JP2003149239A - Synthetic polymer material for detection of living body- related substance and method of manufacturing the same - Google Patents

Synthetic polymer material for detection of living body- related substance and method of manufacturing the same

Info

Publication number
JP2003149239A
JP2003149239A JP2001343792A JP2001343792A JP2003149239A JP 2003149239 A JP2003149239 A JP 2003149239A JP 2001343792 A JP2001343792 A JP 2001343792A JP 2001343792 A JP2001343792 A JP 2001343792A JP 2003149239 A JP2003149239 A JP 2003149239A
Authority
JP
Japan
Prior art keywords
polymer
layer
synthetic polymer
immobilized
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001343792A
Other languages
Japanese (ja)
Inventor
Chuhei Otsuki
宙平 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2001343792A priority Critical patent/JP2003149239A/en
Publication of JP2003149239A publication Critical patent/JP2003149239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material by which a living body-related substance such as DNA or the like is immobilized to a synthetic polymer having a chemically stable structure while its function is being maintained, and to provide a method of manufacturing the material. SOLUTION: The synthetic polymer material for the detection of the living body- related substance comprises a polymer layer affinitive to both layers between a living- body-related-substance immobilized polymer layer and a synthetic polymer base layer used to carry the polymer layer. In the method, the synthetic polymer material for the detection of the living body-related substance comprises the polymer layer affinitive to both layers, and is manufactured between the living-body-related-substance immobilized polymer layer and the synthetic polymer base layer used to carry the polymer layer. In the method of manufacturing the synthetic polymer material layer for the detection of the living body-related substance, the polymer layer affinitive to both layers is coated and formed in advance on the synthetic polymer base layer, and the living-body-related-substance immobilized layer is formed on, and adsorbed to, the coating polymer layer by the polymerization of a polymerizing monomer under the existence of the living body-related substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は生体関連物質検出用
合成高分子材料及びその製法に関する。本発明の生体関
連物質検出用合成高分子材料は電気泳動やDNA分析等
に用いられるマイクロアレイに有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic polymer material for detecting a biological substance and a method for producing the same. The synthetic polymer material for detecting a bio-related substance of the present invention is useful for a microarray used for electrophoresis, DNA analysis and the like.

【0002】[0002]

【従来の技術】生体関連物質の担体への固定化は、従
来、微生物や酵素などのゲルなどの担体への固定化がよ
く知られており、現在も多くの研究がなされている。特
に核酸や酵素などの生体高分子の担体への固定化に関し
ては、これまでに様々な固定化試薬が開発され、ガラ
ス、アルミナなどの金属酸化物、グラファイトなどの無
機化合物の他、デキストラン、セルロース、アガロース
などの天然有機高分子やナイロン、ポリスチレン、ポリ
アクリルアミド、ポリビニルアルコール、ポリアミノ
酸、合成リン脂質などの特定官能基を有する合成高分子
などの材料が担体として利用されている。
2. Description of the Related Art Immobilization of a bio-related substance on a carrier has been well known in the past, and immobilization on a carrier such as a gel of microorganisms, enzymes, etc. has been extensively studied. In particular, regarding immobilization of biopolymers such as nucleic acids and enzymes to carriers, various immobilization reagents have been developed so far, and glass, metal oxides such as alumina, inorganic compounds such as graphite, dextran, and cellulose. Materials such as natural organic polymers such as agarose and synthetic polymers having a specific functional group such as nylon, polystyrene, polyacrylamide, polyvinyl alcohol, polyamino acid, and synthetic phospholipids are used as carriers.

【0003】一方、生命科学の分野では現在ヒトゲノム
の解読がほぼ完了し、今後の焦点はゲノムにコードされ
た情報の中から有用な情報を如何にして抽出し、その機
能を解明するかということへ向けられている。こうした
中、最近、DNAチップと呼ばれる新規な解析手法が開
発され、この分野の技術革新の一端を担うキーデバイス
として注目を集めている。DNAチップとはガラスなど
の基板に多種多様なDNAプローブを決められた位置に
固定化したものである。この基板上に予め調べたいDN
Aと相補的な塩基配列を持つDNA断片を固定化してお
き、そこへ生体内などから抽出してきたDNA溶液をこ
の基板上に載せると、その溶液に固定化されたDNAと
相補的な塩基配列を持つDNA断片が含まれていれば基
板上の固定化DNAとハイブリダイズするのでこれを見
つけ出すことができる。この解析手法を使えば、例え
ば、がん細胞のように正常細胞が何らかの刺激を受けて
遺伝子変異を起こした場合、その細胞中の遺伝子の内で
刺激により発現量が変化しているものを定量的に見つけ
出すことができる。
On the other hand, in the field of life science, the decoding of the human genome is almost completed at present, and the future focus is how to extract useful information from the information encoded in the genome and elucidate its function. Is directed to. Under these circumstances, a new analysis method called a DNA chip has recently been developed, and has been attracting attention as a key device that plays a part in technological innovation in this field. A DNA chip is one in which various kinds of DNA probes are immobilized on a substrate such as glass at predetermined positions. DN to check beforehand on this board
When a DNA fragment having a base sequence complementary to A is immobilized and the DNA solution extracted from the living body is placed on this substrate, the base sequence complementary to the DNA immobilized in the solution is placed. If it contains a DNA fragment having the above, it hybridizes with the immobilized DNA on the substrate and can be found. Using this analysis method, for example, when normal cells such as cancer cells undergo some kind of stimulation to cause gene mutation, quantification of the expression level of the genes in the cells due to the stimulation is quantified. Can be found out.

