JP2003149267A - Terminal for measuring electric and electronic characteristics of semiconductor device, and method for manufacturing the terminal - Google Patents

Terminal for measuring electric and electronic characteristics of semiconductor device, and method for manufacturing the terminal

Info

Publication number
JP2003149267A
JP2003149267A JP2001341877A JP2001341877A JP2003149267A JP 2003149267 A JP2003149267 A JP 2003149267A JP 2001341877 A JP2001341877 A JP 2001341877A JP 2001341877 A JP2001341877 A JP 2001341877A JP 2003149267 A JP2003149267 A JP 2003149267A
Authority
JP
Japan
Prior art keywords
terminal
carbon
ions
less
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001341877A
Other languages
Japanese (ja)
Inventor
Kazuhiko Oda
一彦 織田
Shogo Hashimoto
章吾 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001341877A priority Critical patent/JP2003149267A/en
Publication of JP2003149267A publication Critical patent/JP2003149267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a terminal for electric/electronic measurement that can repeat the contact with the electrode of a semiconductor device without any cleaning or by extremely reducing the chance of cleaning. SOLUTION: A carbon ion of 1×10<16> ions/cm<2> or higher, and 1×10<19> ions/cm<2> or less is injected into the surface of a terminal 1 that is brought into contact with the electrode of a semiconductor device, thus preventing the surface from being scratched, preventing foreign objects from being adhered, and preventing the alloying of terminal constituents and electrode constituents.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体素子の電
気、電子特性検査において、素子側電極との接触を、ク
リーニング回数を激減させるか又はクリーニング無しで
繰り返しても安定した検査が行えるプローブ端子などの
特性測定用端子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe terminal or the like which can perform stable inspection in the electric and electronic characteristic inspection of a semiconductor element even if the contact with the element side electrode is drastically reduced in cleaning frequency or repeated without cleaning. Of the terminal for characteristic measurement of.

【0002】[0002]

【従来の技術】半導体素子の電気、電子特性検査は、検
査機のプローブ端子を素子の電極に接触させて行われ
る。
2. Description of the Related Art Inspection of electric and electronic characteristics of a semiconductor device is carried out by bringing a probe terminal of an inspection machine into contact with an electrode of the device.

【0003】素子側の電極は、金、アルミニウム、銅、
半田などを材料としたものが多く、一方、検査器のプロ
ーブ端子は、銅、金、白金、ニッケル、クロム、タング
ステン、レニウム、ロジウム、パラジウム、ベリリウム
−銅合金などが用いられる。
The electrodes on the element side are gold, aluminum, copper,
In many cases, solder or the like is used as the material, while the probe terminal of the inspection device is made of copper, gold, platinum, nickel, chromium, tungsten, rhenium, rhodium, palladium, beryllium-copper alloy, or the like.

【0004】電極の表面には、一般に酸化膜が生じ、異
物も吸着している。そこで、特性検査では、確実な接触
を得るために、先端を尖らせたプローブ端子を電極に喰
い込ませる方法が採られる。具体的には垂直に押し当
て、或いは滑らせて喰い込ませている。
An oxide film is generally formed on the surface of the electrode, and foreign matter is also adsorbed. Therefore, in the characteristic inspection, in order to obtain a reliable contact, a method in which a probe terminal having a sharp tip is bited into the electrode is adopted. Specifically, it is pressed vertically or slid to bite.

【0005】[0005]

【発明が解決しようとする課題】プローブ端子のコンタ
クト面には、電極との繰り返し接触により電極材料や酸
化物などの異物が付着し、接触抵抗が変化したり、ダス
トが発生したりする。これ等の現象のうち、特に、接触
抵抗の変化は、検査の信頼性を低下させる。
On the contact surface of the probe terminal, foreign matter such as electrode material or oxide adheres to the contact surface of the probe terminal repeatedly to change the contact resistance or generate dust. Among these phenomena, the change in contact resistance reduces the reliability of the inspection.

【0006】このため、プローブ端子のコンタクト面に
付着した異物を、定期的にクリーニング除去する方法が
採られる。コンタクト面再生のためのクリーニングは、
エアブローやブラッシングによる除去、吸着盤による吸
着、研磨、酸やアルカリによる溶解、特開平10−18
5953号が示しているプラズマクリーニングなど種々
の方法があるが、いずれにせよ、そのクリーニングの実
施は、検査効率を大きく低下させる。
For this reason, a method is adopted in which foreign matter adhering to the contact surface of the probe terminal is regularly removed by cleaning. Cleaning for contact surface regeneration,
Removal by air blow or brushing, adsorption by suction plate, polishing, dissolution by acid or alkali, JP-A-10-18
There are various methods such as plasma cleaning shown in No. 5953, but in any case, the execution of the cleaning greatly reduces the inspection efficiency.

