JP2003159653A - Abrasive material having amorphous surface layer and manufacturing method thereof - Google Patents

Abrasive material having amorphous surface layer and manufacturing method thereof

Info

Publication number
JP2003159653A
JP2003159653A JP2001355170A JP2001355170A JP2003159653A JP 2003159653 A JP2003159653 A JP 2003159653A JP 2001355170 A JP2001355170 A JP 2001355170A JP 2001355170 A JP2001355170 A JP 2001355170A JP 2003159653 A JP2003159653 A JP 2003159653A
Authority
JP
Japan
Prior art keywords
abrasive
surface roughness
grinding
amorphous layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001355170A
Other languages
Japanese (ja)
Other versions
JP4191924B2 (en
Inventor
Haruo Hanagata
晴雄 花形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dipsol Chemicals Co Ltd
Original Assignee
Dipsol Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dipsol Chemicals Co Ltd filed Critical Dipsol Chemicals Co Ltd
Priority to JP2001355170A priority Critical patent/JP4191924B2/en
Publication of JP2003159653A publication Critical patent/JP2003159653A/en
Application granted granted Critical
Publication of JP4191924B2 publication Critical patent/JP4191924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive material with which a device can be simplified, costs can be lowered and maintenance can be carried out easily, and also the problem of the uneven distribution of abrasive grains and the problem of which the desired degree of the flat cannot be obtained due to the deformation of a pad can be solved without the need of supplying a slurry stably. <P>SOLUTION: This is the abrasive material formed by a CVD method and having the amorphous layer of an inorganic compound of which the surface roughness Ra is in the range of 1-10 μm on the surface, and the abrasive material in which a porous ceramic layer is formed under this amorphous layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属、ガラス、セ
ラミックスや半導体等の研削や切削等(これらを研削と
いう)に用いる研削材及びその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasive used for grinding or cutting metal, glass, ceramics, semiconductors and the like (these are referred to as grinding) and a method for producing the same.

【従来の技術】従来、高平滑鏡面を得るための研削で
は、図1に示した装置1を用いるポリッシングが行われ
ている。図中、装置1は、相互に摩擦しあうヘッド2と
テーブル(定盤)3を有し、ヘッド2は回転しながら被
削材4を保持しテーブル3に押し付ける役割をもつ。一
方テーブル3は回転しながら被削材4をパッド(研磨
布)5と呼ばれる樹脂の多孔体や織物で受け止める。こ
の際、被削材4とパッド5を取り付けたテーブル3の間
に砥粒を分散させた溶液(スラリー)6を供給しつつヘ
ッド2とテーブル3との独立した回転により、砥粒の作
用でまんべんなく研削を行う。
2. Description of the Related Art Conventionally, in order to obtain a highly smooth mirror surface, polishing using an apparatus 1 shown in FIG. 1 has been performed. In the figure, an apparatus 1 has a head 2 and a table (surface plate) 3 that rub against each other, and the head 2 has a role of holding a work material 4 and pressing it against the table 3 while rotating. On the other hand, while the table 3 rotates, the work 4 is received by a resin porous body or cloth called a pad (polishing cloth) 5. At this time, while the solution (slurry) 6 in which the abrasive particles are dispersed is supplied between the work material 4 and the table 3 to which the pad 5 is attached, the head 2 and the table 3 rotate independently of each other, so that the abrasive particles work. Grind evenly.