【0004】このDNAチップに用いられる固定化技術
は大別すると二つがある。一つは、シリコンなどの基盤
上に半導体のリソグラフィ技術と光反応を用いてグアニ
ン、シトシン、チミン、アデニンの4種類の塩基ユニッ
トを段階的に反応させて20から30塩基程度のDNA
オリゴ鎖を合成していく方法[Science 251:767-773
(1991年2月刊行)]。そして、もう一つは、予め
シラン処理などによりアミノ基をコートしておいたガラ
スなどの基盤にDNA溶液を決められた位置にスポッテ
ィングしていく方法である。いずれの方法も数センチ角
のチップ上の決められた位置に高密度にDNAを配列さ
せることができる。このDNAチップの誕生により、従
来のノーザンブロッドなどによる方法に比べ、高速且つ
簡便に遺伝子の発現パターンを解析することが可能とな
った。これらのDNAチップは平板にDNAを固定化す
るものであるが、この他に、例えば、ガラスビーズ表面
にDNAを固定化したもの(第20回 キャピラリー電
気泳動シンポジウム 2000 要旨集 p60−6
1)、また、キャピラリー中空部内にDNAを固定化す
る例として光反応で核酸をキャピラリー内壁に固定化す
る特開平11−75812号公報記載の方法がある。い
ずれの方法も簡便に核酸を担体基盤に固定化ができる方
法として有用である。また、WO99/43853に記載のチップ
ではマイクロ流路の表面にビオチン修飾した薄いアガロ
ース層を敷き、ビオチン−アビジン結合で核酸を固定化
している。
There are roughly two immobilization techniques used for this DNA chip. One is a DNA of about 20 to 30 bases by stepwise reacting four types of base units of guanine, cytosine, thymine, and adenine using semiconductor lithography technology and photoreaction on a substrate such as silicon.
Method of synthesizing oligo chains [Science 251: 767-773
(Published February 1991)]. The other is a method in which a DNA solution is spotted at a predetermined position on a substrate such as glass which has been previously coated with an amino group by silane treatment or the like. In either method, DNA can be arrayed in high density at a predetermined position on a chip of several centimeters square. With the birth of this DNA chip, it has become possible to analyze the gene expression pattern faster and more easily than the conventional method using Northern blot or the like. These DNA chips are those in which DNA is immobilized on a flat plate, but in addition to this, for example, those in which DNA is immobilized on the surface of glass beads (20th Capillary Electrophoresis Symposium 2000 Abstract, p60-6)
1) Further, as an example of immobilizing DNA in the hollow portion of the capillary, there is a method described in JP-A-11-75812 in which nucleic acid is immobilized on the inner wall of the capillary by photoreaction. Any of these methods is useful as a method for easily immobilizing nucleic acid on a carrier substrate. In the chip described in WO99 / 43853, a biotin-modified thin agarose layer is laid on the surface of the microchannel, and nucleic acid is immobilized by biotin-avidin bond.

【0005】このように、近年のゲノム解析技術の進歩
に伴い、その固定化形体も様々なものが開発されている
が、現在実用化されているDNAなどの生体高分子の固
定化に用いられる支持体はガラスや金属などの無機材料
が大半で合成ポリマーを担体として利用する例は少な
い。この理由としては、一つには、この分野の検出方法
が蛍光あるいは紫外線などの光学的検出手法が主流とな
っているため、デバイス材料として用いる材質も光学的
にノイズの少ない材料を選ぶ必要があることにある。ま
た、一般に、合成高分子材料はガラスなどの無機材料に
比べ固定化し難いことも理由として挙げられる。ガラス
などの場合は、その表面に活性化部位としてシラノール
基を有しているので、シランカップリング剤処理やポリ
リジン溶液などで処理することで容易にその基盤上に活
性化表面を形成させることができる。
As described above, various immobilization forms have been developed with the recent progress of genome analysis techniques, and they are used for immobilization of biopolymers such as DNA currently in practical use. Most of the supports are inorganic materials such as glass and metal, and few examples use synthetic polymers as carriers. One of the reasons for this is that optical detection methods such as fluorescence or ultraviolet rays are the mainstream in the detection method in this field, so it is necessary to select a material that is optically low in noise as the device material. There is something. Another reason is that, in general, synthetic polymer materials are more difficult to immobilize than inorganic materials such as glass. In the case of glass, etc., it has a silanol group as an activation site on its surface, so it is possible to easily form an activated surface on the substrate by treating with a silane coupling agent treatment or a polylysine solution. it can.

