nonionic surfactant, alkyl polyethylene ether, and further,
The use of polyoxyethylene nonyl phenyl ether is preferred. In the polyoxyethylene group of the polyoxyethylene nonylphenyl ether, the average added mole number of oxyethylene is preferably 3 to 10, and more preferably 4 to 6.

【0007】前記有機溶媒としては非水溶性の溶媒の使
用が好ましく、炭化水素溶媒、例えばシクロヘキセン、
シクロヘキサン、トルエンを使用することがさらに好ま
しい。前記マイクロエマルジョン作成のための攪拌速度
は200〜500rpmが好ましく、さらに好ましくは
300〜500rpmである。また、攪拌温度は20〜
60℃が好ましく、さらに好ましくは40〜50℃であ
る。前記水溶液中の貴金属塩濃度は、0.1〜1モル/
dm3が好ましく、さらに好ましくは0.2〜0.8モ
ル/dm3である。
It is preferable to use a water-insoluble solvent as the organic solvent, and a hydrocarbon solvent such as cyclohexene,
It is more preferable to use cyclohexane or toluene. The stirring speed for preparing the microemulsion is preferably 200 to 500 rpm, more preferably 300 to 500 rpm. The stirring temperature is 20 to
The temperature is preferably 60 ° C, more preferably 40 to 50 ° C. The concentration of the noble metal salt in the aqueous solution is 0.1 to 1 mol /
dm 3 is preferable, and more preferably 0.2 to 0.8 mol / dm 3 .

【0008】前記マイクロエマルジョンに対して、セチ
ルトリメチルアンモニウムクロライド(CTAC)を加
えて、前記貴金属塩と反応させることにより、貴金属と
CTACとの錯体超微粒子を形成させる。次いで、アル
ミニウムトリイソプロポキシドを加えて加水分解させ、
重縮合させる。この場合の加水分解温度は40〜60℃
が好ましく、さらに好ましくは50℃である。この操作
により、貴金属/アルミナの超微粒子が得られる。この
超微粒子は、液中から濾別し、次いで2−プロパノール
で洗浄した後、乾燥し、さらに空気流通下で焼成する。
この焼成温度は、300〜700℃が好ましく、さらに
好ましくは350〜600℃である。この焼成により、
超微粒子に付着する界面活性剤が焼失される。この結
果、超微粒子状貴金属/アルミナゲルが得られる。この
貴金属/アルミナにおいて、その平均粒径は3〜20n
m、好ましくは3〜10nmである。
Cetyltrimethylammonium chloride (CTAC) is added to the microemulsion and reacted with the noble metal salt to form ultrafine particles of a complex of the noble metal and CTAC. Then, aluminum triisopropoxide is added and hydrolyzed,
Polycondensate. The hydrolysis temperature in this case is 40 to 60 ° C.
Is preferable, and more preferably 50 ° C. By this operation, ultrafine particles of noble metal / alumina are obtained. The ultrafine particles are separated from the liquid by filtration, washed with 2-propanol, dried, and then calcined under air flow.
The firing temperature is preferably 300 to 700 ° C, more preferably 350 to 600 ° C. By this firing,
The surfactant adhering to the ultrafine particles is burned out. As a result, an ultrafine particle noble metal / alumina gel is obtained. In this precious metal / alumina, the average particle size is 3 to 20n
m, preferably 3 to 10 nm.

【0009】前記貴金属塩化合物は、水溶性の塩であれ
ばよく、特に制約されない。この様なものには、例えば
塩化物や臭化物などのハロゲン化物、硝酸塩等が包含さ
れる。
The precious metal salt compound is not particularly limited as long as it is a water-soluble salt. Such substances include, for example, halides such as chlorides and bromides, nitrates and the like.

【0010】本発明の触媒は、前記市販の貴金属/アル
ミナ又は前記方法で調製した貴金属/アルミナゲルに鉄
を担持することにより調製することができる。好ましい
一つの鉄の担持方法においては、所定量の鉄カルボニル
錯体を該貴金属/アルミナに添加した後、水素気流下で
鉄カルボニル錯体を加熱分解することにより、鉄−貴金
属/アルミナ触媒を調製することができる。鉄カルボニ
ル錯体としては従来公知のものが用いられるが、本発明
では、特に、鉄ペンタカルボニルが好ましい。加熱分解
温度としては、200〜300℃が好ましく、さらには
250〜300℃が好ましい。
The catalyst of the present invention can be prepared by loading iron on the commercially available precious metal / alumina or the precious metal / alumina gel prepared by the above method. In one preferable method for supporting iron, an iron-noble metal / alumina catalyst is prepared by adding a predetermined amount of iron carbonyl complex to the noble metal / alumina and then thermally decomposing the iron carbonyl complex in a hydrogen stream. You can As the iron carbonyl complex, conventionally known ones are used, but iron pentacarbonyl is particularly preferable in the present invention. The thermal decomposition temperature is preferably 200 to 300 ° C, more preferably 250 to 300 ° C.

【0011】他の鉄の担持方法においては、鉄塩水溶液
を該貴金属−アルミナに添加して攪拌し、放置後、乾燥
させる。次に、空気流通下で焼成する。この焼成温度
は、300〜700℃が好ましく、さらに好ましくは3
50〜600である。その結果、鉄−貴金属/アルミナ
触媒を調製することができる。この様にして調製された
鉄−貴金属/アルミナ触媒は、成形機で成形して粒径を
調整する。この場合、粒径は使用反応装置により適宜調
整することができる。続いて、水素気流下で還元するこ
とで鉄−貴金属/アルミナ触媒を調製することができ
る。還元温度としては、150〜300℃が好ましく、
さらには200〜300℃が好ましい。本発明の触媒に
おいて、その鉄の割合は、それに含まれる貴金属1モル
当り、0.005〜0.2モル、好ましくは0.05〜
0.1モルである。
In another method for supporting iron, an aqueous iron salt solution is added to the noble metal-alumina, stirred, allowed to stand, and then dried. Then, it is fired under air circulation. The firing temperature is preferably 300 to 700 ° C., more preferably 3
It is 50 to 600. As a result, an iron-noble metal / alumina catalyst can be prepared. The iron-noble metal / alumina catalyst thus prepared is molded with a molding machine to adjust the particle size. In this case, the particle size can be appropriately adjusted depending on the reaction device used. Subsequently, the iron-noble metal / alumina catalyst can be prepared by reduction under a hydrogen stream. The reduction temperature is preferably 150 to 300 ° C,
Furthermore, 200-300 degreeC is preferable. In the catalyst of the present invention, the proportion of iron is 0.005-0.2 mol, preferably 0.05-0.2 mol, per mol of the noble metal contained therein.
It is 0.1 mol.