【0002】この方法ではまずパッドの損傷が激しいの
で、パッドの交換頻度が高いため作業をたびたび中断し
なければならいといった問題が生じ、作業効率が悪い、
しかもこのパッドが高価なためコストに与える影響が大
きい。一方、スラリーは砥粒といわれる超微粒子の分散
液であるため、この液が飛び散り、周囲を汚染するた
め、粉塵による作業環境悪化を招く。これは、作業者の
健康に影響を与えるのみならず、半導体製造工程などで
はこの粉塵が製品にパーティクルと呼ばれる付着物とな
って汚染する。仮にこの作業を隔離した部屋で行って
も、その設備の維持のため高額を要し、しかも労力を必
要としている。更にスラリーはヘッドの近くから供給さ
れるが、ヘッド外周には行き渡りやすいものの中心部に
は浸透しにくい。しかもパットが多孔体の樹脂や繊維等
軟質であるため、ヘッド周辺や被削材の周辺が研削され
やすくなり、平面度に優れた研削が困難である。またこ
の加工方法では研削速度が遅いため、ある程度平滑化し
た状態からしか最終的な工程に進めないため工程数が増
え複雑化する問題もある。更にこのスラリー中の砥粒は
沈降しやすく常に均一に分散させておくための攪拌機構
やこのスラリーを供給する機構も必要で、装置が複雑化
するとの問題がある。又、別の問題としてこのスラリー
は高価であり、砥粒が分散しているのみでなく苛性カリ
ウム等の化学薬品も溶解させている場合もあり、廃液と
してそのままでは下水道に排水できず、これらを除去す
るような処理設備も必要となる。最近、これらの問題を
解決すべく固定砥粒方式と言われる砥粒を樹脂やバイン
ダーで固形化した砥石により研削する方法が試みられて
いるが、スクラッチ(細かい傷)が発生するなどまだま
だ問題がある。
In this method, since the pad is damaged seriously, there is a problem that the work must be interrupted frequently because the pad is frequently replaced, resulting in poor work efficiency.
Moreover, since this pad is expensive, it greatly affects the cost. On the other hand, since the slurry is a dispersion liquid of ultrafine particles called abrasive grains, this liquid scatters and contaminates the surroundings, so that the work environment is deteriorated by dust. This not only affects the health of the worker, but also in the semiconductor manufacturing process or the like, this dust becomes an adhered matter called a particle and contaminates the product. Even if this work is performed in an isolated room, it requires a high cost and labor to maintain the equipment. Further, although the slurry is supplied from the vicinity of the head, it easily spreads to the outer circumference of the head but does not easily penetrate to the central part. Moreover, since the pad is made of a soft resin such as porous resin or fiber, the periphery of the head and the periphery of the work material are easily ground, and it is difficult to perform grinding with excellent flatness. Further, in this processing method, since the grinding speed is slow, there is a problem in that the number of steps is increased and becomes complicated because the final step can be proceeded only from a smoothed state to some extent. Furthermore, the abrasive grains in this slurry tend to settle, and a stirring mechanism for constantly uniformly dispersing them and a mechanism for supplying this slurry are also required, which causes a problem that the apparatus becomes complicated. In addition, as another problem, this slurry is expensive, there are cases where not only abrasive grains are dispersed but also chemicals such as caustic potassium are dissolved, and these cannot be drained to sewer as waste liquid as they are. Treatment equipment for removal is also required. Recently, in order to solve these problems, a method of grinding abrasive particles called a fixed abrasive method with a grindstone solidified with resin or binder has been attempted, but there are still problems such as scratches (fine scratches). is there.

【0003】[0003]

【発明が解決しようとする課題】本発明は、スラリーを
安定に供給する必要がなく、装置が単純化でき、コスト
を低下でき、かつメインテナンスが容易になるととも
に、砥粒の不均一な分布やパッドの変形による所望の平
面度が得られない問題点を解消できる研削材を提供する
ことを目的とする。本発明は、又、上記研削材の効率的
な製造方法を提供することを目的とする。
According to the present invention, it is not necessary to stably supply the slurry, the apparatus can be simplified, the cost can be reduced, the maintenance can be facilitated, and the uneven distribution of abrasive grains and An object of the present invention is to provide an abrasive capable of solving the problem that desired flatness cannot be obtained due to deformation of the pad. Another object of the present invention is to provide an efficient manufacturing method of the above abrasive.

【課題を解決するための手段】本発明は、基体表面にC
VD法によって表面粗さRaが1〜10μmの範囲にあ
る無機化合物のアモルファス層を形成させたものを研削
材として使用すると、上記課題を効率的に解決できると
の知見に基づいてなされたのである。すなわち、本発明
は、CVD法によって形成されてなり、表面粗さRaが
1〜10μmの範囲にある無機化合物のアモルファス層
を表面に有することを特徴とする研削材を提供する。本
発明は、又、基体表面に、CVD法によって表面粗さR
aが1〜10μmの範囲にある無機化合物のアモルファ
ス層を形成することを特徴とする研削材の製造方法を提
供する。
According to the present invention, C is formed on the surface of a substrate.
It was made based on the finding that the above problem can be efficiently solved by using, as the abrasive, the one in which the amorphous layer of the inorganic compound having the surface roughness Ra in the range of 1 to 10 μm is formed by the VD method. . That is, the present invention provides an abrasive, which is formed by a CVD method and has an amorphous layer of an inorganic compound having a surface roughness Ra in the range of 1 to 10 μm on the surface. The present invention also provides a surface roughness R on the surface of the substrate by the CVD method.
Provided is a method for producing an abrasive, which comprises forming an amorphous layer of an inorganic compound having a in the range of 1 to 10 μm.