【0006】合成高分子にDNAなどを固定化する際も
ガラス同様何らかの手法でその基盤上を活性化させる必
要がある。例えば、ポリ−2−ヒドロキシエチル−メタ
クリル酸メチル(PHEMA)のビーズの表面をシアン
化臭素で活性化するさせ、末端アミノ化DNAを固定化
する方法[Journal of Chromatography B,666(1995)215
-222]や末端にアミノ基を有する脂肪族炭化水素を導入
した核酸をマイクロプレート上に吸着させる方法(特開
平7−87999号公報)などの報告例がある。前者の
方法は活性基として水酸基を持つ担体であればどのよう
な材料へも容易に固定化できるが、使用する活性化試薬
であるシアン化臭素は毒性が強く、取り扱いの点で困難
な要素を含んでいることも否定できない。一方、後者の
方法は非共有結合的な固定化ではあるが、固定化部位と
して脂肪族炭化水素を導入することでポリスチレン系の
マイクロプレートへの吸着能を向上させ、とりわけ短い
オリゴ核酸でも機能を保持したまま固定化できる。
When immobilizing DNA or the like on a synthetic polymer, it is necessary to activate the substrate by some method like glass. For example, a method of immobilizing terminal aminated DNA by activating the surface of beads of poly-2-hydroxyethyl-methyl methacrylate (PHEMA) with bromine cyanide [Journal of Chromatography B, 666 (1995) 215.
-222] or a method of adsorbing a nucleic acid introduced with an aliphatic hydrocarbon having an amino group at the end onto a microplate (JP-A-7-87999). The former method can be easily immobilized on any material as long as it is a carrier having a hydroxyl group as an active group, but the activating reagent used, bromine cyanide, is highly toxic and poses a difficult factor in handling. It cannot be denied that it contains it. On the other hand, the latter method is a non-covalent immobilization method, but by introducing an aliphatic hydrocarbon as an immobilization site, the adsorptivity to polystyrene-based microplates is improved, and even a short oligonucleic acid can function. Can be fixed while holding.

【0007】[0007]

【発明が解決しようとする課題】この吸着という現象を
手法として取り入れれば、例えば、ポリメタクリル酸メ
チルのように光学材料として利用度は高いが、その構造
が化学的に安定なため基盤板表面を活性化させることが
困難な材料への核酸等の生体関連物質の固定化が容易に
なる可能性がある。今後ゲノムの機能解明が進むに連れ
解析装置の形態も多様化すると見られ、その装置形態に
応じた固定化方法の開発が尚一層重要性を帯びてくるこ
とが予想される。
If this phenomenon of adsorption is adopted as a method, it is highly utilized as an optical material such as polymethylmethacrylate, but its structure is chemically stable, so the surface of the base plate is There is a possibility that immobilization of a biological substance such as a nucleic acid on a material that is difficult to activate can be facilitated. As the function of the genome is elucidated in the future, the morphology of analysis equipment will be diversified, and it is expected that the development of immobilization methods according to the equipment morphology will become even more important.

【0008】従って本発明の課題は、上記吸着能を利用
し、ガラスよりも加工性や取り扱い性の点で材料的に優
れた合成高分子、とりわけその構造が化学的に安定な合
成高分子へ核酸などの生体関連物質をその機能を保持し
たまま担持させた材料及びその製法を提供することにあ
る。
[0008] Therefore, the object of the present invention is to make use of the above-mentioned adsorption ability, and to provide a synthetic polymer excellent in material properties in view of processability and handleability than glass, and particularly to a synthetic polymer whose structure is chemically stable. It is intended to provide a material supporting a biological substance such as a nucleic acid while maintaining its function and a method for producing the material.

【0009】[0009]

【発明を解決するための手段】本発明者らは同一ポリマ
ー同士の相互の高い親和力に着目し、予め生体関連物質
を固定化させるポリマーと同一又は親和性類似のポリマ
ーで表面を被覆した合成高分子基盤上で、生体関連物質
の存在下重合性モノマーを共重合させることで、得られ
た生体関連物質が固定化されたポリマーを該合成高分子
基盤に容易に担持させ得ることを見出し、本発明に到っ
た。
The inventors of the present invention have focused on the high mutual affinity of the same polymers, and have made synthetic high-performance coatings whose surface is coated with a polymer having the same or similar affinity as the polymer for immobilizing a biological substance in advance. By copolymerizing a polymerizable monomer in the presence of a bio-related substance on a molecular base, it was found that the polymer on which the obtained bio-related substance is immobilized can be easily supported on the synthetic polymer base. Invented.

【0010】すなわち、本発明は、生体関連物質固定化
ポリマー層と該ポリマー層を担持する合成高分子基盤層
の間に両層親和性ポリマー層を有する生体関連物質検出
用合成高分子材料である。
That is, the present invention is a synthetic polymer material for detecting a bio-related substance, which has a polymer layer on which a bio-related substance-immobilized polymer layer and a polymer layer supporting the polymer layer and having both affinity polymers. .

【0011】上記合成高分子基盤層は、例えば、中空糸
内壁部である。また、上記両層親和性ポリマーの構成モ
ノマーは、例えば、上記生体関連物質固定化ポリマーの
構成モノマーを60%(w/w)以上の比率で含むもので
ある。また、前記合成高分子基盤層はポリメチルメタク
リレートであり、上記両層親和性ポリマー及び上記生体
関連物質固定化ポリマーの構成モノマーの一部又は全部
は、例えば、2−ヒドロキシエチルメタクリレートであ
る。また、上記生体関連物質は、例えば、核酸である。
The synthetic polymer base layer is, for example, an inner wall of a hollow fiber. Further, the constituent monomer of the both-layer affinity polymer contains, for example, the constituent monomer of the biomaterial-immobilized polymer in a ratio of 60% (w / w) or more. Further, the synthetic polymer base layer is polymethylmethacrylate, and a part or all of the constituent monomers of the both-layer affinity polymer and the biomaterial immobilizing polymer are, for example, 2-hydroxyethylmethacrylate. The biological substance is, for example, nucleic acid.