【0007】この発明は、検査効率改善のために、端子
のクリーニングを不要にし、或いは極端に少なくて済む
ようにすることを課題としている。
It is an object of the present invention to eliminate the need for terminal cleaning or to extremely reduce the number of terminals in order to improve inspection efficiency.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、表面に炭素イオンを注入され
ており、その注入量が1×1016ions/cm2
上、1×1019ions/cm2 以下である電気、電子
特性測定用端子を提供する。
In order to solve the above problems, in the present invention, carbon ions are implanted on the surface, and the implantation amount is 1 × 10 16 ions / cm 2 or more, 1 × 10 19 or more. Provided is a terminal for measuring electrical and electronic characteristics, which is less than or equal to ions / cm 2 .

【0009】この端子は、表面から50nm以上、20
0nm以下の領域の平均炭素濃度が0.5at%以上、
50at%以下になっているもの、表面から50nm以
下の領域の平均炭素濃度が1at%以上、80at%以
下になっているものが好ましい。また、イオン注入がな
される端子材料の少なくとも表面が、ベリリウム−銅合
金、銅、銀、金、ニッケル、パラジウム、白金、ロジウ
ム、レニウム、クロム、モリブデン、タングステンのい
ずれか、又はこれ等を主成分とする材料で形成されてい
るのも好ましい。
This terminal is 50 nm or more from the surface, 20
The average carbon concentration in the region of 0 nm or less is 0.5 at% or more,
It is preferable that the average carbon concentration is 50 at% or less and the average carbon concentration in the region 50 nm or less from the surface is 1 at% or more and 80 at% or less. At least the surface of the terminal material to be ion-implanted is beryllium-copper alloy, copper, silver, gold, nickel, palladium, platinum, rhodium, rhenium, chromium, molybdenum, or tungsten, or a main component of these. It is also preferable that it is formed of the material

【0010】これ等の端子は、表面に、10keV以
上、80keV以下のエネルギーで炭素イオンの注入を
行う方法や、表面に、炭素イオンを注入エネルギーを変
えて複数回注入し、このときの最低注入エネルギーを1
0keV以上、80keV以下にする方法で製造する。
どちらの方法も、炭素又は炭化水素のガス、もしくはプ
ラズマ雰囲気中に配置された端子にパルス直流電圧を印
可して炭素イオンの注入を行うと好ましい。
For these terminals, a method of implanting carbon ions with energy of 10 keV or more and 80 keV or less on the surface or a method of implanting carbon ions on the surface a plurality of times by changing the implantation energy, and the minimum implantation at this time Energy 1
It is manufactured by a method of 0 keV or more and 80 keV or less.
In either method, it is preferable to apply a pulsed DC voltage to a terminal arranged in a carbon or hydrocarbon gas or plasma atmosphere to inject carbon ions.

【0011】[0011]

【作用】炭素イオンを注入したこの発明の端子は、異物
の付着が大幅に低減される。これは、下記の如き理由に
よる。 (i)炭素注入により端子表面の硬度が高まり、異物付
着の基点となる傷が付き難くなる。 (ii)端子の表層に化学的に安定な非晶質炭素が析出
し、物理吸着、化学吸着を抑制する。 (iii)端子成分と電極成分の合金化が抑えられる。
In the terminal of the present invention in which carbon ions are implanted, the adhesion of foreign matter is greatly reduced. This is for the following reasons. (I) By injecting carbon, the hardness of the surface of the terminal is increased, and the scratches that become the starting point for foreign matter adhesion are less likely to occur. (Ii) Chemically stable amorphous carbon is deposited on the surface layer of the terminal to suppress physical adsorption and chemical adsorption. (Iii) The alloying of the terminal component and the electrode component is suppressed.