【0004】[0004]

【発明の実施の形態】本発明で用いる基体としては、
鉄、ニッケル、銅、アルミニウムなどの各種金属、及び
これらの合金などの板状物、直方体、円柱など種々の形
状のものがあげられる。好ましくは、定盤基材であり、
ヘッド圧によりたわまない十分な強度を持ち、しかもア
モルファス層との密着が十分取れる材料が良い。密着性
向上のため適切な前処理や下地処理を行うことができ
る。また、定盤の代わりに箔やプレートに形成し、定盤
に接着・粘着させ固定しても良い。本発明では、この上
に直接、CVD法によって表面粗さRaが1〜10μm
の範囲にある無機化合物のアモルファス層を形成するこ
とができる。CVD法は、金属の気化性化合物ガスを用
いて基材に金属やその反応物を膜として形成する方法で
あり、代表的な手法として、熱CVD法やプラズマCV
D法をあげることができる。このうち、プラズマCVD
法は、低温で皮膜を形成できしかも形成スピードが速
く、厚膜を形成できる最も優れた方法である。プラズマ
CVD法では、直流プラズマ法、RFプラズマ法、EC
Rプラズマ法、浦本氏発明によるURプラズマ法(特開
平1−252781号公報及び特開平1−259163
号公報)等をあげることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As the substrate used in the present invention,
Examples include various metals such as iron, nickel, copper and aluminum, and plate-shaped materials such as alloys thereof, rectangular parallelepipeds, and cylinders. Preferably, a platen substrate,
It is preferable to use a material that has sufficient strength so that it does not bend due to the head pressure and that can sufficiently adhere to the amorphous layer. Appropriate pretreatment and base treatment can be performed to improve adhesion. Further, instead of the surface plate, it may be formed on a foil or a plate, and may be fixed by adhering or adhering to the surface plate. In the present invention, a surface roughness Ra of 1 to 10 μm is directly formed on this by a CVD method.
It is possible to form an amorphous layer of an inorganic compound within the range. The CVD method is a method of forming a metal or its reaction product as a film on a base material by using a vaporizable compound gas of a metal, and a typical method is a thermal CVD method or plasma CV.
Method D can be mentioned. Of these, plasma CVD
The method is the most excellent method capable of forming a film at a low temperature and having a high forming speed and capable of forming a thick film. The plasma CVD method includes direct current plasma method, RF plasma method, EC
R plasma method, UR plasma method according to Uramoto's invention (JP-A-1-252781 and JP-A-1-259163)
No. gazette) and the like.

【0005】ECRプラズマ法や浦本氏の発明によるU
Rプラズマ法は、皮膜の形成スピードが速く、URプラ
ズマ法はプラズマを発生させる陰極に工夫を懲らしてあ
り、特に好適である。URプラズマ法では、特開平6−
280025号公報記載の様な陽極に金属を用いる方法
と、陽極を溶解させずに行う特開平2−205684号
公報や特開平4−110473号公報記載のような方法
がある。類似の構成により特開平9−118983号公
報や特開平11−269655号公報記載のような陽極
を用いると特に安定した成膜が可能で本発明に用いる膜
として好適な膜を安定に形成できる。上記公報に記載の
方法は、本明細書に含まれるものとする。ここでアモル
ファス層としては、タングステン、シリコン、シリコン
の酸化物、窒化物及び炭化物、カーボン、Al2O3、
BNから選ばれる材料で形成されるのが好ましい。これ
らのうち、シリコン及びSiO2が好適である。本発明
で用いるアモルファス層はX回折によって結晶性を示す
ピークが認められないようなものが好ましい。
U by ECR plasma method and Uramoto's invention
The R plasma method has a high film formation speed, and the UR plasma method is particularly suitable because the cathode for generating plasma is devised. In the UR plasma method, Japanese Patent Laid-Open No. 6-
There are a method of using a metal for an anode as described in Japanese Patent No. 280025, and a method as described in Japanese Patent Application Laid-Open No. 2-2056884 and Japanese Patent Application Laid-Open No. 4-110473, which is performed without melting the anode. By using an anode having a similar structure as described in JP-A-9-118983 and JP-A-11-269655, particularly stable film formation is possible, and a film suitable for use in the present invention can be stably formed. The method described in the above publication is included in the present specification. Here, as the amorphous layer, tungsten, silicon, oxides, nitrides and carbides of silicon, carbon, Al2O3,
It is preferably formed of a material selected from BN. Of these, silicon and SiO2 are preferred. The amorphous layer used in the present invention is preferably such that no peak showing crystallinity is observed by X-diffraction.