【0012】さらに、本発明は、生体関連物質固定化ポ
リマー層と該ポリマー層を担持する合成高分子基盤層の
間に両層親和性ポリマー層を有する生体関連物質検出用
合成高分子材料を製造する方法であって、予め該基盤層
上に被覆により両層親和性ポリマー層を形成させた後、
生体関連物質の存在下重合性モノマーの重合により該被
覆ポリマー層上に生体関連物質固定化ポリマー層を形
成、吸着させる生体関連物質検出用合成高分子材料の製
造法である。
Further, the present invention produces a synthetic polymer material for detecting a bio-related substance, which has a polymer layer on which a bio-related substance is immobilized and a polymer layer supporting the polymer layer and which has both affinity polymer layers. Which is a method of forming a bi-affinity polymer layer by coating on the base layer in advance,
This is a method for producing a synthetic polymer material for detecting a bio-related substance, which comprises forming and adsorbing a bio-related substance-immobilized polymer layer on the coated polymer layer by polymerizing a polymerizable monomer in the presence of the bio-related substance.

【0013】[0013]

【発明の実施の形態】以下に本発明を好ましい実施態様
を含めて説明する。本発明の生体関連物質としては、デ
オキシリボ核酸(DNA)、リボ核酸(RNA)、ペプ
チド核酸(PNA)、オキシペプチド核酸(OPNA)
などの核酸、あるいは、アミノ酸、蛋白質、糖質(多糖
類)、脂質などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below including preferred embodiments. Examples of the biological substance of the present invention include deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptide nucleic acid (PNA), oxypeptide nucleic acid (OPNA)
Examples thereof include nucleic acids, amino acids, proteins, sugars (polysaccharides), lipids, and the like.

【0014】本発明の合成高分子基盤は、ナイロン6、
ナイロン66、芳香族ポリアミド等のポリアミド系材
料、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリ乳酸、ポリグリコール酸、ポリカーボネ
ート等のポリエステル系材料、ポリアクリロニトリル等
のアクリル系材料、ポリエチレンやポリプロピレン等の
ポリオレフィン系材料、ポリメタクリル酸メチル等のポ
リメタクリレート系材料、ポリビニルアルコール系材
料、ポリ塩化ビニリデン系材料、ポリ塩化ビニル系材
料、ポリウレタン系材料、フェノール系材料、ポリフッ
化ビニリデンやポリテトラフルオロエチレン等からなる
フッ素系材料、ポリアルキレンパラオキシベンゾエート
系材料等が挙げられる。
The synthetic polymer substrate of the present invention is nylon 6,
Nylon 66, polyamide-based materials such as aromatic polyamide, polyethylene terephthalate, polybutylene terephthalate, polylactic acid, polyglycolic acid, polyester-based materials such as polycarbonate, acrylic-based materials such as polyacrylonitrile, polyolefin-based materials such as polyethylene and polypropylene, Polymethacrylate-based materials such as polymethylmethacrylate, polyvinyl alcohol-based materials, polyvinylidene chloride-based materials, polyvinyl chloride-based materials, polyurethane-based materials, phenol-based materials, fluorine-based materials such as polyvinylidene fluoride and polytetrafluoroethylene , Polyalkylene paraoxybenzoate-based materials and the like.

【0015】また、合成高分子基盤の形状としては、平
板状、ディスク状、筒状、線状等、いずれの形状でも構
わない。線状又は筒状体としては、中空繊維、中実繊維
が例示できる。表面形態は、多孔質又は非多孔質でも良
い。キャピラリー電気泳動などに使用する場合は、泳動
する溶質成分にキャピラリーの材料を介して検出光を照
射して検知するため使用する材料は光学的に透明性が要
求される。従って、この場合に選ぶ材料形態としては非
多孔質材料が好ましく、有機系材料ではポリメタクリル
酸メチルで代表されるメタクリレート系樹脂やポリスチ
レン、ポリカーボネート等の透明性に優れる材料を用い
るのが好ましい。中空繊維を材料に選ぶ場合、用いる中
空繊維の外径は2mm以下、好ましくは1mm以下であ
る。また、内径は0.02mm以上が好ましい。キャピ
ラリー電気泳動用には比較的肉厚の中空繊維の方が取り
扱い容易で好ましい。
The synthetic polymer substrate may have any shape such as a flat plate shape, a disk shape, a cylindrical shape, and a linear shape. Examples of the linear or tubular body include hollow fibers and solid fibers. The surface morphology may be porous or non-porous. When used for capillary electrophoresis or the like, the solute component to be migrated is irradiated with detection light through the material of the capillary for detection, and thus the material used is required to be optically transparent. Therefore, the material form selected in this case is preferably a non-porous material, and as the organic material, it is preferable to use a material having excellent transparency such as a methacrylate resin represented by polymethylmethacrylate, polystyrene, or polycarbonate. When the hollow fiber is selected as the material, the outer diameter of the hollow fiber used is 2 mm or less, preferably 1 mm or less. The inner diameter is preferably 0.02 mm or more. For capillary electrophoresis, relatively thick hollow fibers are preferable because they are easy to handle.