【0012】イオン注入量は、1×1016ions/c
2 以下では、少な過ぎて異物付着の防止効果が認めら
れない。一方、1×1019ions/cm2 以上の注入
は、処理時間が長過ぎ、コスト負担が増して好ましくな
い。また、炭素量が多くなるため、電気抵抗が大きくな
る問題もある。但し、異物付着の防止効果は、これ以上
の注入量でも認められる。
The ion implantation amount is 1 × 10 16 ions / c.
If it is less than m 2, it is too small and the effect of preventing foreign matter from adhering is not recognized. On the other hand, the implantation of 1 × 10 19 ions / cm 2 or more is not preferable because the treatment time is too long and the cost burden increases. Further, since the amount of carbon increases, there is a problem that the electric resistance increases. However, the effect of preventing foreign matter from adhering is recognized even when the injection amount is larger than this.

【0013】この炭素イオン注入量は、8×1016io
ns/cm2 以上、5×1018ions/cm2 以下が
より好ましい。
This carbon ion implantation amount is 8 × 10 16 io.
It is more preferably ns / cm 2 or more and 5 × 10 18 ions / cm 2 or less.

【0014】また、表面から50nm以上、200nm
以下の領域の平均炭素濃度を0.5at%以上、50a
t%以下にすると、端子表面の耐擦傷性が増し、異物付
着の基点となる傷が付き難くなる。この領域の平均炭素
濃度が0.5at%以下では、耐擦傷性が低く、異物付
着の防止効果が薄い。一方、耐擦傷性向上の効果は、そ
の平均炭素濃度が50at%を越えても認められるが、
50at%以上の平均濃度を得るには処理時間がかかり
すぎ、コストアップにつながるため、上限は50at%
程度に止めるのがよい。
Further, from the surface, 50 nm or more, 200 nm
The average carbon concentration in the following region is 0.5 at% or more, 50a
When it is t% or less, the scratch resistance of the terminal surface is increased, and it becomes difficult to form a scratch which is a base point of foreign matter adhesion. When the average carbon concentration in this region is 0.5 at% or less, the scratch resistance is low and the effect of preventing foreign matter adhesion is small. On the other hand, the effect of improving the scratch resistance is recognized even when the average carbon concentration exceeds 50 at%,
It takes too much processing time to obtain the average concentration of 50 at% or more, which leads to cost increase. Therefore, the upper limit is 50 at%.
It is good to stop to a certain degree.

【0015】さらに、表面から50nm以下の浅い領域
は、実際に電極材料と接する領域であり、異物付着の防
止に関してより高い効果が求められる。この領域の平均
炭素濃度が1at%以下ではその異物付着の防止効果が
充分でなく、一方、その平均濃度を80at%以上にす
るのは処理時間がかかりすぎてコストアップを招く。ま
た、炭素量が多くなると電気抵抗が大きくなる問題もあ
るので、より好ましくは5at%以上、80at%以下
にするのがよい。但し、異物の付着防止効果は80at
%以上の注入量でも認められる。
Further, the shallow region of 50 nm or less from the surface is a region that actually contacts the electrode material, and a higher effect is required for preventing foreign matter from adhering. If the average carbon concentration in this region is 1 at% or less, the effect of preventing the adhesion of foreign matter is not sufficient. On the other hand, if the average carbon concentration is 80 at% or more, it takes too much processing time and costs increase. Further, since there is a problem that the electric resistance increases as the carbon amount increases, it is more preferable to set it to 5 at% or more and 80 at% or less. However, the effect of preventing foreign matter from adhering is 80 at
Percentage of injection of more than% is also recognized.

【0016】端子材料の少なくとも表面は、先に述べた
材料で形成するのがよい。ベリリウム−銅合金、銅、
銀、金は、それ自体の電気抵抗が小さく、微小電流の測
定に適する。また、これ等やニッケル、パラジウム、白
金、ロジウム、レニウムは、注入した炭素が拡散し難
く、表面の異物付着防止効果を長く持続でき、化学的に
安定な非晶質炭素相が形成され易い特長もある。
At least the surface of the terminal material is preferably formed of the above-mentioned material. Beryllium-copper alloy, copper,
Silver and gold have low electric resistance of themselves, and are suitable for measuring minute currents. In addition, these, nickel, palladium, platinum, rhodium and rhenium, the injected carbon is difficult to diffuse, the effect of preventing foreign substances from adhering to the surface can be maintained for a long time, and a chemically stable amorphous carbon phase is easily formed. There is also.