【0006】アモルファス層の厚みは表面粗さより大き
い必要があり、通常5μm以上は必要で、好ましくは5
〜60μm、より好ましくは10〜40μmである。又、
表面粗さRaは1〜10μm、好ましくは3〜6μmあ
る。表面粗さRaはJISB0601−1994に記載
の方法により容易に測定することができる。上記表面粗
さは、下地を予め適度な粗さに調整しておく方法や成膜
後適度な粗さに調整する方法により調整することができ
る。このような調整法として、機械研削法と溶解法があ
げられる。機械的研削法には、フライス盤などを用いて
切削により種々の形状(例えば溝等)を形成したり、荒
目の砥石により研削し、研削溝を形成する方法やブラス
ト法により凹凸を形成する方法等がある。また、溶解法
には、溶液中に浸漬し、化学的作用により研磨する化学
研磨法と通電し電解する電解研磨法がある。下地及び皮
膜の表面粗さを調整するには、いずれか最適な方法を選
択するのがよい。
The thickness of the amorphous layer needs to be larger than the surface roughness, usually 5 μm or more, and preferably 5 μm or more.
-60 μm, more preferably 10-40 μm. or,
The surface roughness Ra is 1 to 10 μm, preferably 3 to 6 μm. The surface roughness Ra can be easily measured by the method described in JISB0601-1994. The surface roughness can be adjusted by a method of previously adjusting the base to an appropriate roughness or a method of adjusting the surface to an appropriate roughness after film formation. Examples of such an adjusting method include a mechanical grinding method and a melting method. As the mechanical grinding method, a milling machine or the like is used to form various shapes (such as grooves) by cutting, or a method of forming a grinding groove by grinding with a coarse grindstone or a method of forming irregularities by a blast method. Etc. Further, the dissolution method includes a chemical polishing method of immersing in a solution and polishing by a chemical action, and an electrolytic polishing method of energizing and electrolyzing. In order to adjust the surface roughness of the underlayer and the film, it is preferable to select either one of the most suitable methods.

【0007】更に下地の粗さ形成方法としては、基材上
に、適度な表面粗さとなる皮膜(好ましくは多孔性セラ
ミック皮膜)を形成し、その上にアモルファス層を形成
する方法により行うことができる。このように、基材上
に適度な表面粗さとなる皮膜を形成する方法としては、
熔射法や陽極火花放電法による方法があげられる。特に
特公昭58−17278号公報記載のような陽極火花放
電法による方法では容易にRa1以上の皮膜が基材と密
着良くしかも種々の形状のものに形成できるので好適で
ある。このようにして設ける層の厚みは限定されない
が、5〜50μm程度であるのが好ましい。このような
皮膜として多孔性セラミック皮膜を用いると、研削時に
アモルファス層が崩壊しながら微細な砥粒を生成し、そ
の崩壊によりチップポケットと呼ばれる新たな空隙が形
成され、研削屑による目詰まりの無い研削が連続的に可
能となり、高速で超精密な加工が可能となるので好まし
い。又、この層の材質としては、二酸化ケイ素、酸化ア
ルミニウム、酸化チタン、ムライト、サイアロンなどが
あげられる。本発明の研削材では、被削材の種類は特に
限定されないが、シリコン、ガラス、石英、カーボン焼
結体等を好適に研削することができる。
Further, as a method for forming the roughness of the base, a method of forming a film (preferably a porous ceramic film) having an appropriate surface roughness on a substrate and forming an amorphous layer on the film is performed. it can. In this way, as a method for forming a film having an appropriate surface roughness on the substrate,
Examples thereof include a spraying method and an anode spark discharge method. In particular, the method by the anode spark discharge method as described in Japanese Patent Publication No. 58-17278 is preferable because a film having Ra1 or more can be easily formed in good contact with the substrate and can be formed into various shapes. The thickness of the layer thus provided is not limited, but is preferably about 5 to 50 μm. When a porous ceramic film is used as such a film, the amorphous layer collapses during grinding to generate fine abrasive grains, and a new void called a chip pocket is formed due to the collapse, and there is no clogging by grinding debris. It is preferable because grinding can be continuously performed and high-speed and ultra-precision processing can be performed. Examples of the material of this layer include silicon dioxide, aluminum oxide, titanium oxide, mullite and sialon. In the abrasive of the present invention, the type of work material is not particularly limited, but silicon, glass, quartz, carbon sintered body, etc. can be suitably ground.