【0012】前記鉄塩は、水溶性の塩であればよく、特
に制約されない。このようなものには、例えば塩化物や
臭化物などのハロゲン化物、硝酸塩等が包含される。前
記水溶液中の鉄塩濃度は、0.2〜4.0モル%が好ま
しく、さらに好ましくは0.2〜2.0モル%である。
The iron salt is not particularly limited as long as it is a water-soluble salt. Such substances include, for example, halides such as chlorides and bromides, nitrates and the like. The iron salt concentration in the aqueous solution is preferably 0.2 to 4.0 mol%, more preferably 0.2 to 2.0 mol%.

【0013】本発明の鉄−貴金属/アルミナ触媒は、粉
末状の他、それを成形した球形状、円柱状、筒体状等の
各種形状で用いることができる。粉末状の場合、その平
均粒径は10〜500μm、好ましくは300〜500
μmである。本発明の触媒において、該鉄の形態は、通
常、金属状態であり、貴金属の状態も、通常、金属状態
である。
The iron-noble metal / alumina catalyst of the present invention can be used in various shapes such as a spherical shape, a cylindrical shape, and a cylindrical shape, in addition to the powder shape. In the case of powder, the average particle size is 10 to 500 μm, preferably 300 to 500
μm. In the catalyst of the present invention, the iron form is usually in the metallic state, and the noble metal state is also usually in the metallic state.

【0014】本発明の触媒を用いてガス中に含まれる一
酸化炭素を酸化するには、該ガスを酸素の共存下におい
て、本発明の触媒と接触させればよい。ガス中に含まれ
る一酸化炭素の割合は、通常、0.4〜2.0モル%、
好ましくは0.4〜1.0モル%である。また、一酸化
炭素に対する酸素のモル比は0.5〜3.0、好ましく
は1.0〜3.0である。反応温度は120〜250
℃、好ましくは150〜200℃である。
In order to oxidize carbon monoxide contained in a gas using the catalyst of the present invention, the gas may be contacted with the catalyst of the present invention in the presence of oxygen. The ratio of carbon monoxide contained in the gas is usually 0.4 to 2.0 mol%,
It is preferably 0.4 to 1.0 mol%. The molar ratio of oxygen to carbon monoxide is 0.5 to 3.0, preferably 1.0 to 3.0. Reaction temperature is 120-250
C., preferably 150 to 200.degree.

【0015】一酸化炭素を含むガスは、水素や、炭化水
素、アルコール、水蒸気、二酸化炭素等で用いることが
できる。本発明によれば、これらのガスに含まれる一酸
化炭素を選択的に酸化することができる。この反応によ
り生成する酸化物は二酸化炭素や水蒸気等である。本発
明によれば、メタン等の炭素数1〜3の低級炭化水素や
メタノールやエタノール等のアルコールをスチームや炭
酸ガスで改質し、精製して得られる水素ガス中に含まれ
る微量(通常、0.4〜2.0モル%程度)の一酸化炭
素を酸化除去することができる。この場合、水素は実質
的に酸化されず、一酸化炭素のみが選択的に酸化され
る。この様にして得られる精製水素ガスは、固体高分子
型燃料電池用水素ガスとして好適なものである。
The gas containing carbon monoxide may be hydrogen, hydrocarbon, alcohol, water vapor, carbon dioxide or the like. According to the present invention, carbon monoxide contained in these gases can be selectively oxidized. Oxides produced by this reaction are carbon dioxide, water vapor and the like. According to the present invention, a lower hydrocarbon having 1 to 3 carbon atoms such as methane or an alcohol such as methanol or ethanol is reformed with steam or carbon dioxide gas, and a trace amount (usually, contained in hydrogen gas obtained by purification (usually, It is possible to oxidize and remove carbon monoxide (about 0.4 to 2.0 mol%). In this case, hydrogen is not substantially oxidized, and only carbon monoxide is selectively oxidized. The purified hydrogen gas thus obtained is suitable as a hydrogen gas for polymer electrolyte fuel cells.

【0016】[0016]