【0017】また、クロム、モリブデン、タングステン
は強度に優れ、細線化する端子に適する。これに加え、
注入炭素が炭化物を形成し、耐擦傷性の向上効果も高
い。
Chromium, molybdenum and tungsten are excellent in strength and are suitable for terminals to be thinned. In addition to this,
The injected carbon forms a carbide, and the effect of improving scratch resistance is also high.

【0018】以上の材料は、端子全体をそれで形成した
り、異材質の端子表面にめっきなどの方法で被覆して使
用することができる。
The above materials can be used by forming the entire terminal by itself or by coating the surface of a terminal made of a different material with a method such as plating.

【0019】なお、この発明の効果は、素子側電極が
金、アルミニウム、銅、半田などからなる場合に特に顕
著に現れる。これ等の電極材料はいずれも柔らかく、端
子に移着し易いが、炭素イオンが注入された端子にはそ
の移着が起こり難い。
The effect of the present invention is particularly remarkable when the element-side electrode is made of gold, aluminum, copper, solder or the like. All of these electrode materials are soft and easily transferred to the terminal, but the transfer is unlikely to occur in the terminal into which carbon ions are implanted.

【0020】次に、この発明の端子製造方法において、
炭素イオンの注入を10keV以下のエネルギーで実施
すると、炭素イオンは端子の表面に堆積するか又は反射
して表層に注入されない。表面に堆積して炭素膜が形成
されると電気抵抗が大きくなる。また、反射して表層に
注入されなければ、異物の付着防止効果が得られない。
一方、注入エネルギーが80keV以上では炭素が深く
入りすぎ、表層付近に効率良く注入層を形成できない。
従って、注入エネルギーは10keV〜80keVが適
正範囲である。
Next, in the terminal manufacturing method of the present invention,
When the implantation of carbon ions is performed at an energy of 10 keV or less, carbon ions are deposited on the surface of the terminal or are reflected and are not implanted in the surface layer. When the carbon film is formed by depositing on the surface, the electric resistance increases. Further, unless reflected and injected into the surface layer, the effect of preventing foreign matter from adhering cannot be obtained.
On the other hand, when the implantation energy is 80 keV or more, carbon enters too deeply, and the implantation layer cannot be efficiently formed near the surface layer.
Therefore, the implantation energy is in the proper range of 10 keV to 80 keV.

【0021】炭素イオンは多段エネルギー注入されても
よい。多段エネルギー注入とは、注入エネルギーを変
え、複数回に分けてイオン注入をする方法である。耐擦
傷性も考慮すると、表層のみならず、深い領域にも炭素
イオンを注入するのが望ましい。1回のイオン注入で深
い領域に炭素を入り込ませようとすると先に述べたよう
に表層付近の効率良い注入層形成ができない。多段エネ
ルギー注入によれば、その不具合がなく、深さ方向に広
く炭素を分布させることができる。この場合、表層部は
最低限の炭素量を確保する必要があるので、最低注入エ
ネルギーを10keV以上、80keV以下とした。
Carbon ions may be multistage energy implanted. The multi-stage energy implantation is a method in which the implantation energy is changed and the ions are implanted in a plurality of times. Considering scratch resistance, it is desirable to implant carbon ions not only in the surface layer but also in deep regions. If carbon is attempted to enter a deep region by one-time ion implantation, it is impossible to efficiently form an implanted layer near the surface layer as described above. According to the multi-stage energy injection, there is no such problem, and carbon can be widely distributed in the depth direction. In this case, since it is necessary to secure a minimum amount of carbon in the surface layer portion, the minimum implantation energy is set to 10 keV or more and 80 keV or less.

【0022】このほか、炭素イオンの注入は、イオン源
からイオンビームを引き出して注入する方法でも行える
が、この方法は、制御性に優れる反面、広面積処理が困
難で処理時間も長くなる欠点がある。これに対し、炭素
又は炭化水素のガスまたはプラズマ雰囲気中に端子を配
置し、これにパルス直流電圧を印加する方法は、大面
積、短時間の注入処理が行える。
In addition, carbon ions can be injected by a method of extracting an ion beam from an ion source, but this method has excellent controllability, but has a drawback that it is difficult to process a large area and the processing time is long. is there. On the other hand, a method of arranging the terminal in a carbon or hydrocarbon gas or plasma atmosphere and applying a pulsed DC voltage to the terminal allows a large area and short-time implantation process.