【0008】[0008]

【発明の効果】本発明によれば、スラリーを安定に供給
する必要がなく、装置が単純化でき、コストを低下でき
てかつメインテナンスが容易になるとともに、砥粒の不
均一な分布やパッドの変形による所望の平面度が得られ
ない問題点を解消できる研削材を提供できる。又、本発
明の研削材を用いると、遊離砥粒が飛び散り作業環境へ
悪影響を与えるという問題、更に被研削物のみでなく周
囲の品物も汚染する問題も解決できる。さらに、遊離砥
粒によるポリッシングパッドの磨耗によるコスト増とそ
の交換にかかる作業量の増大を回避できる。上記利点に
加えて、本発明の研削材を用いると、高い加工効率で超
精密な研削がスラリーなしで可能となる。従って、シリ
コンウエハの製造工程における研削、シリコンウエハを
用いてデバイスを製造する工程での研磨(通称CMP)、レ
ンズや光学反射板、セラミックスの精密加工等に好適に
応用可能である。次に、実施例および比較例を示して本
発明を説明する。
According to the present invention, it is not necessary to stably supply the slurry, the apparatus can be simplified, the cost can be reduced and the maintenance can be facilitated, and the uneven distribution of the abrasive grains and the pad It is possible to provide an abrasive that can solve the problem that desired flatness cannot be obtained due to deformation. Further, by using the abrasive of the present invention, it is possible to solve the problem that free abrasive grains scatter and have an adverse effect on the working environment, and further the problem that not only the object to be ground but also surrounding items are contaminated. Furthermore, it is possible to avoid an increase in cost due to abrasion of the polishing pad due to loose abrasive grains and an increase in the amount of work required for replacement. In addition to the above advantages, the use of the abrasive of the present invention enables highly precise grinding with high processing efficiency without using a slurry. Therefore, it can be suitably applied to grinding in a manufacturing process of a silicon wafer, polishing (commonly called CMP) in a process of manufacturing a device using a silicon wafer, precision processing of a lens, an optical reflection plate, and ceramics. Next, the present invention will be described by showing Examples and Comparative Examples.

【0009】[0009]

【実施例】実施例1 平坦なアルミ製の研削装置に装着できる定盤を準備し
た。この盤(アルミ合金(A5052)製)の片面に特
公昭58−17278号公報の実施例3と同様にして陽
極火花放電法によりポーラスなSiO2のセラミックス
層を35μmの厚みに形成した。この上に浦本氏発明に
よるURプラズマガンを陰極に用い、特開平11−26
9655号公報の図1に記載の陽極を用いたプラズマC
VD法により、アモルファスSi皮膜を30μm形成し
た。これによりアルミ製定盤に65μmのSiO2セラ
ミックスとアモルファスSi皮膜の2層から成る複合皮
膜を形成した。表面粗さはRa5.8μmであった。こ
のように皮膜を形成した定盤を、図1のような研磨装置
(商品名「アブラミン」ストルアス社製)にセットし、
イオン交換水を潤滑剤として下記の条件で、25mm×
25mmに切断した試験片(シリコンウエハ)を研削し
た。尚、この試験片は、既に平滑に研削されたものであ
る。
Example 1 A surface plate that can be mounted on a flat aluminum grinding machine was prepared. A porous ceramic layer of SiO 2 having a thickness of 35 μm was formed on one surface of this board (made of aluminum alloy (A5052)) by the anode spark discharge method in the same manner as in Example 3 of JP-B-58-17278. On top of this, the UR plasma gun according to the invention of Uramoto was used as the cathode, and
Plasma C using the anode described in FIG. 1 of 9655.
An amorphous Si film having a thickness of 30 μm was formed by the VD method. Thus, a composite film consisting of two layers of 65 μm SiO 2 ceramics and an amorphous Si film was formed on an aluminum surface plate. The surface roughness was Ra 5.8 μm. The platen thus formed with a film is set on a polishing device (trade name "Abramin" manufactured by Struers) as shown in FIG.
25 mm x under the following conditions using ion-exchanged water as a lubricant
A test piece (silicon wafer) cut into 25 mm was ground. In addition, this test piece was already ground smoothly.