【実施例】本発明を実施例によってさらに詳細に説明す
るが、本発明はこの実施例によって限定されるものでは
ない。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0017】実施例1 内容積1000mlのビーカーに0.2Mのポリオキシ
エチレン(平均付加モル数5))ノニルフェニルエーテ
ル/シクロヘキサン溶液を400ml入れ、これに0.
5M塩化白金酸溶液及び精製水をそれぞれ2ml、17
ml加え、50℃の温度で、300rpmで攪拌して、
油中水滴型のマイクロエマルジョンを作った。この水滴
粒子の直径は79Åと計算され、一つの水滴中に含まれ
る白金イオンは平均8個と計算された。このマイクロエ
マルジョンに、セチルトリメチルアンモニウムクロライ
ド(CTAC)4gを、予めシクロヘキサン50mlに
混合攪拌した物を添加し、50℃で30分間よく攪拌し
て、白金とCTACの錯体超微粒子を形成した。次に、
アルミニウムトリイソプロポキシド170gをシクロヘ
キセン400mlに予め混合攪拌したものを添加して、
1時間加水分解を行った。続いて、ビーカー内容物を室
温まで冷却した後、母液を遠心分離により分離し、得ら
れた沈殿を2−プロパノールで3回洗浄した。この精製
沈殿を80℃で12時間乾燥後、500℃で2時間焼成
した。この結果、0.5wt%の白金を含むアルミナゲ
ル(触媒I)が39.8g得られた。以上のようにして
調製した白金/アルミナ(触媒I)3.0gに、鉄ペン
タカルボニルを鉄担持量に応じて所定量添加して、25
0℃で鉄ペンタカルボニルを熱分解させた。この結果、
鉄:白金=1:50〜200(モル比)の鉄−白金/ア
ルミナ触媒(触媒A、B、C)が得られた。この鉄−白
金/アルミナ触媒A、B、Cを成形機で成形して粒径:
16−18メッシュのペレットを作った。この成形触媒
0.2gを内径8mmの反応管に装填し、水素気流下で
500℃、2時間水素還元を行った。水素還元後の各触
媒の物性を表1に示した。水素還元を行った後、一酸化
炭素の選択酸化反応を行った。すなわち、温度幅1℃以
内で温度制御の可能な電気炉内に反応管を設置し、この
反応管に一酸化炭素:酸素:水素:二酸化炭素:水蒸気
=0.5:0.5:40:9:50(モル比)の混合ガ
スを送入して反応させた。反応圧は常圧で、反応温度は
200℃、混合ガスの流量は60ml/minで行っ
た。その実験結果を表2に示した。
Example 1 A beaker having an internal volume of 1000 ml was charged with 400 ml of 0.2 M polyoxyethylene (average addition mole number: 5)) nonylphenyl ether / cyclohexane solution, and a beaker of 0.
2 ml of 5M chloroplatinic acid solution and purified water, 17
Add ml, stir at 300 rpm at a temperature of 50 ° C,
A water-in-oil microemulsion was made. The diameter of the water droplet was calculated to be 79Å, and the average number of platinum ions contained in one water droplet was calculated to be eight. To this microemulsion, 4 g of cetyltrimethylammonium chloride (CTAC) was mixed in advance with 50 ml of cyclohexane and stirred, and well stirred at 50 ° C. for 30 minutes to form ultrafine particles of platinum and CTAC complex. next,
170 g of aluminum triisopropoxide was mixed in 400 ml of cyclohexene with stirring and added,
The hydrolysis was performed for 1 hour. Subsequently, the beaker contents were cooled to room temperature, the mother liquor was separated by centrifugation, and the obtained precipitate was washed with 2-propanol three times. The purified precipitate was dried at 80 ° C for 12 hours and then calcined at 500 ° C for 2 hours. As a result, 39.8 g of an alumina gel (catalyst I) containing 0.5 wt% of platinum was obtained. To 3.0 g of the platinum / alumina (catalyst I) prepared as described above, iron pentacarbonyl was added in a predetermined amount according to the amount of iron supported, and 25
Iron pentacarbonyl was pyrolyzed at 0 ° C. As a result,
An iron-platinum / alumina catalyst (catalysts A, B, and C) having iron: platinum = 1: 50 to 200 (molar ratio) was obtained. The iron-platinum / alumina catalysts A, B and C were molded by a molding machine to obtain a particle size:
16-18 mesh pellets were made. 0.2 g of this shaped catalyst was loaded into a reaction tube having an inner diameter of 8 mm, and hydrogen reduction was carried out at 500 ° C. for 2 hours in a hydrogen stream. Table 1 shows the physical properties of each catalyst after hydrogen reduction. After reduction with hydrogen, a selective oxidation reaction of carbon monoxide was performed. That is, a reaction tube is installed in an electric furnace whose temperature can be controlled within a temperature range of 1 ° C., and carbon monoxide: oxygen: hydrogen: carbon dioxide: steam = 0.5: 0.5: 40: A mixed gas of 9:50 (molar ratio) was fed in and reacted. The reaction pressure was normal pressure, the reaction temperature was 200 ° C., and the mixed gas flow rate was 60 ml / min. The experimental results are shown in Table 2.

【0018】実施例2 蒸発皿に0.05Mの硝酸鉄水溶液とイオン交換水を鉄
担持量に応じて調製して入れ、これに実施例1で調製し
た触媒Iを3.0g加え、攪拌後1時間放置した。放置
後、減圧乾燥機内で3時間乾燥後、さらに乾燥機内で、
80℃12時間乾燥させた。その後、実施例1と同じ条
件で焼成し、続いて水素還元を行った。この結果、鉄:
白金=1:10〜100(モル比)の鉄−白金/アルミ
ナ触媒(触媒D、E、F)が得られた。その触媒物性を
表1に示した。これらの触媒を用いて、実施例1と同様
の触媒性能評価試験を行った。その実験結果を表2に示
した。
Example 2 A 0.05 M iron nitrate aqueous solution and ion-exchanged water were prepared and put in an evaporating dish according to the amount of iron supported, and 3.0 g of the catalyst I prepared in Example 1 was added thereto and stirred. It was left for 1 hour. After leaving it for 3 hours in a vacuum dryer, and then in a dryer,
It was dried at 80 ° C. for 12 hours. After that, firing was performed under the same conditions as in Example 1, and subsequently hydrogen reduction was performed. This results in iron:
An iron-platinum / alumina catalyst (catalysts D, E, F) having platinum = 1: 10 to 100 (molar ratio) was obtained. The physical properties of the catalyst are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was performed. The experimental results are shown in Table 2.