【0016】生体関連物質固定化ポリマー層と該ポリマ
ー層を担持する合成高分子基盤層の間の両層親和性ポリ
マーは、両層に親和性を有するものであれば如何なるポ
リマーを選んでもよいが、特に生体関連物質固定化ポリ
マー層との吸着能を高めるためには、生体関連物質固定
化ポリマーと同じ構成モノマーを60%(w/w)以上、
より好ましくは90%(w/w)以上含むことが望まし
い。生体関連物質固定化ポリマーは、生体関連物質の種
類により適宜選択される。
The polymer having an affinity for both layers between the biomaterial-immobilized polymer layer and the synthetic polymer base layer supporting the polymer layer may be any polymer having an affinity for both layers. In order to enhance the adsorption ability to the biomaterial-immobilized polymer layer, in particular, 60% (w / w) or more of the same constituent monomer as the biomaterial-immobilized polymer,
More preferably, it is desirable to contain 90% (w / w) or more. The biomaterial-immobilized polymer is appropriately selected depending on the type of biomaterial.

【0017】例えば、合成高分子基盤としてポリメチル
メタクリレート(PMMA)、及び生体関連物質として
核酸を選ぶ場合、後述のように、生体関連物質固定化用
モノマーの重合は水系で行うので、水系重合に適したモ
ノマーという観点から考えると水溶性の高いモノマーを
用いるのが好ましく、例えば、ポリ−(2−ヒドロキシ
エチル−)メタクリレート(PHEMA)が挙げられ
る。
For example, when polymethylmethacrylate (PMMA) is selected as the synthetic polymer base and nucleic acid is selected as the bio-related substance, the polymerization of the bio-related substance-immobilizing monomer is carried out in an aqueous system as described later. From the viewpoint of a suitable monomer, it is preferable to use a highly water-soluble monomer, for example, poly- (2-hydroxyethyl-) methacrylate (PHEMA).

【0018】合成高分子基盤への両層親和性ポリマーの
被覆は、例えば、生体関連物質がDNAで、合成高分子
基盤がPMMA中空繊維、生体関連物質(DNA)固定
化ポリマーがPHEMAの場合、予めPHEMAあるい
はHEMAを60%(w/w)以上含む共重合体を中空繊
維内壁に被覆しておくことで、DNA固定化ポリマー
(PHEMA)の内壁への吸着能を高めることができ
る。被覆処理は、具体的には、合成高分子基盤、DNA
固定化ポリマーの両者に親和性のある溶媒、例えばエタ
ノールなどにPHEMAを溶かして、その溶液を中空繊
維内壁に塗布した後、溶媒を蒸発させることにより行う
ことができる。また、PHEMAの鎖をグラフトさせた
PMMAグラフトポリマーを同様の手法で被覆すること
もできる。一方、この処理手法を用いれば合成高分子基
盤もPHEMAが被覆可能であればPMMAに限らず如
何なる材料を用いることもできる。また、この被覆処理
は内層をPHEMAにした多層紡糸により行うこともで
きる。
When the biocompatible substance is DNA, the synthetic polymer substrate is PMMA hollow fiber, and the biocompatible substance (DNA) -immobilized polymer is PHEMA, for example, the synthetic polymer substrate is coated with a polymer having both affinity layers. By pre-coating the hollow fiber inner wall with a copolymer containing PHEMA or HEMA in an amount of 60% (w / w) or more, the ability to adsorb the DNA-immobilized polymer (PHEMA) to the inner wall can be enhanced. The coating treatment is specifically a synthetic polymer base, DNA
It can be carried out by dissolving PHEMA in a solvent having an affinity for both of the immobilized polymers, for example, ethanol, applying the solution to the inner wall of the hollow fiber, and then evaporating the solvent. Further, a PMMA graft polymer grafted with PHEMA chains can be coated by the same method. On the other hand, if this treatment technique is used, any material can be used as well as PMMA as long as the synthetic polymer substrate can be coated with PHEMA. Further, this coating treatment can also be performed by multi-layer spinning in which the inner layer is PHEMA.

【0019】上記処理で得られたPHEMA内壁被覆P
MMA中空繊維の被覆層上へのDNA固定化ポリマーの
吸着処理は、DNAの存在下重合性モノマーを水系重合
することにより行うことができる。その際、DNAに予
め重合性官能基、例えば、末端をビニル基修飾したDN
Aを用い、これと共重合可能な重合性モノマーを共重合
させることが、DNAをより強く固定化し得る点で好ま
しい。
PHEMA inner wall coating P obtained by the above treatment
The adsorption treatment of the DNA-immobilized polymer on the MMA hollow fiber coating layer can be carried out by aqueous polymerization of the polymerizable monomer in the presence of DNA. At that time, DNA having a polymerizable functional group, for example, a vinyl group modified at its end, is previously added to DNA
It is preferable to use A and copolymerize a polymerizable monomer copolymerizable with A from the viewpoint that DNA can be more strongly immobilized.

【0020】DNAへのビニル基の導入は、例えば、特
開2001−122892号公報、特開平3−4709
7号公報あるいはWO98/39351号公報記載の方法
が採用できる。
The introduction of a vinyl group into DNA is described, for example, in JP 2001-122892 A and JP 3-4709 A.
The method described in No. 7 or WO98 / 39351 can be adopted.