【0010】被削材の表面粗さは研削前にはRa0.0
03μmであり、9時間研削後もRa0.004μmと
ほとんど変化せず、しかも常に約0.9mg/h・cm
2の研削量となり一定した平滑研削が可能であった。研
削後の定盤表面粗さはRa4.8μmであり、初期の表
面粗さを保持していた。更にこの実験での皮膜損耗量は
たかだか5μmであり、顕微鏡観察により下地層のSi
O2セラミックス層は露呈していないことが確認でき
た。従って、上層のSi層が研削作用を発揮したことを
確認できた。
The surface roughness of the work material is Ra 0.0 before grinding.
It was 03 μm, which was almost unchanged from Ra 0.004 μm even after 9 hours of grinding, and was always about 0.9 mg / h · cm.
A grinding amount of 2 was obtained and constant smooth grinding was possible. The surface roughness of the surface plate after grinding was Ra 4.8 μm, and the initial surface roughness was maintained. Furthermore, the amount of coating loss in this experiment was at most 5 μm, and the Si of the underlayer was observed by microscopic observation.
It was confirmed that the O2 ceramics layer was not exposed. Therefore, it was confirmed that the upper Si layer exerted the grinding action.

【0011】実施例2 実施例1と同様のアルミ定盤に下地層として同様な種
類、膜厚のSiO2セラミックスを形成し、上層に同様
なCVD法によりアモルファスSiO2皮膜10μmを
形成した。表面粗さRaは4.5μmであった。実施例
1と同様にしてイオン交換水を潤滑剤として同様のシリ
コンウエハを研削した。被削材の表面粗さは、研削前に
はRa0.004μmであり15時間研削後もRa0.
007μmとやや上昇したもののほとんど変化せず、し
かも常に約0.7mg/h・cm2の研削量となり、一
定した平滑研削が可能であった。研削後の定盤の表面粗
さはRa4.4μmであり、初期の表面粗さを保持して
いた。
Example 2 On an aluminum surface plate similar to that of Example 1, SiO 2 ceramics of the same type and thickness were formed as an underlayer, and an amorphous SiO 2 film 10 μm was formed on the upper layer by the same CVD method. The surface roughness Ra was 4.5 μm. Similar to Example 1, the same silicon wafer was ground using ion-exchanged water as a lubricant. The surface roughness of the work material was Ra 0.004 μm before grinding, and Ra 0.
Although it was slightly increased to 007 μm, there was almost no change, and the grinding amount was always about 0.7 mg / h · cm 2 , and constant smooth grinding was possible. The surface roughness of the surface plate after grinding was Ra 4.4 μm, and the initial surface roughness was maintained.

【0012】比較例1 実施例1と同様な方法によりアルミ定盤に直接、CVD
法によりSi皮膜30μmを形成した。表面粗さはRa
0.3μmであった。実施例1と同様にイオン交換水を
潤滑剤として同様のシリコンウエハを研削した。被削材
の表面粗さは研削前にはRa0.007μmであり15
分間研削後もRa0.007μmとほとんど変化しなか
ったが、研削量は約0.09mg/h・cm2となり、
実施例1の1/10程度でほとんど研削されていないこ
とがわかった。
Comparative Example 1 By the same method as in Example 1, CVD was performed directly on an aluminum surface plate.
A Si film of 30 μm was formed by the method. Surface roughness is Ra
It was 0.3 μm. Similar to Example 1, the same silicon wafer was ground using ion-exchanged water as a lubricant. The surface roughness of the work material was Ra 0.007 μm before grinding and was 15
Even after grinding for a minute, Ra was 0.007 μm, which was almost unchanged, but the grinding amount was about 0.09 mg / h · cm 2 ,
It was found that about 1/10 of Example 1 was hardly ground.