【0019】実施例3 蒸発皿に0.05Mの塩化鉄水溶液とイオン交換水を鉄
担持量に応じて調製して入れ、これに実施例1で調製し
た触媒Iを3.0g加え、攪拌後1時間放置した。放置
後、減圧乾燥機内で3時間乾燥後、さらに乾燥機内で、
80℃12時間乾燥させた。その後、実施例1と同じ条
件で焼成し、続いて水素還元を行った。この結果、鉄:
白金=1:10〜100(モル比)の鉄−白金/アルミ
ナ触媒(触媒G、H、I)が得られた。その触媒物性を
表1に示した。これらの触媒を用いて、実施例1と同様
の触媒性能評価試験を行った。その実験結果を表2に示
した。
Example 3 A 0.05 M aqueous solution of iron chloride and ion-exchanged water were prepared and put in an evaporation dish according to the amount of iron supported, and 3.0 g of the catalyst I prepared in Example 1 was added thereto, and the mixture was stirred. It was left for 1 hour. After leaving it for 3 hours in a vacuum dryer, and then in a dryer,
It was dried at 80 ° C. for 12 hours. After that, firing was performed under the same conditions as in Example 1, and subsequently hydrogen reduction was performed. This results in iron:
An iron-platinum / alumina catalyst (catalysts G, H, I) having platinum = 1: 10 to 100 (molar ratio) was obtained. The physical properties of the catalyst are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was performed. The experimental results are shown in Table 2.

【0020】実施例4 市販の0.5wt%白金/アルミナ触媒(触媒II)に、
鉄ペンタカルボニルを鉄担持量に応じて所定量添加し
て、 水素気流下中、250℃で鉄ペンタカルボニルを
熱分解させた。この結果、鉄:白金=1:50〜200
(モル比)の鉄−白金/アルミナ触媒(触媒J、K、
L)が得られた。この各触媒の物性を表1に示した。こ
れらの触媒を用いて、実施例1と同様の触媒性能評価試
験を行った。その実験結果を表2に示した。
Example 4 A commercially available 0.5 wt% platinum / alumina catalyst (catalyst II) was added to
A predetermined amount of iron pentacarbonyl was added according to the amount of iron supported, and iron pentacarbonyl was thermally decomposed at 250 ° C. in a hydrogen stream. As a result, iron: platinum = 1: 50 to 200
(Molar ratio) iron-platinum / alumina catalyst (catalysts J, K,
L) was obtained. The physical properties of each catalyst are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was performed. The experimental results are shown in Table 2.

【0021】実施例5 蒸発皿に0.05Mの硝酸鉄水溶液とイオン交換水を鉄
担持量に応じて調製して入れ、これに実施例4の触媒II
を3.0g加え、攪拌後1時間放置した。放置後、減圧
乾燥機内で3時間乾燥後、さらに乾燥機内で、80℃1
2時間乾燥させた。その後、実施例1と同じ条件で焼成
し、続いて水素還元を行った。この結果、鉄:白金=
1:10〜100(モル比)の鉄−白金/アルミナ触媒
(触媒M、N、O)が得られた。その触媒物性を表1に
示した。これらの触媒を用いて、実施例1と同様の触媒
性能評価試験を行った。その実験結果を表2に示した。
Example 5 A 0.05 M aqueous solution of iron nitrate and ion-exchanged water were prepared and placed in an evaporating dish according to the amount of iron supported, and the catalyst II of Example 4 was placed therein.
Was added, and the mixture was left for 1 hour after stirring. After leaving it to stand, it is dried in a vacuum dryer for 3 hours and then in a dryer at 80 ° C for 1 hour.
It was dried for 2 hours. After that, firing was performed under the same conditions as in Example 1, and subsequently hydrogen reduction was performed. As a result, iron: platinum =
An iron-platinum / alumina catalyst (catalysts M, N, O) of 1:10 to 100 (molar ratio) was obtained. The physical properties of the catalyst are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was performed. The experimental results are shown in Table 2.

【0022】実施例6 蒸発皿に0.05Mの塩化鉄水溶液とイオン交換水を鉄
担持量に応じて調製して入れ、これに実施例4の触媒II
を3.0g加え、攪拌後1時間放置した。放置後、減圧
乾燥機内で3時間乾燥後、さらに乾燥機内で、80℃、
12時間乾燥させた。その後、実施例1と同じ条件で焼
成し、続いて水素還元を行った。この結果、鉄:白金=
1:10〜100(モル比)の鉄−白金/アルミナ触媒
(触媒P、Q、R)が得られた。その触媒物性を表1に
示した。これらの触媒を用いて、実施例1と同様の触媒
性能評価試験を行った。その実験結果を表2に示した。
Example 6 A 0.05 M aqueous solution of iron chloride and ion-exchanged water were prepared and placed in an evaporation dish according to the amount of iron supported, and the catalyst II of Example 4 was added thereto.
Was added, and the mixture was left for 1 hour after stirring. After standing, after drying in a vacuum dryer for 3 hours, further in the dryer at 80 ° C,
It was dried for 12 hours. After that, firing was performed under the same conditions as in Example 1, and subsequently hydrogen reduction was performed. As a result, iron: platinum =
An iron-platinum / alumina catalyst (catalysts P, Q, R) of 1:10 to 100 (molar ratio) was obtained. The physical properties of the catalyst are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was performed. The experimental results are shown in Table 2.

【0023】実施例7 蒸発皿に0.1Mの塩化ルテニウム水溶液5mlとイオ
ン交換水15mlを入れ、これに予めマイクロエマルジ
ョン中で調製したアルミナゲル10.0gを加え、攪拌
後1時間放置した。放置後、減圧乾燥機内で3時間乾燥
した後、さらに乾燥機内で80℃、12時間乾燥させ
た。その後、実施例1と同じ条件で焼成、水素還元を行
った。ルテニウム担持量0.5wt%のアルミナゲル
(触媒III)を調製した。以上のように調製したルテニ
ウム/アルミナ触媒(触媒III)3.0gに、鉄ペンタ
カルボニルを添加して、水素気流下中、250℃で鉄ペ
ンタカルボニルを熱分解させた。この結果、鉄:ルテニ
ウム=1:80(モル比)の鉄−ルテニウム /アルミ
ナ触媒(触媒S)が得られた。この各触媒の物性を表1
に示した。この触媒を用いて、実施例1と同様の触媒性
能評価試験を行った。その実験結果を表2に示した。
Example 7 5 ml of a 0.1 M ruthenium chloride aqueous solution and 15 ml of ion-exchanged water were placed in an evaporation dish, 10.0 g of alumina gel prepared in advance in a microemulsion was added thereto, and the mixture was left standing for 1 hour after stirring. After standing, it was dried in a vacuum dryer for 3 hours, and further dried in a dryer at 80 ° C. for 12 hours. Then, firing and hydrogen reduction were performed under the same conditions as in Example 1. An alumina gel (catalyst III) having a ruthenium supported amount of 0.5 wt% was prepared. Iron pentacarbonyl was added to 3.0 g of the ruthenium / alumina catalyst (catalyst III) prepared as described above, and iron pentacarbonyl was thermally decomposed at 250 ° C. in a hydrogen stream. As a result, an iron-ruthenium / alumina catalyst (catalyst S) having iron: ruthenium = 1: 80 (molar ratio) was obtained. The physical properties of each catalyst are shown in Table 1.
It was shown to. Using this catalyst, the same catalyst performance evaluation test as in Example 1 was conducted. The experimental results are shown in Table 2.