【0021】重合は、例えば、ビニル化DNA、HEM
A、水及び開始剤を混合した重合溶液を中空繊維の中空
部へ吸引導入により充填し、中空部内で水系重合させる
ことにより行うことができる。ここで用いられる開始剤
としては、使用する溶媒に溶解可能なアゾ系、過酸化物
系、レドックス系等の開始剤、例として、2,2′−ア
ゾビスイソブチロニトリル、2,2′−アゾビス(2−
メチルブチロニトリル)イソブチロニトリル、過酸化ベ
ンゾイル、又は過酸化ベンゾイル−ジメチルアニリン系
等が挙げられる。重合反応終了後、中空部の水を除去す
ればDNAを固定したPHEMA共重合体が中空部内壁
に吸着されたPMMA中空繊維を得ることができる。
Polymerization is carried out, for example, by vinylated DNA, HEM
It can be carried out by filling a polymerization solution obtained by mixing A, water and an initiator into the hollow portion of the hollow fiber by suction introduction, and conducting aqueous polymerization in the hollow portion. As the initiator used here, an azo-based, peroxide-based or redox-based initiator which can be dissolved in the solvent used, for example, 2,2′-azobisisobutyronitrile, 2,2 ′ -Azobis (2-
Methyl butyronitrile) isobutyronitrile, benzoyl peroxide, benzoyl peroxide-dimethylaniline system, and the like. After the completion of the polymerization reaction, water in the hollow portion is removed to obtain a PMMA hollow fiber in which the PHEMA copolymer having the DNA immobilized thereon is adsorbed on the inner wall of the hollow portion.

【0022】本発明の生体関連物質検出用合成高分子材
料は、例えば、生体関連物質が核酸の場合には、その塩
基配列に相補性のある塩基鎖をハイブリダイズさせるこ
とで核酸のアッセイ用デバイスとして供することができ
る。
The synthetic polymeric material for detecting a biological substance of the present invention is a device for assaying a nucleic acid, for example, when the biological substance is a nucleic acid, by hybridizing a base chain complementary to its base sequence. Can be used as

【0023】以下、実施例により、本発明をより具体的に
説明する。
Hereinafter, the present invention will be described more specifically with reference to examples.

【実施例】<実施例1>ポリメタクリル酸メチル(PM
MA)中空繊維内壁へのDNAプローブの固定化
(1): 1)中空部内壁へのPHEMAの被覆 PMMA中空繊維(三菱レイヨン株式会社製、外径25
0μm、内径130μm)を50cmに切断した後、中
空部にエタノールを吸引により通液して洗浄した。次
に、ポリ−(2−ヒドロキシエチル−)メタクリレート
(PHEMA)のエタノール溶液を同様にして通液して
中空部内壁面に該エタノール溶液を付着させた後、エタ
ノール溶媒を蒸発させてPHEMAを中空部内壁に被覆
した中空繊維(A)を得た。 2)DNAプローブ固定化ポリマーの上記被覆面への吸
着 200μl用リアクションチューブに下記の仕込み組成
の重合液(B)を調整した。 HEMA 5μl 蒸留水(大塚製薬製) 43μl 50pmol/μl DNA断片(AGCT)水溶液 1μl 10%VA044水溶液(和光純薬製) 1μl 次に1)で得た中空繊維(A)に重合液(B)を充填さ
せ、窒素雰囲気下55℃で3時間重合した。重合終了
後、数回水洗してDNA固定化ポリマーを内壁に吸着さ
せたPMMA中空繊維を得た。
EXAMPLES <Example 1> Polymethylmethacrylate (PM
MA) Immobilization of DNA probe on inner wall of hollow fiber (1): 1) Coating of PHEMA on inner wall of hollow part PMMA hollow fiber (manufactured by Mitsubishi Rayon Co., Ltd., outer diameter 25)
After cutting 0 μm, inner diameter 130 μm) into 50 cm, ethanol was sucked through the hollow portion to wash. Next, an ethanol solution of poly- (2-hydroxyethyl-) methacrylate (PHEMA) was passed in the same manner to attach the ethanol solution to the inner wall surface of the hollow portion, and then the ethanol solvent was evaporated to remove PHEMA from the hollow portion. A hollow fiber (A) whose inner wall was coated was obtained. 2) Adsorption of the DNA probe-immobilized polymer onto the coated surface A 200 μl reaction tube was prepared with a polymerization solution (B) having the following composition. HEMA 5 μl Distilled water (Otsuka Pharmaceutical Co., Ltd.) 43 μl 50 pmol / μl DNA fragment (AGCT) aqueous solution 1 μl 10% VA044 aqueous solution (Wako Pure Chemical Industries, Ltd.) 1 μl It was filled and polymerized under a nitrogen atmosphere at 55 ° C. for 3 hours. After the completion of the polymerization, it was washed with water several times to obtain a PMMA hollow fiber having the DNA-immobilized polymer adsorbed on the inner wall.

【0024】<実施例2> PMMA中空繊維内壁へのDNAプローブの固定化
(2): 1)中空部内壁へのPHEMAの被覆 PMMA中空繊維(三菱レイヨン株式会社製、外径25
0μm、内径130μm)を50cmに切断した後、中
空部にエタノールを吸引により通液して洗浄した。次
に、総研化学(株)製主鎖PMMA/側鎖PHEMAの
グラフトポリマー(C)のメチルセルソルブ溶液を同様
にして通液して中空部内壁面に該ポリマー溶液を付着さ
せた後、溶媒を蒸発させてPHEMAを中空部内壁に被
覆した中空繊維(D)を得た。 2)DNAプローブ固定化ポリマーの上記被覆面への吸
着 実施例1の2)と同様の方法でDNA固定化ポリマーを
内壁に被覆させたPMMA中空繊維を得た。
<Example 2> Immobilization of DNA probe on inner wall of PMMA hollow fiber (2): 1) Coating of PHEMA on inner wall of hollow portion PMMA hollow fiber (manufactured by Mitsubishi Rayon Co., Ltd., outer diameter 25)
After cutting 0 μm, inner diameter 130 μm) into 50 cm, ethanol was sucked through the hollow portion to wash. Next, a methyl cellosolv solution of a graft polymer (C) of main chain PMMA / side chain PHEMA manufactured by Soken Chemical Co., Ltd. was passed in the same manner to attach the polymer solution to the inner wall surface of the hollow portion, and then the solvent was added. Evaporation gave a hollow fiber (D) in which the inner wall of the hollow portion was coated with PHEMA. 2) Adsorption of the DNA probe-immobilized polymer on the coated surface In the same manner as in 2) of Example 1, PMMA hollow fibers having the inner wall coated with the DNA-immobilized polymer were obtained.

【0025】<参考例1>実施例1、2で得たキャピラ
リーを使ったハイブリダイゼーション: (1)検体溶液の調製 下記の仕込み組成で検体溶液を200μl調製し、検体
溶液(E)とした。 20xSSC 40μl 10%SDS 10μl 1.16pmol/μl DNA断片(AGCT)溶液 8.6μl (注)Cy5色素で標識したもの 蒸留水(大塚製薬製) 141.6μl (2)ハイブリダイゼーション 実施例1及び2で得たキャピラリーを3mm長にカットし
たものを3本準備し、これらを(1)で調製した検体溶
液(E)30μlと共に塩化ビニル製の密封容器に入
れ、密閉して16時間55℃でハイブリダイゼーション
を行った。16時間後、容器からキャピラリーを取り出
し、キャピラリー側面を励起波長633nmで蛍光顕微
鏡観察を行った。その結果、キャピラリー内壁部に検体
がハイブリダイゼーションされていることが蛍光検出か
ら確認された。
<Reference Example 1> Hybridization using the capillaries obtained in Examples 1 and 2: (1) Preparation of sample solution 200 μl of a sample solution was prepared with the following composition to prepare a sample solution (E). 20 × SSC 40 μl 10% SDS 10 μl 1.16 pmol / μl DNA fragment (AGCT) solution 8.6 μl (Note) Labeled with Cy5 dye Distilled water (Otsuka Pharmaceutical Co., Ltd.) 141.6 μl (2) Hybridization Obtained in Examples 1 and 2 Prepare 3 capillaries cut to a length of 3 mm, put them in a vinyl chloride sealed container together with 30 μl of the sample solution (E) prepared in (1), and seal for 16 hours at 55 ° C for hybridization. went. After 16 hours, the capillary was taken out from the container, and the side surface of the capillary was observed with a fluorescence microscope at an excitation wavelength of 633 nm. As a result, it was confirmed by fluorescence detection that the sample was hybridized with the inner wall of the capillary.

【0026】[0026]