【0023】雰囲気がガスの場合、負の直流電圧が印加
された瞬間にガスがプラズマ化し、その中の陽イオンが
加速されて端子に注入される。雰囲気がプラズマの場合
も、負の直流電圧を印加することで雰囲気中の陽イオン
が加速されて端子に注入される。
When the atmosphere is gas, the gas is turned into plasma at the moment when the negative DC voltage is applied, and the cations therein are accelerated and injected into the terminal. Even when the atmosphere is plasma, positive ions in the atmosphere are accelerated and injected into the terminal by applying a negative DC voltage.

【0024】[0024]

【発明の実施の形態】図1乃至図3に、この発明の端子
の実施形態を示す。図1は、カンチレバー型プローブカ
ード用のプローブニードルを、図2はヴァーチカル型プ
ローブカード用のプローブニードルを、図3はメンブレ
ン型プローブカード用の尖頭端子を各々示している。プ
ローブカードはここに挙げた3形態が基本形態とされる
が、この発明の端子は、プローブカード用に限定されな
い。
1 to 3 show an embodiment of a terminal of the present invention. 1 shows a probe needle for a cantilever type probe card, FIG. 2 shows a probe needle for a vertical type probe card, and FIG. 3 shows a pointed terminal for a membrane type probe card. The basic form of the probe card is the three forms listed here, but the terminal of the present invention is not limited to the probe card.

【0025】図1、図2の端子(プローブニードル)
1、2、図3の端子3は、いずれも、少なくとも表面
が、好ましいとした、ベリリウム−銅合金、銅、銀、
金、ニッケル、パラジウム、白金、ロジウム、レニウ
ム、クロム、モリブデン、タングステン又はこれ等を主
成分とする材料で形成されている。
1 and 2 terminals (probe needle)
In each of the terminals 3 of FIGS. 1 and 2, at least the surface is preferably beryllium-copper alloy, copper, silver,
It is formed of gold, nickel, palladium, platinum, rhodium, rhenium, chromium, molybdenum, tungsten, or a material containing these as main components.

【0026】また、これ等の端子1、2、3は、表面に
1×1016ions/cm2 以上、1×1019ions
/cm2 以下の量の炭素イオン注入がなされている。
The terminals 1, 2, 3 have a surface of 1 × 10 16 ions / cm 2 or more and 1 × 10 19 ions.
Carbon ions are implanted in an amount of less than / cm 2 .

【0027】以下は、より詳細な実施例である。The following is a more detailed example.

【0028】−実施例1− 金属材料に炭素イオンを注入し、ピン・オン・ディスク
法で焼付きの発生を調査した。
Example 1 Carbon ions were injected into a metal material, and the occurrence of seizure was investigated by the pin-on-disk method.

【0029】注入される金属材料は、プローブ端子材を
想定して、ベリリウム−銅合金、銅、銀、金、ニッケ
ル、パラジウム、白金、ロジウム、レニウム、クロム、
モリブデン、タングステンを適用した。
The metal material to be injected is a beryllium-copper alloy, copper, silver, gold, nickel, palladium, platinum, rhodium, rhenium, chromium, assuming a probe terminal material.
Molybdenum and tungsten were applied.

【0030】相手材は、電極を想定して、金、アルミニ
ウム、銅、ハンダを適用した。
As the mating material, gold, aluminum, copper, or solder was applied, assuming an electrode.

【0031】注入エネルギーは、5keV〜400ke
Vまでのエネルギーを、注入量は、6×1015ions
/cm2 から2×1019ions/cm2 までの範囲を
適用した。
The implantation energy is 5 keV to 400 ke.
Energy up to V, injection amount is 6 × 10 15 ions
A range from / cm 2 to 2 × 10 19 ions / cm 2 was applied.

【0032】ピン・オン・ディスク試験は、荷重1N、
摺動速度5mm/sec、摺動回数1万回、室温、無潤
滑とした。
The pin-on-disk test was conducted under a load of 1N.
Sliding speed was 5 mm / sec, sliding frequency was 10,000 times, room temperature, and no lubrication.

【0033】結果を、表1〜表7に示す。The results are shown in Tables 1 to 7.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【表6】 [Table 6]

【0040】[0040]

【表7】 [Table 7]

【0041】これ等の結果から適切な炭素注入により、
焼付きが無くなることがわかる。
From these results, with proper carbon injection,
It can be seen that the image sticking disappears.

【0042】また、表1、3、6では、注入した金属片
と相手材とを荷重0.5Nで接触させたときの接触抵抗
を示している。注入量(平均炭素濃)が多い領域や、注
入エネルギーが低く炭素膜が析出する条件では、接触抵
抗が大きくなることがわかる。
Further, Tables 1, 3, and 6 show the contact resistance when the injected metal piece and the mating material are brought into contact with each other with a load of 0.5N. It can be seen that the contact resistance increases in the region where the implantation amount (average carbon concentration) is large and in the condition where the implantation energy is low and the carbon film is deposited.

【0043】−実施例2− 金メッキされたプローブ端子先端に、炭素イオンを50
keVで6×1017ions/cm2 注入した。
Example 2-Carbon ions are applied to the tip of the gold-plated probe terminal.
6 × 10 17 ions / cm 2 was injected at keV.

【0044】この端子を、アルミニウム電極、ハンダ電
極を有する半導体素子の検査に適用した。炭素イオン未
注入の金メッキ端子については、アルミニウム電極で2
千回、ハンダ電極で3千回ごとにクリーニングを行って
いたが、炭素注入した電極は、いずれも2万回使用して
も異常なく使用できた。
This terminal was applied to the inspection of a semiconductor element having an aluminum electrode and a solder electrode. For gold-plated terminals without carbon ion implantation, use 2 aluminum electrodes.
Although the cleaning was performed 1,000 times with the solder electrode every 3,000 times, the carbon-implanted electrodes could be used without any abnormality even if they were used 20,000 times.

【0045】−実施例3− タングステン製のプローブ端子に、炭素イオンを30、
60、90、120、150、180、210keVの
各エネルギーで、それぞれ2×1017ions/c
2 、総注入量1.4×1018ions/cm2 となる
ように多段エネルギー注入を行った。
EXAMPLE 3 Carbon ion was added to a tungsten probe terminal with 30,
2 × 10 17 ions / c at each energy of 60, 90, 120, 150, 180, 210 keV
Multi-stage energy injection was performed so that the total injection amount was m 2 and the injection amount was 1.4 × 10 18 ions / cm 2 .

【0046】この端子を、アルミニウム電極に接触さ
せ、半導体素子の検査を行った。炭素イオン未注入の端
子では150回ごとに行っていたクリーニングの間隔
が、注入した端子では8万回ごとのクリーニングでも良
好に検査ができるようになった。
The semiconductor element was inspected by bringing this terminal into contact with an aluminum electrode. With the carbon ion-unimplanted terminal, it is possible to satisfactorily perform the inspection at intervals of 150 cleanings, but with the implanted terminal, even cleaning every 80,000 times.

【0047】−実施例4− 真空槽中にベリリウム−銅合金からなるプローブ端子を
配置した。端子にはパルス直流電源を接続した。雰囲気
にメタンガスを0.2Paの圧力まで導入し、端子に−
10kV、周波数10Hz、デューティー比10%のパ
ルス電圧を印加した。電流値換算で3×1018ions
/cm2 相当の注入を行った。
Example 4 A probe terminal made of beryllium-copper alloy was placed in a vacuum chamber. A pulse DC power supply was connected to the terminals. Introduce methane gas to the atmosphere up to a pressure of 0.2 Pa, and
A pulse voltage of 10 kV, a frequency of 10 Hz and a duty ratio of 10% was applied. 3 × 10 18 ions in terms of current value
/ Cm 2 injection was performed.

【0048】この端子を半導体素子のハンダ電極に接触
させ検査を行った。未注入の端子では1万回ごとに端子
のクリーニングを行っていたが、注入端子では5万回使
用しても異常は見られなかった。
An inspection was conducted by bringing this terminal into contact with the solder electrode of the semiconductor element. The uninjected terminal was cleaned every 10,000 times, but the injected terminal showed no abnormality after 50,000 times of use.

【0049】[0049]

【発明の効果】以上述べたように、この発明の特性測定
用端子は、表面に対する炭素イオンの注入により素子側
電極との接触を繰り返しても傷付きや異物の付着が殆ど
起こらず、クリーニング無しで、或いはクリーニングの
機会を極端に少なくして半導体素子の特性検査を効率良
く、かつ、信頼性良く行えると言う効果がある。
As described above, the characteristic measuring terminal according to the present invention causes no scratching or foreign matter adhesion even if repeated contact with the element-side electrode due to the implantation of carbon ions on the surface thereof, without cleaning. In addition, there is an effect that the characteristic inspection of the semiconductor element can be performed efficiently and reliably by extremely reducing the opportunity of cleaning.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の端子の一例を示す斜視図FIG. 1 is a perspective view showing an example of a terminal of the present invention.