【図面の簡単な説明】[Brief description of drawings]

【図1】高平滑鏡面を得るための研削に通常用いられて
いる装置の概略図を示す。図中、2はヘッド、3はテー
ブル(定盤)、4は被削材、5はパッド(研磨布)であ
る。
FIG. 1 shows a schematic view of an apparatus commonly used for grinding to obtain a highly smooth mirror surface. In the figure, 2 is a head, 3 is a table (surface plate), 4 is a work material, and 5 is a pad (polishing cloth).

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 CVD法によって形成されてなり、表面
粗さRaが1〜10μmの範囲にある無機化合物のアモ
ルファス層を表面に有することを特徴とする研削材。
1. An abrasive material, which is formed by a CVD method and has an amorphous layer of an inorganic compound having a surface roughness Ra in the range of 1 to 10 μm on the surface.
【請求項2】 基体上に多孔性セラミック層が形成され
ており、その上に表面粗さRaが1〜10μmの範囲に
ある無機化合物のアモルファス層が設けられている請求
項1記載の研削材。
2. The abrasive according to claim 1, wherein a porous ceramic layer is formed on a substrate, and an amorphous layer of an inorganic compound having a surface roughness Ra in the range of 1 to 10 μm is provided on the porous ceramic layer. .
【請求項3】 多孔性セラミック層が陽極火花放電法に
より形成されている請求項2記載の研削材。
3. The abrasive according to claim 2, wherein the porous ceramic layer is formed by an anode spark discharge method.
【請求項4】 アモルファス層が、X線回折によりピー
クが検出されない層である請求項1〜3のいずれか1項
記載の研削材。
4. The abrasive according to claim 1, wherein the amorphous layer is a layer whose peak is not detected by X-ray diffraction.
【請求項5】 アモルファス層が、タングステン、シリ
コン、シリコンの酸化物、窒化物及び炭化物、カーボ
ン、Al2O3、BNから選ばれる材料で形成されてい
る請求項1〜4のいずれか1項記載の研削材。
5. The grinding according to claim 1, wherein the amorphous layer is formed of a material selected from tungsten, silicon, silicon oxides, nitrides and carbides, carbon, Al 2 O 3 and BN. Material.
【請求項6】 基体表面に、CVD法によって表面粗さ
Raが1〜10μmの範囲にある無機化合物のアモルフ
ァス層を形成することを特徴とする研削材の製造方法。
6. A method of manufacturing an abrasive material, which comprises forming an amorphous layer of an inorganic compound having a surface roughness Ra in the range of 1 to 10 μm on the surface of a substrate by a CVD method.
【請求項7】 基体表面に、陽極火花放電法により多孔
性セラミック層を形成し、次いでその上にCVD法によ
って表面粗さRaが1〜10μmの範囲にある無機化合
物のアモルファス層を形成することを特徴とする研削材
の製造方法。
7. A porous ceramic layer is formed on the surface of a substrate by an anode spark discharge method, and then an amorphous layer of an inorganic compound having a surface roughness Ra of 1 to 10 μm is formed thereon by a CVD method. And a method for manufacturing an abrasive.
JP2001355170A 2001-11-20 2001-11-20 Grinding material having amorphous surface layer and method for producing the same Expired - Fee Related JP4191924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355170A JP4191924B2 (en) 2001-11-20 2001-11-20 Grinding material having amorphous surface layer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355170A JP4191924B2 (en) 2001-11-20 2001-11-20 Grinding material having amorphous surface layer and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003159653A true JP2003159653A (en) 2003-06-03
JP4191924B2 JP4191924B2 (en) 2008-12-03

Family

ID=19166914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355170A Expired - Fee Related JP4191924B2 (en) 2001-11-20 2001-11-20 Grinding material having amorphous surface layer and method for producing the same

Country Status (1)

Country Link
JP (1) JP4191924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090441A (en) * 2007-10-12 2009-04-30 National Institute Of Advanced Industrial & Technology Polishing agent for silicon carbide and method for polishing silicon carbide using the same
JP5170688B2 (en) * 2006-10-13 2013-03-27 独立行政法人産業技術総合研究所 Laminated body, abrasive and abrasive using the same, and method for forming the laminated body