【発明の効果】生体関連物質を固定化したポリマーと同
一あるいは親和性を有するポリマーを予め合成高分子基
盤に被覆しておくことにより、ガラスよりも加工性や取
り扱い性の点で材料的に優れた合成高分子、とりわけそ
の構造が化学的に安定な合成高分子へDNAなどの生体
関連物質をその機能を保持したまま担持できる。得られ
た生体関連物質検出用合成高分子材料は電気泳動やDN
A分析用アレイの製造への利用が可能となる。
EFFECT OF THE INVENTION By coating a synthetic polymer substrate with a polymer having the same or affinity as the polymer on which the biological substance is immobilized, the material is superior to glass in terms of workability and handleability. It is possible to support a biological polymer such as DNA while retaining its function on a synthetic polymer, especially a synthetic polymer whose structure is chemically stable. The obtained synthetic polymer material for detecting biological substances is used for electrophoresis and DN.
A It becomes possible to use it for manufacturing the array for analysis.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 37/00 102 G01N 37/00 102 // C08L 33:12 C08L 33:12 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 37/00 102 G01N 37/00 102 // C08L 33:12 C08L 33:12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】生体関連物質固定化ポリマー層と該ポリマ
ー層を担持する合成高分子基盤層の間に両層親和性ポリ
マー層を有する生体関連物質検出用合成高分子材料。
1. A synthetic polymer material for detecting a bio-related substance, comprising a bio-affinity-immobilized polymer layer and a polymer layer supporting the polymer layer and having both affinity polymer layers.
【請求項2】前記合成高分子基盤層が中空糸内壁部であ
る請求項1記載の生体関連物質検出用合成高分子材料。
2. The synthetic polymer material for detecting a bio-related substance according to claim 1, wherein the synthetic polymer base layer is an inner wall portion of a hollow fiber.
【請求項3】前記両層親和性ポリマーの構成モノマーが
前記生体関連物質固定化ポリマーの構成モノマーを60
%(w/w)以上の比率で含む請求項1又は2記載の生体
関連物質検出用合成高分子材料。
3. The constituent monomer of the both-layer affinity polymer is 60% of the constituent monomer of the biomaterial immobilizing polymer.
The synthetic polymer material for detecting a bio-related substance according to claim 1 or 2, which is contained in a ratio of not less than% (w / w).
【請求項4】前記合成高分子基盤層がポリメチルメタク
リレートであり、前記両層親和性ポリマー及び前記生体
関連物質固定化ポリマーの構成モノマーの一部又は全部
が2−ヒドロキシエチルメタクリレートである請求項1
〜3のいずれか1項に記載の生体関連物質検出用合成高
分子材料。
4. The synthetic polymer base layer is polymethylmethacrylate, and part or all of the constituent monomers of the bilayer affinity polymer and the biomaterial immobilization polymer are 2-hydroxyethylmethacrylate. 1
4. The synthetic polymer material for detecting a bio-related substance according to any one of 3 to 3.
【請求項5】生体関連物質が核酸である請求項1〜4の
いずれか1項に記載の生体関連物質検出用合成高分子材
料。
5. The synthetic polymer material for detecting a bio-related substance according to claim 1, wherein the bio-related substance is a nucleic acid.
【請求項6】生体関連物質固定化ポリマー層と該ポリマ
ー層を担持する合成高分子基盤層の間に両層親和性ポリ
マー層を有する生体関連物質検出用合成高分子材料を製
造する方法であって、予め該合成高分子基盤層上に被覆
により両層親和性ポリマー層を形成させた後、生体関連
物質の存在下重合性モノマーの重合により該被覆ポリマ
ー層上に生体関連物質固定化ポリマー層を形成、吸着さ
せる生体関連物質検出用合成高分子材料の製造法。
6. A method for producing a synthetic polymeric material for detecting a biologically relevant substance, comprising a polymer layer on which a biologically relevant substance is immobilized and a synthetic polymer substrate layer carrying the polymer layer, and having both affinity polymer layers. Then, a polymer layer having affinity for both layers is formed in advance by coating on the synthetic polymer base layer, and then a polymer layer on which a biomaterial is immobilized by polymerizing a polymerizable monomer in the presence of the biomaterial. A method for producing a synthetic polymer material for detecting a biological substance, which is formed and adsorbed.
JP2001343792A 2001-11-08 2001-11-08 Synthetic polymer material for detection of living body- related substance and method of manufacturing the same Pending JP2003149239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343792A JP2003149239A (en) 2001-11-08 2001-11-08 Synthetic polymer material for detection of living body- related substance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343792A JP2003149239A (en) 2001-11-08 2001-11-08 Synthetic polymer material for detection of living body- related substance and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003149239A true JP2003149239A (en) 2003-05-21

Family

ID=19157413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343792A Pending JP2003149239A (en) 2001-11-08 2001-11-08 Synthetic polymer material for detection of living body- related substance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003149239A (en)

Similar Documents

Publication Publication Date Title
AU2021212076B2 (en) Self-assembled patterning using patterned hydrophobic surfaces
US7695910B2 (en) Method for manufacturing hydrogel biochip by using star-like polyethylene glycol derivative having epoxy group
EP1147222B1 (en) Replicable probe array
US20050202433A1 (en) Novel high density arrays and methods for analyte analysis
US20090280997A1 (en) Microarray system
US20050042612A1 (en) Graft polymer martrices
US6605363B2 (en) High-density functional slide and preparation method thereof
WO2017028757A1 (en) Sequence immobilization method, chip, and application
JP2005517902A (en) DNA biochip production method and application method thereof
JP2001108683A (en) Dna fragment fixing solid-phase carrier, dna fragment fixing method, and nucleic-acid fragment detecting method
EP1444034A2 (en) Arrays having clustered arrangements and methods of making and using them
JP4404328B2 (en) Method for producing biopolymer array flake
JP2002060671A (en) Novel coating resin plate
IL267445B1 (en) Array including sequencing primer and non-sequencing entity
JP2003149239A (en) Synthetic polymer material for detection of living body- related substance and method of manufacturing the same
WO2004089531A1 (en) Method for immobilizing biomolecules on metal oxide substrates
JP2000270878A (en) Nucleic acid-immobilized gel-holding hollow fiber, arranged body of the hollow fiber and section thereof
JP4108891B2 (en) Nucleic acid-immobilized gel-carrying porous hollow fiber, porous hollow fiber array and thin piece thereof
JP2007178208A (en) Biological substance fixing carrier
JP2003079377A (en) Polyhydric alcohol-including gel holding organism- relating substance therein
JP2006234712A (en) Dna immobilization method
JP2001122892A (en) Nucleic acid immobilized polymer gel and method for producing the gel
CN1410545A (en) Microarray chip used for cell or microorganism detection and its preparation method
JP2001178442A (en) Method for immobilizing dna fragment on surface of solid phase carrier and dna chip
CN1299057A (en) Biochip and its preparing process