【図2】端子の他の例を示す斜視図FIG. 2 is a perspective view showing another example of the terminal.

【図3】端子の更に他の例を示す斜視図FIG. 3 is a perspective view showing still another example of the terminal.

【符号の説明】[Explanation of symbols]

1、2、3 端子 1, 2, 3 terminals

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表面に炭素イオンを注入されており、そ
の注入量が1×10 16ions/cm2 以上、1×10
19ions/cm2 以下であることを特徴とする半導体
素子の電気、電子特性測定用端子。
1. The surface is implanted with carbon ions,
Injection amount is 1 × 10 16ions / cm2Above 1 × 10
19ions / cm2A semiconductor characterized in that
Terminal for measuring electrical and electronic characteristics of the element.
【請求項2】 表面から50nm以上、200nm以下
の領域の平均炭素濃度が0.5at%以上、50at%
以下になっている請求項1記載の半導体素子の電気、電
子特性測定用端子。
2. The average carbon concentration in a region of 50 nm or more and 200 nm or less from the surface is 0.5 at% or more and 50 at%.
The terminal for measuring electrical and electronic characteristics of a semiconductor device according to claim 1, wherein:
【請求項3】 表面から50nm以下の領域の平均炭素
濃度が1at%以上、80at%以下になっている請求
項1又は2記載の半導体素子の電気、電子特性測定用端
子。
3. The terminal for measuring electric and electronic characteristics of a semiconductor device according to claim 1, wherein the average carbon concentration in a region of 50 nm or less from the surface is 1 at% or more and 80 at% or less.
【請求項4】 イオン注入がなされる端子材料の少なく
とも表面が、ベリリウム−銅合金、銅、銀、金、ニッケ
ル、パラジウム、白金、ロジウム、レニウム、クロム、
モリブデン、タングステンのいずれか、又はこれ等を主
成分とする材料から成る請求項1〜3のいずれかに記載
の半導体素子の電気、電子特性測定用端子。
4. A beryllium-copper alloy, copper, silver, gold, nickel, palladium, platinum, rhodium, rhenium, chromium, at least the surface of the terminal material to be ion-implanted.
The terminal for measuring electric and electronic characteristics of a semiconductor device according to claim 1, which is made of molybdenum or tungsten or a material containing any of these as a main component.
【請求項5】 端子の表面に、10keV以上、80k
eV以下のエネルギーで炭素イオンの注入を行って請求
項1〜4のいずれかに記載の端子を得ることを特徴とす
る端子の製造方法。
5. The surface of the terminal is 10 keV or more, 80 k
A method for manufacturing a terminal, wherein carbon ions are implanted with an energy of eV or less to obtain the terminal according to any one of claims 1 to 4.
【請求項6】 端子の表面に、炭素イオンを注入エネル
ギーを変えて複数回注入し、このときの最低注入エネル
ギーを10keV以上、80keV以下にして請求項1
〜4のいずれかに記載の端子を得ることを特徴とする端
子の製造方法。
6. The carbon ions are injected into the surface of the terminal a plurality of times by changing the injection energy, and the minimum injection energy at this time is set to 10 keV or more and 80 keV or less.
4. A method for manufacturing a terminal, comprising obtaining the terminal according to any one of 4 to 4.
【請求項7】 炭素又は炭化水素のガス、もしくはプラ
ズマ雰囲気中に配置された端子にパルス直流電圧を印可
して炭素イオンの注入を行う請求項6又は7に記載の端
子の製造方法。
7. The method for manufacturing a terminal according to claim 6, wherein a carbon ion is implanted by applying a pulsed DC voltage to the terminal arranged in a carbon or hydrocarbon gas or plasma atmosphere.
JP2001341877A 2001-11-07 2001-11-07 Terminal for measuring electric and electronic characteristics of semiconductor device, and method for manufacturing the terminal Pending JP2003149267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341877A JP2003149267A (en) 2001-11-07 2001-11-07 Terminal for measuring electric and electronic characteristics of semiconductor device, and method for manufacturing the terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341877A JP2003149267A (en) 2001-11-07 2001-11-07 Terminal for measuring electric and electronic characteristics of semiconductor device, and method for manufacturing the terminal

Publications (1)

Publication Number Publication Date
JP2003149267A true JP2003149267A (en) 2003-05-21

Family

ID=19155831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341877A Pending JP2003149267A (en) 2001-11-07 2001-11-07 Terminal for measuring electric and electronic characteristics of semiconductor device, and method for manufacturing the terminal

Country Status (1)

Country Link
JP (1) JP2003149267A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034921A1 (en) * 2005-09-22 2007-03-29 Enplas Corporation Electrical contact and socket for electrical component
EP2295990A1 (en) * 2009-09-15 2011-03-16 Kabushiki Kaisha Kobe Seiko Sho Contact probe pin for semiconductor test apparatus
KR101161514B1 (en) 2009-09-30 2012-06-29 가부시키가이샤 코베루코 카겐 Electric contact member
KR20160028527A (en) 2011-06-15 2016-03-11 가부시키가이샤 고베 세이코쇼 Electrical contact member
WO2024053552A1 (en) * 2022-09-07 2024-03-14 石福金属興業株式会社 Alloy material for probe pins
WO2024053549A1 (en) * 2022-09-07 2024-03-14 株式会社ヨコオ Probe

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034921A1 (en) * 2005-09-22 2007-03-29 Enplas Corporation Electrical contact and socket for electrical component
US8016624B2 (en) 2005-09-22 2011-09-13 Enplas Corporation Electric contact and socket for electrical part
JP2012230117A (en) * 2005-09-22 2012-11-22 Enplas Corp Electric contact and socket for electric component
USRE45924E1 (en) 2005-09-22 2016-03-15 Enplas Corporation Electric contact and socket for electrical part
EP2295990A1 (en) * 2009-09-15 2011-03-16 Kabushiki Kaisha Kobe Seiko Sho Contact probe pin for semiconductor test apparatus
US8166568B2 (en) 2009-09-15 2012-04-24 Kobe Steel, Ltd. Contact probe pin for semiconductor test apparatus
KR101156865B1 (en) 2009-09-15 2012-06-20 가부시키가이샤 고베 세이코쇼 Contact probe pin for semiconductor test apparatus
KR101161514B1 (en) 2009-09-30 2012-06-29 가부시키가이샤 코베루코 카겐 Electric contact member
KR20160028527A (en) 2011-06-15 2016-03-11 가부시키가이샤 고베 세이코쇼 Electrical contact member
US9459282B2 (en) 2011-06-15 2016-10-04 Kobe Steel, Ltd. Electrical contact member
WO2024053552A1 (en) * 2022-09-07 2024-03-14 石福金属興業株式会社 Alloy material for probe pins
WO2024053549A1 (en) * 2022-09-07 2024-03-14 株式会社ヨコオ Probe

Similar Documents

Publication Publication Date Title
CN104246971B (en) The manufacturing method of bonded wafer
TWI239402B (en) Electrical test probes and methods of making the same
KR20160122071A (en) Fuel cell separator and manufacturing method of fuel cell separator
US9590341B2 (en) Connector terminal and method for producing connector terminal
JP2003149267A (en) Terminal for measuring electric and electronic characteristics of semiconductor device, and method for manufacturing the terminal
TW201122496A (en) Contact probe pin
TW440693B (en) Method of reforming a tip portion of a probe
TWI374475B (en)
EP0790642A2 (en) Method and apparatus for removing contaminant particles from surfaces in semiconductor processing equipment
KR101781312B1 (en) Electrical contact member
KR20190093520A (en) Surface treatment of metallic material for burn in test socket, connector for burn in test socket using surface treatment of metallic material, and burn in test socket
EP2902533A1 (en) Silver plating material and method for manufacturing same
TW201237423A (en) Contact probe pin and test method
JP6793742B2 (en) Electrolysis jig and electrolysis method
Sullivan et al. An electropolishing technique for germanium and silicon
CN101493433B (en) Gold plated ZnO nano-bar array electrode and method for making same
JP2006184081A (en) Probe pin for probe card
US4960493A (en) Plating on metallic substrates
JPH04354144A (en) Electrode
TWM333417U (en) Plasma cleaning apparatus
JP2019057363A (en) Discharge reactor, and manufacturing method thereof
JP6110533B2 (en) Amorphous carbon film laminated member and manufacturing method thereof
JPH1164387A (en) Probe card device
CN107624083B (en) Silicon-based charge neutralization system
US10731270B2 (en) Method of removing particles from an electronic component