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817278B2 (en) * 1980-09-29 1983-04-06 ディップソ−ル株式会社 Method of forming a protective film on the surface of aluminum materials
JPH01188272A (en) * 1988-01-22 1989-07-27 Semiconductor Energy Lab Co Ltd Abrasive tool coated with carbon film and manufacture therefor
JPH01295702A (en) * 1988-05-20 1989-11-29 Nippon Steel Corp Ceramics-coated cutting tool
JPH0253570A (en) * 1988-08-17 1990-02-22 Shinku Yakin Kk Manufacture of polisher
JPH06179166A (en) * 1992-10-14 1994-06-28 Seiko Instr Inc Polishing tool and manufacture thereof
JPH06304870A (en) * 1993-02-23 1994-11-01 Deitsupusoole Kk Grinding material and machine work method using this grinding material
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating
JP2000008155A (en) * 1998-06-25 2000-01-11 Sumitomo Electric Ind Ltd Hard carbon film-coated member
JP2002254324A (en) * 2001-03-01 2002-09-10 Hitachi Maxell Ltd Abrasive sheet and manufacturing method therefor
JP2003094332A (en) * 2001-09-18 2003-04-03 Mitsubishi Materials Corp Cmp conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817278B2 (en) * 1980-09-29 1983-04-06 ディップソ−ル株式会社 Method of forming a protective film on the surface of aluminum materials
JPH01188272A (en) * 1988-01-22 1989-07-27 Semiconductor Energy Lab Co Ltd Abrasive tool coated with carbon film and manufacture therefor
JPH01295702A (en) * 1988-05-20 1989-11-29 Nippon Steel Corp Ceramics-coated cutting tool
JPH0253570A (en) * 1988-08-17 1990-02-22 Shinku Yakin Kk Manufacture of polisher
JPH06179166A (en) * 1992-10-14 1994-06-28 Seiko Instr Inc Polishing tool and manufacture thereof
JPH06304870A (en) * 1993-02-23 1994-11-01 Deitsupusoole Kk Grinding material and machine work method using this grinding material
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating
JP2000008155A (en) * 1998-06-25 2000-01-11 Sumitomo Electric Ind Ltd Hard carbon film-coated member
JP2002254324A (en) * 2001-03-01 2002-09-10 Hitachi Maxell Ltd Abrasive sheet and manufacturing method therefor
JP2003094332A (en) * 2001-09-18 2003-04-03 Mitsubishi Materials Corp Cmp conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170688B2 (en) * 2006-10-13 2013-03-27 独立行政法人産業技術総合研究所 Laminated body, abrasive and abrasive using the same, and method for forming the laminated body
US8691364B2 (en) 2006-10-13 2014-04-08 National Institute Of Advanced Industrial Science And Technology Laminate, and polishing material and grinding material using the same, and method for producing the laminate
JP2009090441A (en) * 2007-10-12 2009-04-30 National Institute Of Advanced Industrial & Technology Polishing agent for silicon carbide and method for polishing silicon carbide using the same

Also Published As

Publication number Publication date
JP4191924B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
US7367875B2 (en) CVD diamond-coated composite substrate containing a carbide-forming material and ceramic phases and method for making same
Ohmori et al. Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels
US6293854B1 (en) Dresser for polishing cloth and manufacturing method therefor
US7241206B1 (en) Tools for polishing and associated methods
JPH0639729A (en) Precision grinding wheel and its manufacture
TWI286963B (en) Dresser for polishing cloth and method for manufacturing thereof
US6540597B1 (en) Polishing pad conditioner
ATE331590T1 (en) DRESSING TOOL WITH DIAMOND SCREENS FOR CHEMICAL-MECHANICAL POLISHING PAD
US20190091832A1 (en) Composite conditioner and associated methods
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
WO2002005337A1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
KR100413371B1 (en) A diamond grid cmp pad dresser
US6203417B1 (en) Chemical mechanical polishing tool components with improved corrosion resistance
JP2009136926A (en) Conditioner and conditioning method
CA2169392A1 (en) Method and apparatus for polishing metal-soluble materials such as diamond
JP4191924B2 (en) Grinding material having amorphous surface layer and method for producing the same
Doi et al. Lapping and polishing
JPH11281307A (en) Electrode plate, manufacture of electrode plate and measuring method of surface roughness of its small diameter hole inner wall
CN113182938B (en) Method for processing surface of diamond complex phase material
TWI383860B (en) Modular dresser
JP4150266B2 (en) Shower plate for plasma processing and manufacturing method thereof
JP2007100143A (en) Sprayed coating
JP2005131755A (en) Polishing device and polishing method for hard material
JP3695842B2 (en) Wafer polishing apparatus and wafer polishing method
JP2007136650A (en) Polishing element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees