JP2001129398A - Catalyst for reforming methanol and method for preparing it - Google Patents

Catalyst for reforming methanol and method for preparing it

Info

Publication number
JP2001129398A
JP2001129398A JP31337799A JP31337799A JP2001129398A JP 2001129398 A JP2001129398 A JP 2001129398A JP 31337799 A JP31337799 A JP 31337799A JP 31337799 A JP31337799 A JP 31337799A JP 2001129398 A JP2001129398 A JP 2001129398A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
zro
zirconium
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31337799A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
野島  繁
Satonobu Yasutake
聡信 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31337799A priority Critical patent/JP2001129398A/en
Publication of JP2001129398A publication Critical patent/JP2001129398A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for reforming methanol not requiring reduction treatment, with excellent durability and with high activity. SOLUTION: A catalyst for reforming treatment of methanol by reacting methanol with steam or a mixed gas of steam and oxygen comprises zirconium oxide and at least one active metal selected from the group consisting of platinum, palladium, ruthenium, iridium and rhodium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタノールを改質
して水素含有ガスを製造する触媒及びその製造方法に関
し、特に、燃料電池システムにおける水素製造を行うメ
タノール改質装置に好適に用いられるメタノール改質用
触媒およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for producing hydrogen-containing gas by reforming methanol and a method for producing the same, and more particularly, to a methanol suitably used for a methanol reformer for producing hydrogen in a fuel cell system. The present invention relates to a reforming catalyst and a method for producing the same.

【0002】[0002]

【従来の技術】近年、地球環境問題の高まりの中で、電
気エネルギーを効率的に更にクリーンに生産する方法と
して燃料電池が注目されている。中でも、自動車等の内
燃機関から排出される排気ガスには窒素酸化物や一般化
炭素等の有害ガスが多く含まれているため種々の改善策
が講ぜられてきた。改善策の一つとして、内燃機関の代
わり固体高分子型燃料電池(PEFC)を搭載した自動車の開
発が鋭意なされている。固体高分子型燃料電池は水素を
高分子膜中をプロトンで拡散し、これに伴い電子が移動
して電気エネルギーを得るものであり、自動車に搭載す
るには効率的な水素製造装置が必要である。水素製造に
おいて、メタノールは、安価な液体燃料の中で容易に化
石燃料から合成され、さらに、触媒を用いて比較的容易
に水素に転換できる特徴を有する。
2. Description of the Related Art In recent years, fuel cells have been attracting attention as a method for producing electric energy efficiently and more cleanly as global environmental problems increase. Above all, exhaust gas discharged from internal combustion engines such as automobiles contains a large amount of harmful gases such as nitrogen oxides and generalized carbon, and thus various improvement measures have been taken. As one of the improvement measures, the development of a vehicle equipped with a polymer electrolyte fuel cell (PEFC) instead of an internal combustion engine has been earnestly pursued. A polymer electrolyte fuel cell diffuses hydrogen with protons in a polymer membrane, and along with this, electrons move to obtain electric energy, and an efficient hydrogen production device is needed to mount it on an automobile. is there. In the production of hydrogen, methanol is easily synthesized from fossil fuel in inexpensive liquid fuel, and has a characteristic that it can be relatively easily converted to hydrogen using a catalyst.

【0003】メタノールから水素を製造するには下記
(1)式に示すように、水蒸気改質反応が最も多量の水
素を製造することができる。 CH3OH+H2O → 3H2+CO2-11.8kcal/mol ・・・(1) ここで、上記(1)式は吸熱反応であるため、触媒が作
用する所定の温度を保つために外部から熱エネルギーを
加えることが有効である。そのため、酸素を添加して、
発熱を有する下記(2)式、(3)式の部分酸化反応を
併発させて水素を製造する方法も提案されている。 CH3OH+1/2O 2 → CO+H2+H2O+36.2kcal/mol ・・・(2) CH3OH+1/2O 2 → CO2+2H2+46.0kcal/mol ・・・(3) 上記(2)及び(3)式はいずれも発熱反応であるが、
PEFCの燃料となる水素を多量に製造し、さらにPE
Fセルの被毒物であるCO発生量が少ない(3)式が好
ましい反応である。メタノール改質反応は、上記(1)
式の単独反応、または(1)式と(3)式の併発反応が
理想的な反応である。
In order to produce hydrogen from methanol, the most significant amount of hydrogen can be produced by a steam reforming reaction as shown in the following equation (1). CH 3 OH + H 2 O → 3H 2 + CO 2 -11.8 kcal / mol (1) Here, since the above equation (1) is an endothermic reaction, it is necessary to maintain a predetermined temperature at which the catalyst acts. It is effective to apply heat energy from the outside. Therefore, adding oxygen,
There has also been proposed a method of producing hydrogen by causing partial oxidation reactions of the following formulas (2) and (3) having heat generation simultaneously. CH 3 OH + 1 / 2O 2 → CO + H 2 + H 2 O + 36.2kcal / mol ・ ・ ・ (2) CH 3 OH + 1 / 2O 2 → CO 2 + 2H 2 + 46.0kcal / mol ・ ・ ・(3) Although the above formulas (2) and (3) are both exothermic reactions,
Produces a large amount of hydrogen as fuel for PEFC,
Formula (3), in which the amount of CO, which is a poison of the F cell, is small, is a preferable reaction. The methanol reforming reaction is performed in the above (1)
An ideal reaction is a single reaction of the formula or a simultaneous reaction of the formulas (1) and (3).

【0004】一方、従来のメタノール改質触媒は、銅と
亜鉛とからなる複合酸化物が一般的であるが、この触媒
は活性化処理として還元処理を必要とするため、自動車
等の移動用メタノール改質装置に搭載するにはメンテナ
ンス等の面で問題が多い。また還元処理による体積減少
により、改質装置内部に空隙が生じ、触媒の粉化や短絡
による未反応メタノールの増加等が懸念される。さら
に、移動用改質装置に搭載するためハニカム形状に成型
する必要があるが、現状の成型技術では困難な点が多
い。加えて触媒の耐久性も懸念されるため、銅、亜鉛系
触媒に代わり還元処理が不要であるとともに、耐久性に
優れた高活性なメタノール改質触媒の出現が待ち望まれ
ていた。
On the other hand, a conventional methanol reforming catalyst is generally a composite oxide composed of copper and zinc. However, since this catalyst requires a reduction treatment as an activation treatment, it is necessary to use a methanol for transportation such as automobiles. There are many problems in terms of maintenance and the like when mounted on a reformer. In addition, voids are generated inside the reformer due to the volume reduction due to the reduction treatment, and there is a concern that the catalyst may be powdered or unreacted methanol may increase due to short-circuit. Furthermore, it is necessary to mold the honeycomb into a honeycomb shape in order to be mounted on a mobile reformer, but there are many difficulties with the current molding technology. In addition, there is a concern about the durability of the catalyst. Therefore, a reduction treatment is not required instead of a copper or zinc-based catalyst, and the emergence of a highly active methanol reforming catalyst having excellent durability has been awaited.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、上記問
題点に鑑み、還元処理が不要であるとともに、耐久性に
優れた高活性なメタノール改質触媒であって、上記
(1)の水蒸気改質反応を優先的に行わせて、生成物に
水素が多くCOが少ない触媒系について、鋭意検討し
た。その結果、本発明者らは、銅系触媒のような問題点
を有しない貴金属系の触媒について、触媒担体として酸
化ジルコニウムを用いることにより、上記問題点が解決
されることを見出し、本発明を完成するに至った。
In view of the above problems, the present inventors have developed a highly active methanol reforming catalyst which does not require a reduction treatment and has excellent durability. The steam reforming reaction was preferentially performed, and a catalyst system containing a large amount of hydrogen and a small amount of CO in the product was intensively studied. As a result, the present inventors have found that the above problems can be solved by using zirconium oxide as a catalyst carrier for a noble metal-based catalyst having no problems such as a copper-based catalyst. It was completed.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、メ
タノールに、水蒸気または水蒸気と酸素との混合ガスを
反応させてメタノールを改質処理するための触媒であっ
て、酸化ジルコニウムと活性金属とを含有することを特
徴とするメタノール改質用触媒を提供するものである。
ここで、前記活性金属は、白金,パラジウム,ルテニウ
ム,イリジウムおよびロジウムよりなる群から選ばれる
少なくとも1種の貴金属成分を含むことが好ましく、前
記酸化ジルコニウムは、複合酸化物であるZrO2・A
23,ZrO2・TiO2,ZrO2・SiO2,ZrO
2・P25もしくはZrO2・B23、および硫酸根担持
物(SO4+/ZrO2)よりなる群から選ばれる少なく
とも1種の化合物であることが好ましい。
That is, the present invention relates to a catalyst for reforming methanol by reacting methanol with steam or a mixed gas of steam and oxygen, the catalyst comprising zirconium oxide and an active metal. It is intended to provide a methanol reforming catalyst characterized by containing:
Here, the active metal preferably contains at least one noble metal component selected from the group consisting of platinum, palladium, ruthenium, iridium and rhodium, and the zirconium oxide is a composite oxide, ZrO 2 .A
l 2 O 3 , ZrO 2 · TiO 2 , ZrO 2 · SiO 2 , ZrO
It is preferably at least one compound selected from the group consisting of 2 · P 2 O 5 or ZrO 2 · B 2 O 3 , and a sulfate group carrier (SO 4+ / ZrO 2 ).

【0007】また、本発明では、前記酸化ジルコニウム
の原料が、オキシ塩化ジルコニウム,オキシ硝酸ジルコ
ニウムおよび水酸化ジルコニウムよりなる群から選ばれ
る少なくとも1種の化合物であることが好適であり、比
表面積が20m2/g以上であることが好ましい。さら
に、触媒中の酸化ジルコニウムの結晶構造は、非晶質,
正方晶または立方晶のいずれかであることが良い。ま
た、本発明は、酸化ジルコニウムを含有する担体に、活
性金属が担持されたメタノール改質用触媒を製造する方
法であって、オキシ塩化ジルコニウム,オキシ硝酸ジル
コニウムおよび水酸化ジルコニウムよりなる群から選ば
れる少なくとも1種の化合物を含む水溶液から得られる
沈殿物を焼成して酸化ジルコニウムとした後、白金,パ
ラジウム,ルテニウム,イリジウムおよびロジウムより
なる群から選ばれる少なくとも1種の活性金属を含浸法
又はイオン交換法によって担持することを特徴とするメ
タノール改質用触媒の製造方法を提供するものである。
In the present invention, the raw material of the zirconium oxide is preferably at least one compound selected from the group consisting of zirconium oxychloride, zirconium oxynitrate and zirconium hydroxide, and has a specific surface area of 20 m It is preferably at least 2 / g. Furthermore, the crystal structure of zirconium oxide in the catalyst is amorphous,
It is preferable to be either tetragonal or cubic. Further, the present invention is a method for producing a methanol reforming catalyst in which an active metal is supported on a carrier containing zirconium oxide, which is selected from the group consisting of zirconium oxychloride, zirconium oxynitrate and zirconium hydroxide. A precipitate obtained from an aqueous solution containing at least one compound is calcined into zirconium oxide, and then impregnated with at least one active metal selected from the group consisting of platinum, palladium, ruthenium, iridium and rhodium by ion impregnation or ion exchange. The present invention provides a method for producing a methanol reforming catalyst, which is supported by a method.

【0008】本発明のメタノール改質触媒によれば、極
めて高いメタノール転化効率が実現できるので、安定し
てメタノールを反応させることができ、且つ水素含有量
の高い改質ガスを得ることができる。よって、燃料電池
に好適に用いられる水素含有ガスを製造することができ
る。
According to the methanol reforming catalyst of the present invention, extremely high methanol conversion efficiency can be realized, so that methanol can be reacted stably and a reformed gas having a high hydrogen content can be obtained. Accordingly, a hydrogen-containing gas suitably used for a fuel cell can be produced.

【0009】[0009]

【発明の実施の形態】本発明の触媒は、メタノール水蒸
気改質反応(上記(1)式)を単独で行わせる、あるい
は、該メタノール水蒸気改質反応と部分酸化反応(上記
(3)式等)とを併発して行わせる、メタノールを改質す
るための高活性のメタノール改質用触媒である。メタノ
ール改質に通常用いられる銅系の触媒では、還元処理が
必要であり、例えば酸化物であるCuOをCuに還元す
ることによって活性を発揮し、大気に接触すると酸化さ
れて再び不活性になるので、還元処理の操作が煩雑であ
った。また、還元処理することによって、触媒の体積が
減少してしまい(体積変化)、触媒容器内に空洞が生
じ、ガスの流れに短絡部分を生じさせてしまう、あるい
は、触媒ペレット等に亀裂や割れ目等ができ易かった。
このように、一般に用いられるCu−Zn系触媒は耐熱
性が低い、およびハンドリングが良くない等の問題があ
った。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention allows the methanol steam reforming reaction (formula (1)) to be carried out alone, or the methanol steam reforming reaction and the partial oxidation reaction (described above).
And (3) are highly active methanol reforming catalysts for reforming methanol. Copper-based catalysts commonly used for methanol reforming require a reduction treatment, for example, exhibiting activity by reducing CuO, which is an oxide, to Cu, and being oxidized when in contact with the atmosphere to become inactive again Therefore, the operation of the reduction treatment was complicated. In addition, the reduction treatment reduces the volume of the catalyst (volume change), forms a cavity in the catalyst container, and causes a short-circuit portion in the gas flow, or causes cracks or cracks in the catalyst pellets or the like. And so on.
As described above, generally used Cu-Zn-based catalysts have problems such as low heat resistance and poor handling.

【0010】本発明の金属系触媒は、このような問題が
生じず、極めて高活性であると同時に、生成物としてC
Oが発生しない特徴を有する。一般には、貴金属系の触
媒では、下式(1)の水蒸気改質反応よりも、 CH3OH+H2O → 3H2+CO2 ・・・(1) 下式(4)のメタノール分解反応が優先的に進行するの
で、 CH3OH → CO+2H2 ・・・(4) 得られる水素の量が減少してしまうと同時に、燃料電池
電極の触媒毒となるCOが発生し易かった。
The metal-based catalyst of the present invention does not have such a problem and is extremely active.
It has the characteristic that O does not occur. In general, with a noble metal-based catalyst, CH 3 OH + H 2 O → 3H 2 + CO 2 (1) methanol decomposition reaction of the following formula (4) is more effective than the steam reforming reaction of the following formula (1). Proceeds preferentially, so that CH 3 OH → CO + 2H 2 (4) The amount of hydrogen obtained decreases, and at the same time, CO, which is a catalyst poison for the fuel cell electrode, is likely to be generated.

【0011】これに対して本発明の触媒系は、還元処理
や体積変化等の問題を有しない貴金属系の触媒であっ
て、かつ、上記(1)の水蒸気改質反応を優先的に進行
させることができるものである。本発明のメタノール改
質触媒は、ジルコニウム酸化物(ZrO2)を担体として用い
るものであり、これによって上記(1)の反応を優先的
に行うことが可能となり、COが発生する問題は生じな
い。これは、酸化アルミニウム等が担体の主成分である
場合と、酸化ジルコニウムが担体の主成分である場合と
では、製造により得られる触媒の結晶構造等が異なるた
めに、触媒としての作用も変化するからである。
On the other hand, the catalyst system of the present invention is a noble metal-based catalyst having no problems such as reduction treatment and volume change, and preferentially advances the steam reforming reaction (1). Is what you can do. The methanol reforming catalyst of the present invention uses zirconium oxide (ZrO 2 ) as a carrier, whereby the reaction of the above (1) can be performed preferentially, and the problem of generating CO does not occur. . This is because, when aluminum oxide or the like is the main component of the carrier, and when zirconium oxide is the main component of the carrier, the crystal structure and the like of the catalyst obtained by the production are different, so that the action as the catalyst also changes. Because.

【0012】ZrO2は通常、酸素導伝性の固体電解質
としても利用され、さらに表面に両性の機能を持つ表面
水酸基を有する特徴を持つ。すなわち、メタノールの水
蒸気酸化反応またはメタノール部分酸化反応において、
メタノール分解で生じたCOがH2OまたはO2の解離で
生じた酸素原子と有効に作用し、この反応に酸素導伝性
を有するZrO2が寄与するものと考えられる。下記
に、メタノール水蒸気改質反応を例にして、反応メカニ
ズムを素反応にて示す。 CH3OH → CO+2H2 ・・・(4') H2O → O+H2 ・・・(5) CO+O → CO2 ・・・(6) 上記(5)式、(6)式の反応は、ZrO2表層で生じ
ていると推察される。そして、本発明のメタノール改質
用触媒は、活性金属がいずれも貴金属であり、還元処理
等の活性化処理をおこなわずに高性能を有する。
ZrO 2 is usually used also as an oxygen conductive solid electrolyte, and has a feature that the surface has a surface hydroxyl group having an amphoteric function. That is, in the steam oxidation reaction or methanol partial oxidation reaction of methanol,
It is considered that CO generated by methanol decomposition effectively acts on oxygen atoms generated by dissociation of H 2 O or O 2 , and ZrO 2 having oxygen conductivity contributes to this reaction. The reaction mechanism is shown below as an elementary reaction, taking the methanol steam reforming reaction as an example. CH 3 OH → CO + 2H 2・ ・ ・ (4 ′) H 2 O → O + H 2・ ・ ・ (5) CO + O → CO 2・ ・ ・ (6) Equation (5), (6) It is presumed that the reaction of the formula occurs at the surface of ZrO 2 . Further, the methanol reforming catalyst of the present invention has high performance without any activation treatment such as reduction treatment, because the active metals are all noble metals.

【0013】本発明のメタノール改質用触媒の製造方法
は特に限定されるものではなく、担体である酸化ジルコ
ニウムに、活性金属である白金,パラジウム,ルテニウ
ム,イリジウム又はロジウム等が担持した形態の触媒で
あれば有効に用いることができる。以下、具体的な製造
方法の一例を示す。オキシ塩化ジルコニウム,オキシ硝
酸ジルコニウムおよび水酸化ジルコニウムよりなる群か
ら選ばれる少なくとも1種の化合物を含む水溶液にアン
モニア水溶液を加えて、沈殿物を得る。この沈殿物を通
常300〜800℃で30分〜12時間焼成して、ジル
コニウム酸化物とする。得られた酸化物を粉砕してか
ら、活性金属である白金,パラジウム,ルテニウム,イ
リジウム又はロジウム等の水溶液に浸漬する。含浸して
から乾燥し、さらに通常300〜800℃で30分〜1
2時間焼成して、目的物である触媒を得る。ここでは、
活性金属を含浸法によって担持させたが、イオン交換法
等による方法であっても良い。以上のようにして得られ
る本発明のメタノール改質触媒は、還元処理等の活性化
処理を必要としない高性能な触媒である。本発明の触媒
は、水蒸気改質反応単独の場合(実施例2)、部分酸化
反応併発の場合(実施例3)に共に用いることができ
る。以下、実施例により本発明をより詳細に説明する
が、本発明はこれら実施例によって何ら制限されるもの
でない。
The method for producing the methanol reforming catalyst of the present invention is not particularly limited, and a catalyst in which platinum, palladium, ruthenium, iridium, rhodium or the like as an active metal is supported on zirconium oxide as a carrier. If it is, it can be used effectively. Hereinafter, an example of a specific manufacturing method will be described. An aqueous ammonia solution is added to an aqueous solution containing at least one compound selected from the group consisting of zirconium oxychloride, zirconium oxynitrate, and zirconium hydroxide to obtain a precipitate. This precipitate is usually calcined at 300 to 800 ° C. for 30 minutes to 12 hours to obtain a zirconium oxide. The obtained oxide is pulverized and then immersed in an aqueous solution of an active metal such as platinum, palladium, ruthenium, iridium or rhodium. After impregnating and drying, usually at 300 to 800 ° C for 30 minutes to 1
By calcining for 2 hours, the target catalyst is obtained. here,
Although the active metal is supported by the impregnation method, a method such as an ion exchange method may be used. The methanol reforming catalyst of the present invention obtained as described above is a high-performance catalyst that does not require an activation treatment such as a reduction treatment. The catalyst of the present invention can be used both in the case of the steam reforming reaction alone (Example 2) and in the case of the simultaneous partial oxidation reaction (Example 3). Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0014】[0014]

【実施例】実施例1 〔触媒調製1〕オキシ塩化ジルコニウム(ZrOCl2・2H2O)
1molを、水5リットルに添加して70度で保温し、本
水溶液を溶液Aとする。1%アンモニア水溶液を溶液A
に攪拌しながら、PH7となるまで滴下して沈澱物を得
た。PH7の状態で1時間攪拌を行い、本溶液を水洗・
濾過を行い沈殿物1を得、本沈澱物1を100℃で乾燥
した。この乾燥物1を500℃、5時間焼成し、ジルコ
ニウム酸化物1(ZrO2)を得た。得られた酸化物1を乾式
ボールミルで粉砕し、この粉砕物に白金濃度0.1重量
%の塩化白金酸(H2PtCl6)水溶液を浸漬し、ZrO2に対す
る白金担持量1重量%の白金を攪拌しながら添加し、1
00℃で蒸発乾固を行った。含浸法で調製した本乾燥物
1を500℃、5時間焼成し、白金担持ZrO2触媒(触媒
1)を調製した。
EXAMPLES Example 1 [Catalyst preparation 1] Zirconium oxychloride (ZrOCl 2 .2H 2 O)
1 mol is added to 5 liters of water and the temperature is kept at 70 ° C. 1% ammonia solution in solution A
While stirring the mixture, the mixture was added dropwise until the pH became 7, thereby obtaining a precipitate. Stir for 1 hour in the state of PH7, and wash this solution with water.
Filtration was performed to obtain a precipitate 1, and the precipitate 1 was dried at 100 ° C. The dried product 1 was calcined at 500 ° C. for 5 hours to obtain zirconium oxide 1 (ZrO 2 ). The resulting oxide 1 was ground in a dry ball mill, the platinum concentration 0.1 wt% of chloroplatinic acid in pulverized product (H 2 PtCl 6) aqueous solution was dipped, supported platinum of 1% by weight of platinum relative to ZrO 2 Is added with stirring, and 1
Evaporation to dryness was performed at 00 ° C. The dried product 1 prepared by the impregnation method was calcined at 500 ° C. for 5 hours to prepare a platinum-supported ZrO 2 catalyst (catalyst 1).

【0015】〔触媒調製2〕触媒調製1と同様の方法に
おいて、オキシ塩化ジルコニウムと同時に、3塩化アル
ミニウム(AlCl3)1mol、4塩化チタニウム(TiCl4)1mo
l、シリカゾル(SiO2…20重量%含有)でSiO21molを、
水5リットルに添加した。触媒調製1と同様に複合沈澱
物2、3、4を得、さらに本沈澱物を焼成して複合酸化
物1(ZrO2・Al2O3)、2(ZrO2・TiO2)、3(ZrO2・SiO2)
を得た。さらに、触媒調製1と同様に白金を酸化物あた
り1重量%担持できるように添加し、乾燥・焼成して触
媒2、触媒3、触媒4を得た。さらに、触媒調製1と同
様の方法において、ジルコニウム酸化物1(ZrO2)にオイ
ルリン酸(H3PO4)及びホウ酸(H3BO3)水溶液を浸漬し、攪
拌して蒸発乾固させながら、ZrO2に対して、P2O5を10
重量%、B2O3を10重量%担持した。本試料を500
℃、5時間焼成して複合酸化物5(ZrO2・P2O5)、6(ZrO
2・B2O3)を得た。そして、白金を酸化物あたり1重量%
担持できるように、触媒調製1と同様に添加し、乾燥・
焼成して触媒5、6を得た。
[Catalyst Preparation 2] In the same manner as in Catalyst Preparation 1, simultaneously with zirconium oxychloride, 1 mol of aluminum trichloride (AlCl 3 ), 1 mol of titanium tetrachloride (TiCl 4 )
l, the SiO 2 1 mol in silica sol (SiO 2 ... 20% by weight containing)
Added to 5 liters of water. Composite precipitates 2, 3, and 4 were obtained in the same manner as in preparation of catalyst 1, and the precipitate was calcined to obtain composite oxides 1 (ZrO 2 .Al 2 O 3 ), 2 (ZrO 2 .TiO 2 ), and 3 ( (ZrO 2・ SiO 2 )
I got Further, in the same manner as in Catalyst Preparation 1, platinum was added so as to be able to carry 1% by weight per oxide, and dried and calcined to obtain Catalyst 2, Catalyst 3, and Catalyst 4. Further, in the same manner as in catalyst preparation 1, an aqueous solution of oil phosphoric acid (H 3 PO 4 ) and boric acid (H 3 BO 3 ) is immersed in zirconium oxide 1 (ZrO 2 ), and the mixture is stirred and evaporated to dryness. while, with respect to ZrO 2, the P 2 O 5 10
%, And 10% by weight of B 2 O 3 . 500 samples
At 5 ° C. for 5 hours to obtain a composite oxide 5 (ZrO 2 .P 2 O 5 ), 6 (ZrO 2
2 · B 2 O 3) was obtained. And, 1% by weight of platinum per oxide
Add in the same manner as in Catalyst Preparation 1 so that it can be supported, and
Calcination gave Catalysts 5 and 6.

【0016】〔触媒調製3〕触媒調製1と同様の方法に
おいて、沈殿物1に1規定硫酸を室温で1時間浸漬し
て、濾過後110℃で12時間乾燥し、さらに550
℃、5時間空気中で焼成し、硫酸根担持ZrO2(SO4+/Zr
O2)を得た。上記物質に、触媒調製1と同様な方法で白
金を酸化物あたり1重量%担持できるよう添加し、乾燥
・焼成して触媒7を得た。
[Catalyst Preparation 3] In the same manner as in Catalyst Preparation 1, 1N sulfuric acid is immersed in the precipitate 1 at room temperature for 1 hour, filtered, dried at 110 ° C. for 12 hours, and further dried at 550 ° C.
Sintering in air for 5 hours at room temperature, and sulfated ZrO 2 (SO 4+ / Zr
O 2 ) was obtained. To the above substance, platinum was added in the same manner as in Catalyst Preparation 1 so as to support 1% by weight of the oxide, and dried and calcined to obtain Catalyst 7.

【0017】〔触媒調製4〕触媒調製1と同様の方法に
おいて、ジルコニウム酸化物(ZrO2)に担持する活性金属
として、塩化白金酸水溶液の代わりに、各金属0.1重量
%の硝酸パラジウム水溶液、塩化ルテニウム、塩化イリ
ジウム、塩化ロジウム水溶液を浸漬して、蒸発乾固させ
ながら、各金属1重量%担持させた。さらに、各物質を
500℃、5時間焼成して、触媒8、9、10、11を
得た。
[Catalyst Preparation 4] In the same manner as in Catalyst Preparation 1, as the active metal supported on zirconium oxide (ZrO 2 ), an aqueous solution of palladium nitrate containing 0.1% by weight of each metal was used instead of the aqueous solution of chloroplatinic acid. Ruthenium, iridium chloride and rhodium chloride aqueous solutions were immersed and evaporated to dryness, and 1% by weight of each metal was supported. Further, each substance was calcined at 500 ° C. for 5 hours to obtain catalysts 8, 9, 10, and 11.

【0018】〔触媒調製5〕触媒調製1と同様の調製法
において、オキシ塩化ジルコニウムの代わりにオキシ硝
酸ジルコニウム(ZrO(NO3) 2)1molを添加し、触媒調製
1と同様な方法で白金担持ZrO2触媒(12)を調製し
た。さらに、触媒調製1と同様の調製法において、沈殿
物1の代わりに水酸化ジルコニウム(半井化学製:Zr(O
H)4)を用いて、触媒調製1と同様な方法で白金担持ZrO
2(触媒13)を得た。
[Catalyst Preparation 5] In the same preparation method as in Catalyst Preparation 1, 1 mol of zirconium oxynitrate (ZrO (NO 3 ) 2 ) was added instead of zirconium oxychloride, and platinum was supported in the same manner as in Catalyst Preparation 1. A ZrO 2 catalyst (12) was prepared. Further, in the same preparation method as in catalyst preparation 1, zirconium hydroxide (manufactured by Hanoi Chemical: Zr (O
H) Using 4 ), platinum-supported ZrO
2 (catalyst 13) was obtained.

【0019】〔触媒調製6〕触媒調製1と同様の調製法
において、白金担持ZrO2触媒を調製する際に、塩化白金
酸の代わりに塩化白金アンミン錯体(Pt(NH3)4Cl4)水溶
液を用いて、白金濃度1重量%濃度にて粉砕したZrO2
室温にて添加して、イオン交換法にて白金をZrO2に対し
て1重量%担持し、触媒調製1と同様に白金担持ZrO
2(触媒14)を得た。以上試作した触媒1〜14の比
表面積及び結晶構造を表1に示す。
[Catalyst Preparation 6] In a preparation method similar to Catalyst Preparation 1, when preparing a platinum-supported ZrO 2 catalyst, an aqueous solution of a platinum chloride ammine complex (Pt (NH 3) 4 Cl 4 ) was used instead of chloroplatinic acid. Then, ZrO 2 crushed at a platinum concentration of 1% by weight was added at room temperature, and 1% by weight of platinum was supported on ZrO 2 by an ion exchange method.
2 (catalyst 14) was obtained. Table 1 shows the specific surface areas and the crystal structures of the catalysts 1 to 14 produced as above.

【0020】[0020]

【表1】 硝酸亜鉛と硝酸銅を含む水溶液(Cu:Zn=1:1)に、水酸化
ナトリウム水溶液を70℃でPH7となるまで添加して沈
殿物を生成させた。本沈澱物を濾過・水洗し、110℃
で乾燥した後、300℃で3時間焼成を行った。本触媒
を比較触媒1とする。
[Table 1] An aqueous sodium hydroxide solution was added at 70 ° C. to an aqueous solution containing zinc nitrate and copper nitrate (Cu: Zn = 1: 1) at 70 ° C. to form a precipitate. The precipitate is filtered and washed with water,
Then, baking was performed at 300 ° C. for 3 hours. This catalyst is referred to as Comparative Catalyst 1.

【0021】実施例2 上記触媒調製1〜6、比較触媒調製1で試作した触媒1
〜14、比較触媒1を用いてメタノール改質試験を行っ
た。試験方法は触媒を2〜4mmのペレット状に成型した
後、固定床流通式試験装置の反応器に触媒を充填した。
そして、触媒入口温度300℃、440℃、圧力3at
a、GHSV:10000h-1、H2O/CH3OHモル比2.2
の条件にて、メタノール水蒸気反応を行った。触媒入口
温度300℃、400℃における試験結果として、出口
触媒温度、メタノール転化率及び出口CO濃度を表2に
示す。この結果より、比較触媒は還元処理をしない本試
験条件ではほとんど活性を示さないのに対して、本発明
の触媒はいずれも高いメタノール転化率および低い出口
CO濃度を有することが分かり、高性能なメタノール改
質触媒であることを実証された。
Example 2 Catalyst 1 produced as a trial in Catalyst Preparations 1 to 6 and Comparative Catalyst Preparation 1
To 14, a comparative catalyst 1 was subjected to a methanol reforming test. In the test method, the catalyst was formed into pellets of 2 to 4 mm, and the catalyst was filled in a reactor of a fixed bed flow type test apparatus.
Then, the catalyst inlet temperature is 300 ° C, 440 ° C, and the pressure is 3at.
a, GHSV: 10000 h -1 , H 2 O / CH 3 OH molar ratio 2.2
Under the conditions described above, a methanol steam reaction was performed. Table 2 shows, as test results at catalyst inlet temperatures of 300 ° C. and 400 ° C., outlet catalyst temperature, methanol conversion, and outlet CO concentration. From these results, it can be seen that the comparative catalyst shows almost no activity under the present test conditions without reduction treatment, whereas the catalysts of the present invention all have a high methanol conversion and a low exit CO concentration, indicating that It was proved to be a methanol reforming catalyst.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例3 実施例2と同様な方法において、試作した触媒1〜1
4、比較触媒1を用いて酸素共存条件下においてメタノ
ール改質試験を行った。実施例2と同様な方法におい
て、触媒入口温度300℃、440℃、圧力3ata、G
HSV:10000h -1、H2O/CH3OHモル比2.2、空気
/CH3CHモル比0.8の条件にて、メタノール水蒸気改
質反応(1)とメタノール部分酸化反応(3)の併発反
応を行った。入口触媒温度300℃、400℃における
試験結果として、出口触媒温度、メタノール転化率及び
出口CO濃度を表3に示す。
Example 3 In the same manner as in Example 2, the catalysts 1 to 1
4. Using the comparative catalyst 1 and methano
A reforming test was conducted. In the same manner as in Example 2.
And the catalyst inlet temperature 300 ° C, 440 ° C, pressure 3ata, G
HSV: 10000h -1, HTwoO / CHThreeOH molar ratio 2.2, air
/ CHThreeUnder the condition of CH mole ratio 0.8, methanol steam
Reaction of the hydrogen reaction (1) and the methanol partial oxidation reaction (3)
Responded. Inlet catalyst temperature 300 ℃, 400 ℃
As test results, the outlet catalyst temperature, methanol conversion and
Table 3 shows the outlet CO concentration.

【0024】[0024]

【表3】 [Table 3]

【0025】この結果より、比較触媒は実施例2と同様
に、ほとんど活性を示さなかった。一方、試作した本発
明の触媒は、いずれも高いメタノール転化率および低い
出口CO濃度を示した。また、実施例2において出口触
媒温度は入口触媒温度に比べて大きく低下しているが、
本試験条件では出口触媒温度と入口触媒温度はほぼ同一
であり、メタノール水蒸気反応と部分酸化反応が併発に
て生じていることがわかり、このような条件下において
も本発明の触媒は高性能なメタノール改質触媒であるこ
とを実証した。
From these results, the comparative catalyst showed almost no activity as in Example 2. On the other hand, all of the experimental catalysts of the present invention exhibited high methanol conversion and low exit CO concentration. Further, in Example 2, the outlet catalyst temperature is significantly lower than the inlet catalyst temperature,
Under the test conditions, the outlet catalyst temperature and the inlet catalyst temperature were almost the same, and it was found that the methanol steam reaction and the partial oxidation reaction occurred simultaneously, and even under such conditions, the catalyst of the present invention had a high performance. It proved to be a methanol reforming catalyst.

【0026】[0026]

【発明の効果】本発明によれば、還元処理が不要である
とともに、耐久性に優れた高活性なメタノール改質触媒
が得られる。そして、本発明の触媒によれば、高効率で
メタノールを水素含有ガスに変換できるとともに、生成
するCO量を減らし、かつ、水素量を増加させることが
できる。本発明の触媒を用いれば、極めて高いメタノー
ル転化効率が実現できるので、安定してメタノールを全
て反応させることができ、且つ水素含有量の高い改質ガ
スが得られるので、燃料電池システム等において好適に
用いられる。
According to the present invention, a highly active methanol reforming catalyst which does not require a reduction treatment and has excellent durability can be obtained. According to the catalyst of the present invention, methanol can be converted to a hydrogen-containing gas with high efficiency, and the amount of generated CO can be reduced and the amount of hydrogen can be increased. When the catalyst of the present invention is used, extremely high methanol conversion efficiency can be realized, so that all methanol can be reacted stably, and a reformed gas having a high hydrogen content can be obtained, which is suitable for a fuel cell system or the like. Used for

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/46 311 B01J 23/46 311M 27/053 27/053 M 27/185 27/185 M 35/10 301 35/10 301J 37/02 101 37/02 101Z C01B 3/32 C01B 3/32 A Fターム(参考) 4G040 EA02 EA06 EA07 EC03 EC08 4G069 AA03 AA08 AA09 AA12 BA01A BA01B BA02A BA02B BA04A BA04B BA05A BA05B BA20A BA20B BB02A BB02B BB04C BB06A BB06B BB10A BB10B BB20C BC51A BC51B BC51C BC70A BC70B BC71A BC71B BC72A BC72B BC74A BC74B BC75A BC75B BD02A BD02B BD02C BD03A BD03B BD06C BD07A BD07B BD12C CC25 EC02X EC02Y EC03X EC04X EC05X EC22X EC22Y EC26 FB08 FB09 FB14 FB26 FB30──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/46 311 B01J 23/46 311M 27/053 27/053 M 27/185 27/185 M 35/10 301 35/10 301 J 37/02 101 37/02 101Z C01B 3/32 C01B 3/32 A F term (reference) 4G040 EA02 EA06 EA07 EC03 EC08 4G069 AA03 AA08 AA09 AA12 BA01A BA01B BA02A BA02B BA04A BA04B BA20A BA05B BAA BB04C BB06A BB06B BB10A BB10B BB20C BC51A BC51B BC51C BC70A BC70B BC71A BC71B BC72A BC72B BC74A BC74B BC75A BC75B BD02A BD02B BD02C BD03A BD03B BD06C BD07A BD07B BD12C CC25 EC02X EC02 EC02 EC04 EC05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 メタノールに、水蒸気又は水蒸気と酸素
との混合ガスを反応させてメタノールを改質処理するた
めの触媒であって、酸化ジルコニウムと活性金属とを含
有することを特徴とするメタノール改質用触媒。
1. A catalyst for reforming methanol by reacting methanol with steam or a mixed gas of steam and oxygen, the catalyst comprising zirconium oxide and an active metal. Quality catalyst.
【請求項2】 前記活性金属が、白金,パラジウム,ル
テニウム,イリジウムおよびロジウムよりなる群から選
ばれる少なくとも1種の金属成分を含むことを特徴とす
る請求項1記載のメタノール改質用触媒。
2. The catalyst for methanol reforming according to claim 1, wherein the active metal contains at least one metal component selected from the group consisting of platinum, palladium, ruthenium, iridium and rhodium.
【請求項3】 前記酸化ジルコニウムが、複合酸化物で
あるZrO2・Al23,ZrO2・TiO2,ZrO2
SiO2,ZrO2・P25もしくはZrO2・B23
および硫酸根担持物(SO4+/ZrO2)よりなる群か
ら選ばれる少なくとも1種の化合物であることを特徴と
する請求項1記載のメタノール改質用触媒。
3. The method according to claim 1, wherein the zirconium oxide is a composite oxide of ZrO 2 .Al 2 O 3 , ZrO 2 .TiO 2 , ZrO 2.
SiO 2 , ZrO 2 · P 2 O 5 or ZrO 2 · B 2 O 3 ,
2. The methanol reforming catalyst according to claim 1, wherein the catalyst is at least one compound selected from the group consisting of and a sulfate support (SO4 + / ZrO2).
【請求項4】 前記酸化ジルコニウムの原料が、オキシ
塩化ジルコニウム,オキシ硝酸ジルコニウムおよび水酸
化ジルコニウムよりなる群から選ばれる少なくとも1種
の化合物であることを特徴とする請求項1記載のメタノ
ール改質用触媒。
4. The methanol reforming method according to claim 1, wherein the raw material of the zirconium oxide is at least one compound selected from the group consisting of zirconium oxychloride, zirconium oxynitrate, and zirconium hydroxide. catalyst.
【請求項5】 比表面積が20m2/g以上であることを
特徴とする請求項1記載のメタノール改質用触媒。
5. The catalyst for methanol reforming according to claim 1, wherein the specific surface area is 20 m 2 / g or more.
【請求項6】 触媒中の酸化ジルコニウムの結晶構造
が、非晶質,正方晶または立方晶のいずれかであること
を特徴とする請求項1記載のメタノール改質用触媒。
6. The methanol reforming catalyst according to claim 1, wherein the crystal structure of zirconium oxide in the catalyst is one of amorphous, tetragonal, and cubic.
【請求項7】 酸化ジルコニウムを含有する担体に、活
性金属が担持されたメタノール改質用触媒を製造する方
法であって、オキシ塩化ジルコニウム,オキシ硝酸ジル
コニウムおよび水酸化ジルコニウムよりなる群から選ば
れる少なくとも1種の化合物を含む水溶液から、得られ
る沈殿物を焼成して酸化ジルコニウムとした後、該酸化
ジルコニウムに白金,パラジウム,ルテニウム,イリジ
ウムおよびロジウムよりなる群から選ばれる少なくとも
1種の活性金属を含浸法又はイオン交換法によって担持
することを特徴とするメタノール改質用触媒の製造方
法。
7. A method for producing a methanol reforming catalyst in which an active metal is supported on a support containing zirconium oxide, comprising: at least one selected from the group consisting of zirconium oxychloride, zirconium oxynitrate and zirconium hydroxide. A precipitate obtained from an aqueous solution containing one compound is calcined to form zirconium oxide, and the zirconium oxide is impregnated with at least one active metal selected from the group consisting of platinum, palladium, ruthenium, iridium and rhodium. A method for producing a methanol reforming catalyst, wherein the catalyst is supported by a method or an ion exchange method.
JP31337799A 1999-11-04 1999-11-04 Catalyst for reforming methanol and method for preparing it Withdrawn JP2001129398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31337799A JP2001129398A (en) 1999-11-04 1999-11-04 Catalyst for reforming methanol and method for preparing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31337799A JP2001129398A (en) 1999-11-04 1999-11-04 Catalyst for reforming methanol and method for preparing it

Publications (1)

Publication Number Publication Date
JP2001129398A true JP2001129398A (en) 2001-05-15

Family

ID=18040545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31337799A Withdrawn JP2001129398A (en) 1999-11-04 1999-11-04 Catalyst for reforming methanol and method for preparing it

Country Status (1)

Country Link
JP (1) JP2001129398A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029786A (en) * 2008-07-29 2010-02-12 Sumitomo Chemical Co Ltd Oxide and method for producing the same, and method for producing chlorine
US20100303713A1 (en) * 2009-05-26 2010-12-02 Qinglin Zhang Methanol Steam Reforming Catalysts
CN104817109A (en) * 2015-05-11 2015-08-05 太原理工大学 Preparation method of tetragonal-phase-based sulfur-rich sulfated zirconia
CN106268938A (en) * 2016-08-03 2017-01-04 江南大学 A kind of bisgallic acid position solid-carrying type ionic-liquid catalyst of biodiesel synthesis and preparation method thereof
CN111039260A (en) * 2019-12-23 2020-04-21 福建永荣科技有限公司 Method for efficiently producing hydrogen by methanol steam
CN112892512A (en) * 2021-01-20 2021-06-04 陕西瑞科新材料股份有限公司 Preparation method of porous zirconium dioxide carrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029786A (en) * 2008-07-29 2010-02-12 Sumitomo Chemical Co Ltd Oxide and method for producing the same, and method for producing chlorine
US20100303713A1 (en) * 2009-05-26 2010-12-02 Qinglin Zhang Methanol Steam Reforming Catalysts
CN102802785A (en) * 2009-05-26 2012-11-28 巴斯夫公司 Methanol steam reforming catalysts
US9174199B2 (en) * 2009-05-26 2015-11-03 Basf Corporation Methanol steam reforming catalysts
KR101764440B1 (en) 2009-05-26 2017-08-02 바스프 코포레이션 Methanol steam reforming catalysts
CN104817109A (en) * 2015-05-11 2015-08-05 太原理工大学 Preparation method of tetragonal-phase-based sulfur-rich sulfated zirconia
CN106268938A (en) * 2016-08-03 2017-01-04 江南大学 A kind of bisgallic acid position solid-carrying type ionic-liquid catalyst of biodiesel synthesis and preparation method thereof
CN111039260A (en) * 2019-12-23 2020-04-21 福建永荣科技有限公司 Method for efficiently producing hydrogen by methanol steam
CN112892512A (en) * 2021-01-20 2021-06-04 陕西瑞科新材料股份有限公司 Preparation method of porous zirconium dioxide carrier

Similar Documents

Publication Publication Date Title
JP3743995B2 (en) Methanol reforming catalyst
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
JP2001046872A (en) Methanol reforming catalyst, its production thereof and methanol reforming method
JP2008149313A (en) Catalyst for fuel reforming reaction and method for manufacturing hydrogen using the same
US6677068B2 (en) Catalyst for selective oxidation of carbon monoxide present in hydrogen-containing gases, and elimination of carbon monoxide and solid polymer electrolyte fuel cell system which make use of the catalyst
Snytnikov et al. CO-cleanup of hydrogen-rich stream for LT PEM FC feeding: catalysts and their performance in selective CO methanation
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP2007000703A (en) Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
JP3138732B2 (en) Catalyst for oxygen electrode of integrated regeneration type polymer electrolyte fuel cell
JP2001129398A (en) Catalyst for reforming methanol and method for preparing it
CN112725828B (en) IrRu-based multicomponent alloy metal precipitation catalyst and preparation method thereof
JP3796745B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP4016100B2 (en) Catalyst for water gas shift reaction
JP2000342968A (en) Catalyst and producing method
JP4120862B2 (en) Catalyst for CO shift reaction
JP2010005498A (en) Co modification catalyst for dss operation of fuel cell, method of manufacturing the same, and fuel cell system
JP4175452B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JP2001185190A (en) Producing method of hydrogen for fuel cell
JP2005067917A (en) Co removal catalyst system and method for selective removal of co
JP2000246102A (en) Production of catalyst
JP4455862B2 (en) CO conversion catalyst and method for producing the same
JP2007244963A (en) Methanol reforming catalyst, its manufacturing method, methanol reforming method and methanol reformer
JP4106519B2 (en) Method for producing hydrogen-containing gas
JPH11114423A (en) Catalyst for selective oxidation of co in hydrogen gas, its production, and method for removing co in hydrogen gas
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109