【0024】実施例8 蒸発皿に0.01Mの硝酸鉄水溶液1.5mlとイオン
交換水4.5mlを入れ、これに実施例7の触媒IIIを
3.0g加え、攪拌後1時間放置した。放置後、減圧乾
燥機内で3時間乾燥後、さらに乾燥機内で、80℃12
時間乾燥させた。その後、実施例1と同じ条件で焼成
し、続いて水素還元を行った。この結果、鉄:ルテニウ
ム=1:10(モル比)の鉄−ルテニウム/アルミナ触
媒(触媒T)が得られた。その触媒物性を表1に示し
た。この触媒を用いて、実施例1と同様の触媒性能評価
試験を行った。その実験結果を表2に示した。
Example 8 An evaporation dish was charged with 1.5 ml of a 0.01 M iron nitrate aqueous solution and 4.5 ml of ion-exchanged water, 3.0 g of the catalyst III of Example 7 was added thereto, and the mixture was left standing for 1 hour after stirring. After left to stand, it is dried in a vacuum dryer for 3 hours, and then in a dryer at 80 ° C for 12 hours.
Allowed to dry for hours. After that, firing was performed under the same conditions as in Example 1, and subsequently hydrogen reduction was performed. As a result, an iron-ruthenium / alumina catalyst (catalyst T) having iron: ruthenium = 1: 10 (molar ratio) was obtained. The physical properties of the catalyst are shown in Table 1. Using this catalyst, the same catalyst performance evaluation test as in Example 1 was conducted. The experimental results are shown in Table 2.

【0025】実施例9 蒸発皿に0.01Mの塩化鉄水溶液1.5mlとイオン
交換水4.5mlを入れ、これに実施例7の触媒IIIを
3.0g加え、攪拌後1時間放置した。放置後、減圧乾
燥機内で3時間乾燥後、さらに乾燥機内で、80℃12
時間乾燥させた。その後、実施例1と同じ条件で焼成
し、続いて水素還元を行った。この結果、鉄:ルテニウ
ム=1:10(モル比)の鉄−ルテニウム/アルミナ触
媒(触媒U)が得られた。その触媒物性を表1に示し
た。この触媒を用いて、実施例1と同様の触媒性能評価
試験を行った。その実験結果を表2に示した。
Example 9 To an evaporation dish, 1.5 ml of a 0.01 M aqueous solution of iron chloride and 4.5 ml of ion-exchanged water were placed, 3.0 g of the catalyst III of Example 7 was added thereto, and the mixture was left standing for 1 hour after stirring. After left to stand, it is dried in a vacuum dryer for 3 hours, and then in a dryer at 80 ° C for 12 hours.
Allowed to dry for hours. After that, firing was performed under the same conditions as in Example 1, and subsequently hydrogen reduction was performed. As a result, an iron-ruthenium / alumina catalyst (catalyst U) having iron: ruthenium = 1: 10 (molar ratio) was obtained. The physical properties of the catalyst are shown in Table 1. Using this catalyst, the same catalyst performance evaluation test as in Example 1 was conducted. The experimental results are shown in Table 2.

【0026】実施例10 市販の0.5wt%ロジウム/アルミナ触媒(触媒IV)
に鉄ペンタカルボニルを付加し、250℃下で鉄ペンタ
カルボニルを熱分解させた。この結果、鉄:ロジウム=
1:50〜200(モル比)の鉄−ロジウム/アルミナ
ゲル触媒(触媒V、W、X)が得られた。その触媒物性
を表1に示す。これらの触媒を用い、実施例1の場合と
同様な触媒性能評価試験を行った。その実験結果を表2
に示す。
Example 10 Commercially available 0.5 wt% rhodium / alumina catalyst (Catalyst IV)
Iron pentacarbonyl was added to and the iron pentacarbonyl was thermally decomposed at 250 ° C. As a result, iron: rhodium =
An iron-rhodium / alumina gel catalyst (catalyst V, W, X) of 1:50 to 200 (molar ratio) was obtained. The catalyst physical properties are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was conducted. The experimental results are shown in Table 2.
Shown in.

【0027】実施例11 蒸発皿に0.05M硝酸鉄水溶液とイオン交換水を入
れ、これに実施例10の触媒IV3.0gを加え、攪拌後
1時間放置した。放置後、減圧乾燥機内で3時間乾燥
後、乾燥機内で80℃で12時間乾燥させた。その後、
実施例1と同条件で焼成、水素還元を行った。この結
果、鉄:ロジウム=1:10(モル比)の鉄−ロジウム
/アルミナゲル触媒(触媒Y)が得られた。その触媒物
性を表1に示す。これらの触媒を用い、実施例1の場合
と同様な触媒性能評価試験を行った。その実験結果を表
2に示す。
Example 11 A 0.05 M iron nitrate aqueous solution and ion-exchanged water were placed in an evaporation dish, 3.0 g of the catalyst IV of Example 10 was added thereto, and the mixture was left standing for 1 hour after stirring. After standing, it was dried in a vacuum dryer for 3 hours and then in a dryer at 80 ° C. for 12 hours. afterwards,
Firing and hydrogen reduction were performed under the same conditions as in Example 1. As a result, an iron-rhodium / alumina gel catalyst (catalyst Y) having iron: rhodium = 1: 10 (molar ratio) was obtained. The catalyst physical properties are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was conducted. The experimental results are shown in Table 2.

【0028】実施例12 蒸発皿に0.05M塩化鉄水溶液とイオン交換水を入
れ、これに実施例l0の触媒IV3.0gを加え、攪拌後
1時間放置した。放置後、減圧乾燥機内で3時間乾燥
後、乾燥機内で80℃で12時間乾燥させた。その後、
実施例1と同条件で焼成、水素還元を行った。この結
果、鉄:ロジウム=1:10(モル比)の鉄一ロジウム
/アルミナゲル触媒(触媒Z)が得られた。その触媒物
性を表1に示す。これらの触媒を用い、実施例1の場合
と同様な触媒性能評価試験を行った。その実験結果を表
2に示す。
Example 12 A 0.05 M aqueous solution of iron chloride and ion-exchanged water were put in an evaporation dish, 3.0 g of the catalyst IV of Example 10 was added thereto, and the mixture was left standing for 1 hour after stirring. After standing, it was dried in a vacuum dryer for 3 hours and then in a dryer at 80 ° C. for 12 hours. afterwards,
Firing and hydrogen reduction were performed under the same conditions as in Example 1. As a result, an iron-rhodium / alumina gel catalyst (catalyst Z) containing iron: rhodium = 1: 10 (molar ratio) was obtained. The catalyst physical properties are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was conducted. The experimental results are shown in Table 2.

【0029】実施例13 市販の0.5wt%パラジウム/アルミナ触媒(触媒
V)に鉄ペンタカルボニルを付加し、250℃下で鉄ペ
ンタカルボニルを熱分解させた。この結果、鉄:パラジ
ウム=1:50(モル比)の鉄−パラジウム/アルミナ
ゲル触媒(触媒a)が得られた。その触媒物性を表1に
示す。これらの触媒を用い、実施例1の場合と同様な触
媒性能評価試験を行った。その実験結果を表2に示す。
Example 13 Iron pentacarbonyl was added to a commercially available 0.5 wt% palladium / alumina catalyst (catalyst V), and iron pentacarbonyl was thermally decomposed at 250 ° C. As a result, an iron-palladium / alumina gel catalyst (catalyst a) of iron: palladium = 1: 50 (molar ratio) was obtained. The catalyst physical properties are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was conducted. The experimental results are shown in Table 2.

【0030】実施例14 蒸発皿に0.05M硝酸鉄水溶液とイオン交換水を入
れ、これに実施例10の触媒IV3.0gを加え、攪拌後
1時間放置した。放置後、減圧乾燥機内で3時間乾燥
後、乾燥機内で80℃で12時間乾燥させた。その後、
実施例1と同条件で焼成、水素還元を行った。この結
果、鉄:ロジウム=1:10(モル比)の鉄一パラジウ
ム/アルミナゲル触媒(触媒b)が得られた。その触媒
物性を表1に示す。これらの触媒を用い、実施例1の場
合と同様な触媒性能評価試験を行った。その実験結果を
表2に示す。
Example 14 A 0.05 M aqueous solution of iron nitrate and ion-exchanged water were placed in an evaporation dish, 3.0 g of the catalyst IV of Example 10 was added thereto, and the mixture was left standing for 1 hour after stirring. After standing, it was dried in a vacuum dryer for 3 hours and then in a dryer at 80 ° C. for 12 hours. afterwards,
Firing and hydrogen reduction were performed under the same conditions as in Example 1. As a result, an iron-palladium / alumina gel catalyst (catalyst b) of iron: rhodium = 1: 10 (molar ratio) was obtained. The catalyst physical properties are shown in Table 1. Using these catalysts, the same catalyst performance evaluation test as in Example 1 was conducted. The experimental results are shown in Table 2.

【0031】比較例1 実施例1で調製した触媒I、実施例4で用いた触媒II、
実施例7で調製した触媒III、実施例10で用いた触媒I
V、実施例13で用いた触媒Vは、それぞれ鉄を担持し
ていない貴金属−アルミナ触媒である。これらの触媒
I、II、III及びIVについて比較例として、実施例1の
場合と同様に触媒の性能評価試験を行った。触媒物性を
表1に、実験結果を表2に示した。
Comparative Example 1 Catalyst I prepared in Example 1, Catalyst II used in Example 4,
Catalyst III prepared in Example 7 and catalyst I used in Example 10
V and the catalyst V used in Example 13 are noble metal-alumina catalysts that do not support iron. As a comparative example, these catalysts I, II, III and IV were subjected to a catalyst performance evaluation test in the same manner as in Example 1. The catalyst physical properties are shown in Table 1, and the experimental results are shown in Table 2.

【0032】実施例及び比較例で得られた触媒の物性を
表1に示す。
Table 1 shows the physical properties of the catalysts obtained in Examples and Comparative Examples.

【表1】 [Table 1]

【0033】実施例及び比較例で得られた触媒の一酸化
炭素選択酸化反応結果を表2に示す。
Table 2 shows the results of the carbon monoxide selective oxidation reaction of the catalysts obtained in Examples and Comparative Examples.

【表2】 [Table 2]

【0034】反応条件:200℃、常圧、触媒量:0.
2g、混合ガス流量:60ml/min 試験混合ガス組成;一酸化炭素:酸素:水素:二酸化炭
素:水蒸気=0.5:0.5:40:9:50(モル
比)
Reaction conditions: 200 ° C., normal pressure, catalyst amount: 0.
2 g, mixed gas flow rate: 60 ml / min Test mixed gas composition; carbon monoxide: oxygen: hydrogen: carbon dioxide: steam = 0.5: 0.5: 40: 9: 50 (molar ratio)

【0035】表1及び表2に示した実施例触媒は、
(i)鉄:白金(モル比)=1:10〜200である鉄
−白金/アルミナ触媒、(ii)鉄:ルテニウム(モル
比)=1:10〜80である鉄−ルテニウム/アルミナ
触媒、(iii)鉄:ロジウム(モル比)=1:10〜5
0である鉄−ロジウム/アルミナ触媒及び、(iv)鉄:
パラジウム(モル比)=1:10〜50である鉄−パラ
ジウム/アルミナ触媒としてまとめることができる。実
施例触媒の一酸化炭素選択酸化能は表2で明らかなよう
に、鉄−白金/アルミナ触媒(触媒A〜R)、鉄−ルテ
ニウム/アルミナ触媒(触媒S〜U)鉄−ロジウム/ア
ルミナ触媒(触媒V〜X)及び鉄−パラジウム/アルミ
ナ触媒(触媒Y、Z)を一酸化炭素の選択的酸化反応に
用いることで、200℃、酸素/一酸化炭素=1.0
(モル比)の条件下で、一酸化炭素の残存濃度は2〜2
300ppmまで低減させることができた。特に鉄ペン
タカルボニルを用いて調製した鉄−白金/アルミナ触媒
は高い一酸化炭素の選択酸化能を持つことが分かった。
一方、比較例として示した鉄を添加しない白金/アルミ
ナ触媒(触媒I、II)、ルテニウム/アルミナ触媒(触
媒III)ロジウム/アルミナ触媒(触媒IV)及びパラジ
ウム/アルミナ触媒(触媒V)は、同一条件下での試験
において一酸化炭素の残存濃度が2400〜4400程
度と高い値であった。
The example catalysts shown in Tables 1 and 2 are:
(I) iron: platinum (molar ratio) = 1: 10-200 iron-platinum / alumina catalyst, (ii) iron: ruthenium (molar ratio) = 1: 10-80 iron-ruthenium / alumina catalyst, (Iii) Iron: rhodium (molar ratio) = 1: 10 to 5
An iron-rhodium / alumina catalyst which is 0 and (iv) iron:
It can be summarized as an iron-palladium / alumina catalyst in which palladium (molar ratio) = 1: 10 to 50. The carbon monoxide selective oxidation ability of the example catalysts is as shown in Table 2, iron-platinum / alumina catalysts (catalysts A to R), iron-ruthenium / alumina catalysts (catalysts S to U) iron-rhodium / alumina catalysts. (Catalyst V to X) and iron-palladium / alumina catalyst (catalysts Y and Z) are used in the selective oxidation reaction of carbon monoxide to obtain 200 ° C. and oxygen / carbon monoxide = 1.0.
Under the condition of (molar ratio), the residual concentration of carbon monoxide is 2 to 2
It could be reduced to 300 ppm. In particular, it has been found that the iron-platinum / alumina catalyst prepared by using iron pentacarbonyl has a high carbon monoxide selective oxidation ability.
On the other hand, the platinum / alumina catalysts (catalysts I and II) without addition of iron, the ruthenium / alumina catalysts (catalyst III), the rhodium / alumina catalysts (catalyst IV) and the palladium / alumina catalysts (catalyst V) shown in Comparative Examples are the same. In the test under the conditions, the residual concentration of carbon monoxide was as high as about 2400 to 4400.

【0036】[0036]

【発明の効果】本発明によれば、水素ガス中の微量の一
酸化炭素を選択的に酸化除去することが可能な高性能触
媒が提供される。本発明により一酸化炭素の除去された
水素ガスは、燃料電池用水素ガスとして好適なものであ
る。
According to the present invention, a high performance catalyst capable of selectively oxidizing and removing a trace amount of carbon monoxide in hydrogen gas is provided. The hydrogen gas from which carbon monoxide has been removed according to the present invention is suitable as a hydrogen gas for fuel cells.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸田 昌浩 福岡県福岡市東区舞松原5丁目29番1 ベ ルヴィ香椎8番館306号室 (72)発明者 多湖 輝興 福岡県福岡市東区原田2丁目20番22号 メ ゾンドール三宅302号室 (72)発明者 林 博樹 福岡県福岡市東区筥松2丁目28番16号 キ ャトルメゾン101号室 Fターム(参考) 4G069 AA01 AA03 AA08 BA01A BA01B BA27C BA38 BC32A BC33A BC66A BC66B BC66C BC69A BC70A BC70B BC71B BC72B BC75A BC75B BE42C CC40 DA05 FA01 FA02 FB14 FB16 FB29 FB30 FB44 FC02 FC08 5H026 AA06 5H027 AA06 BA01 BA17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiro Kishida             5-29 Mai Matsubara, Higashi-ku, Fukuoka City, Fukuoka Prefecture             Ruby Kashii 8th Building Room 306 (72) Inventor Teruko Taiko             2-20-22 Harada, Higashi-ku, Fukuoka City, Fukuoka Prefecture             Zondor Miyake Room 302 (72) Inventor Hiroki Hayashi             2-28-16 Hakomatsu, Higashi-ku, Fukuoka City, Fukuoka Prefecture             Cattle Maison Room 101 F-term (reference) 4G069 AA01 AA03 AA08 BA01A                       BA01B BA27C BA38 BC32A                       BC33A BC66A BC66B BC66C                       BC69A BC70A BC70B BC71B                       BC72B BC75A BC75B BE42C                       CC40 DA05 FA01 FA02 FB14                       FB16 FB29 FB30 FB44 FC02                       FC08                 5H026 AA06                 5H027 AA06 BA01 BA17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 貴金属/アルミナに鉄を担持させたこと
を特徴とする一酸化炭素酸化用触媒。
1. A catalyst for carbon monoxide oxidation, comprising iron supported on a noble metal / alumina.
【請求項2】 該鉄の割合が、該貴金属1モル当たり、
0.005〜0.2モルであることを特徴とする請求項
1に記載の一酸化炭素酸化用触媒。
2. The proportion of iron per mol of the noble metal is
The catalyst for carbon monoxide oxidation according to claim 1, wherein the amount is 0.005 to 0.2 mol.
【請求項3】 該貴金属が、白金又はルテニウムである
ことを特徴とする請求項1又は2に記載の一酸化炭素酸
化用触媒。
3. The carbon monoxide oxidation catalyst according to claim 1, wherein the noble metal is platinum or ruthenium.
【請求項4】 貴金属/アルミナに鉄カルボニル錯体を
添加した後、水素気流下で該鉄カルボニルを加熱分解す
ることを特徴とする一酸化炭素酸化用触媒の製造方法。
4. A method for producing a catalyst for carbon monoxide oxidation, which comprises adding an iron carbonyl complex to a noble metal / alumina and then thermally decomposing the iron carbonyl in a hydrogen stream.
【請求項5】 貴金属/アルミナに鉄塩を添加した後、
空気気流下で焼成し、水素還元することを特徴とする一
酸化炭素酸化用触媒の製造方法。
5. After adding the iron salt to the precious metal / alumina,
A method for producing a carbon monoxide oxidation catalyst, which comprises calcination in an air stream and hydrogen reduction.
【請求項6】 一酸化炭素を触媒の存在下で酸化する方
法において、該触媒として請求項1〜3のいずれかに記
載の触媒を用いることを特徴とする一酸化炭素の酸化方
法。
6. A method for oxidizing carbon monoxide in the presence of a catalyst, wherein the catalyst according to any one of claims 1 to 3 is used as the catalyst.
JP2001351831A 2001-09-21 2001-11-16 Catalyst for oxidizing carbon monoxide, method for manufacturing the same and method for oxidizing carbon monoxide Pending JP2003164764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351831A JP2003164764A (en) 2001-09-21 2001-11-16 Catalyst for oxidizing carbon monoxide, method for manufacturing the same and method for oxidizing carbon monoxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001289854 2001-09-21
JP2001-289854 2001-09-21
JP2001351831A JP2003164764A (en) 2001-09-21 2001-11-16 Catalyst for oxidizing carbon monoxide, method for manufacturing the same and method for oxidizing carbon monoxide

Publications (1)

Publication Number Publication Date
JP2003164764A true JP2003164764A (en) 2003-06-10

Family

ID=26622734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351831A Pending JP2003164764A (en) 2001-09-21 2001-11-16 Catalyst for oxidizing carbon monoxide, method for manufacturing the same and method for oxidizing carbon monoxide

Country Status (1)

Country Link
JP (1) JP2003164764A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288307A (en) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd High heat resistant catalyst, its production method and catalyst for cleaning exhaust gas
US7713911B2 (en) 2004-03-23 2010-05-11 Nissan Motor Co., Ltd. Catalyst powder, exhaust gas purifying catalyst, and method of producing the catalyst powder
JP2011005461A (en) * 2009-06-29 2011-01-13 National Institute Of Advanced Industrial Science & Technology Catalyst for selectively oxidizing carbon monoxide
WO2018123787A1 (en) 2016-12-26 2018-07-05 クラリアント触媒株式会社 Method for manufacturing low-temperature oxidation catalyst
WO2018123786A1 (en) 2016-12-26 2018-07-05 クラリアント触媒株式会社 Low-temperature oxidation catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713911B2 (en) 2004-03-23 2010-05-11 Nissan Motor Co., Ltd. Catalyst powder, exhaust gas purifying catalyst, and method of producing the catalyst powder
JP2005288307A (en) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd High heat resistant catalyst, its production method and catalyst for cleaning exhaust gas
US7674744B2 (en) 2004-03-31 2010-03-09 Nissan Motor Co., Ltd. Catalyst powder, method of producing the catalyst powder, and exhaust gas purifying catalyst
JP4513384B2 (en) * 2004-03-31 2010-07-28 日産自動車株式会社 High heat-resistant exhaust gas purification catalyst and method for producing the same
JP2011005461A (en) * 2009-06-29 2011-01-13 National Institute Of Advanced Industrial Science & Technology Catalyst for selectively oxidizing carbon monoxide
WO2018123787A1 (en) 2016-12-26 2018-07-05 クラリアント触媒株式会社 Method for manufacturing low-temperature oxidation catalyst
WO2018123786A1 (en) 2016-12-26 2018-07-05 クラリアント触媒株式会社 Low-temperature oxidation catalyst

Similar Documents

Publication Publication Date Title
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP2020507445A (en) Transition metal and nitrogen co-doped carbon composite material used for formaldehyde purification and its preparation method
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP3882044B2 (en) Method for preparing Fischer-Tropsch synthesis catalyst
WO2000054879A1 (en) Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
JP4849519B2 (en) Hydrogen generation method
JP3715482B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP5624343B2 (en) Hydrogen production method
CN101300076A (en) Method for production of noble metal catalyst
JP2003164764A (en) Catalyst for oxidizing carbon monoxide, method for manufacturing the same and method for oxidizing carbon monoxide
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP2003144925A (en) Method for manufacturing catalyst for shift reaction of carbon monoxide
WO2006095392A1 (en) Process for producing catalyst for discharge gas treatment
JP5105709B2 (en) Water gas shift reaction catalyst
JP6719363B2 (en) Method for producing catalyst for methane oxidation removal and catalyst for methane oxidation removal
JP4087621B2 (en) Catalyst for removing carbon monoxide in hydrogen gas
JP4120862B2 (en) Catalyst for CO shift reaction
CN101920197B (en) Catalyst for preparing ether alcohol by ether aldehyde hydrogenation reaction and preparation method thereof
JP2001185190A (en) Producing method of hydrogen for fuel cell
JP2001129398A (en) Catalyst for reforming methanol and method for preparing it
JP2004283775A (en) Carbon monoxide selective oxidation catalyst composition
WO2023063353A1 (en) Catalyst
JP2000317307A (en) Catalyst for decomposing nitrous oxide and its using method
JP2004330106A (en) Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it