JP2003148148A - Air cooler of internal combustion engine with supercharger - Google Patents

Air cooler of internal combustion engine with supercharger

Info

Publication number
JP2003148148A
JP2003148148A JP2001343434A JP2001343434A JP2003148148A JP 2003148148 A JP2003148148 A JP 2003148148A JP 2001343434 A JP2001343434 A JP 2001343434A JP 2001343434 A JP2001343434 A JP 2001343434A JP 2003148148 A JP2003148148 A JP 2003148148A
Authority
JP
Japan
Prior art keywords
air
chamber
air cooler
supercharger
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001343434A
Other languages
Japanese (ja)
Other versions
JP3920077B2 (en
Inventor
Toshiaki Nakagawa
利明 仲川
Hiroshi Omote
洪志 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2001343434A priority Critical patent/JP3920077B2/en
Publication of JP2003148148A publication Critical patent/JP2003148148A/en
Application granted granted Critical
Publication of JP3920077B2 publication Critical patent/JP3920077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • F28D7/1623Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium with particular pattern of flow of the heat exchange media, e.g. change of flow direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air cooler reducing pressure difference between an inlet and an outlet of air. SOLUTION: The ratio of an inlet area to an outlet area of air is set, in a way to reduce pressure loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、過給機から加圧さ
れた空気が供給される空気冷却器の構造に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an air cooler to which pressurized air is supplied from a supercharger.

【0002】[0002]

【従来の技術】図7は、従来の過給機付内燃機関の空気
冷却器200の縦断平面図である。空気冷却器200
は、多数のフィン91を複数の冷却管90が貫通して冷
却管90とフィン91の間で冷却空間を形成している。
冷却管90の左端側には仕切89で仕切られた室98と
室99とが形成されており、室98には冷却水供給管9
2が接続されており、室99には排水管94が接続され
ている。冷却水供給管92から供給される冷却水は室9
8に連通する冷却管90を通って室93(冷却管90の
右端側に形成された室)へ達し、さらに室93から室9
9と連通する冷却管90を通って昇温した冷却水が室9
9を経て排水管94から排水されるようになっている。
2. Description of the Related Art FIG. 7 is a vertical plan view of an air cooler 200 for a conventional internal combustion engine with a supercharger. Air cooler 200
A plurality of cooling pipes 90 penetrate a large number of fins 91 to form a cooling space between the cooling pipes 90 and the fins 91.
A chamber 98 and a chamber 99 partitioned by a partition 89 are formed on the left end side of the cooling pipe 90, and the cooling water supply pipe 9 is provided in the chamber 98.
2 is connected, and a drain pipe 94 is connected to the chamber 99. The cooling water supplied from the cooling water supply pipe 92 is supplied to the chamber 9
8 to reach a chamber 93 (a chamber formed on the right end side of the cooling pipe 90) through the cooling pipe 90, and further from the chamber 93 to the chamber 9
The cooling water heated through the cooling pipe 90 communicating with
It is adapted to be drained from the drain pipe 94 via 9.

【0003】入口95から空気冷却器200内に入った
高温の加圧空気は、フィン91と冷却管90とで形成さ
れた微細な空間を通る際に冷却され、室97を経て出口
96から機関へと向かう。ところで、空気は入口95か
ら入って出口96から出て行くまでの間に冷却される
が、フィン91や冷却管90等が抵抗となり、圧力損失
が生じる。また、冷却された空気は体積が減少し、入口
95と出口96とで圧力差が生じてしまい、機関の高出
力化に伴う空気の供給量を確保するのが困難であった。
The high-temperature pressurized air that has entered the air cooler 200 from the inlet 95 is cooled while passing through the minute space formed by the fins 91 and the cooling pipes 90, and passes through the chamber 97 and the outlet 96 to the engine. Head to. By the way, the air is cooled before it enters through the inlet 95 and exits through the outlet 96, but the fins 91, the cooling pipes 90, and the like become a resistance, causing a pressure loss. Further, the volume of the cooled air is reduced, and a pressure difference is generated between the inlet 95 and the outlet 96, which makes it difficult to secure the supply amount of air accompanying the high output of the engine.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明では、空
気の入口と出口とで圧力差を減少させることができる空
気冷却器を提供することを課題としている。
Therefore, it is an object of the present invention to provide an air cooler capable of reducing the pressure difference between the air inlet and the air outlet.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
請求項1の発明では、圧力損失を低減させるように空気
の入口面積と出口面積の比を設定した。また、請求項2
の発明では空気の進行方向を内部で変化させる空気冷却
器に請求項1の発明を適用するようにした。空気を冷却
した際の空気の体積変化による圧力変化を低減させるよ
うに入口面積と出口面積の比を設定することもできる。
In order to solve the above problems, in the invention of claim 1, the ratio of the inlet area to the outlet area of air is set so as to reduce the pressure loss. In addition, claim 2
In the invention of claim 1, the invention of claim 1 is applied to the air cooler in which the traveling direction of air is internally changed. It is also possible to set the ratio of the inlet area to the outlet area so as to reduce the pressure change due to the volume change of the air when the air is cooled.

【0006】[0006]

【発明の実施の形態】(請求項1の発明の実施例)図1
は、請求項1の発明による空気冷却器100の縦断平面
図である。また、図2は図1のII−II断面図である。さ
らに図5は空気冷却器100を備えた内燃機関の空気の
流通経路図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment of the Invention of Claim 1) FIG.
FIG. 2 is a vertical plan view of the air cooler 100 according to the invention of claim 1. 2 is a sectional view taken along line II-II of FIG. Further, FIG. 5 is a flow diagram of air in an internal combustion engine including the air cooler 100.

【0007】図5に示すように吸入空気がコンプレッサ
50(過給機)で加圧され、加圧された空気が空気冷却
器100に供給され、空気冷却器100で冷却された空
気は機関60へ供給されて燃焼に寄与し、機関60から
排出空気(排気ガス)が排出される。この排気ガスによ
りタービン70が駆動され、コンプレッサ50で吸入さ
れた空気が圧縮されるようになっている。
As shown in FIG. 5, the intake air is pressurized by the compressor 50 (supercharger), the pressurized air is supplied to the air cooler 100, and the air cooled by the air cooler 100 is the engine 60. Is supplied to the engine 60 to contribute to combustion, and exhaust air (exhaust gas) is discharged from the engine 60. The turbine 70 is driven by this exhaust gas, and the air taken in by the compressor 50 is compressed.

【0008】図1に示すように空気冷却器100は、多
数のフィン28が空気の流れ方向と平行に配置され、こ
のフィン28を複数の冷却管27が貫通している。冷却
管27の両端は側板18,19を介して空気通路壁29
に固定されている。
As shown in FIG. 1, in the air cooler 100, a large number of fins 28 are arranged parallel to the air flow direction, and a plurality of cooling pipes 27 penetrate the fins 28. Both ends of the cooling pipe 27 are provided with air passage walls 29 through the side plates 18 and 19.
It is fixed to.

【0009】空気通路壁29には図1で見て左側にハウ
ジング23が固着されており、右側にはハウジング24
が固着されている。側板18とハウジング23の間には
室30が形成されており、また、側板19とハウジング
24の間には室31が形成されている。
A housing 23 is fixed to the left side of the air passage wall 29 in FIG. 1, and a housing 24 is fixed to the right side thereof.
Is stuck. A chamber 30 is formed between the side plate 18 and the housing 23, and a chamber 31 is formed between the side plate 19 and the housing 24.

【0010】さらにハウジング23には冷却水供給管2
5が接続されており、ハウジング24には排水管26が
接続されている。冷却水供給管25から室30に低温
(例えば30℃程度)の冷却水が供給され、冷却水は冷
却管27を通って室31に至り、昇温した冷却水が室3
1から排水管26を経て外部へ排出される。
Further, the housing 23 has a cooling water supply pipe 2
5 is connected, and a drain pipe 26 is connected to the housing 24. Cooling water at a low temperature (for example, about 30 ° C.) is supplied from the cooling water supply pipe 25 to the chamber 30, the cooling water reaches the chamber 31 through the cooling pipe 27, and the heated cooling water is stored in the chamber 3.
1 through the drain pipe 26 and is discharged to the outside.

【0011】空気冷却器100の空気流入口21には過
給機(コンプレッサ50)から高温(例えば200℃〜
250℃)の加圧空気が供給され、加圧空気は冷却管2
7とフィン28の間の微細空間内に流入して50℃程度
に冷却され空気排出口22から機関60(図5)へ流出
する。
The air inlet 21 of the air cooler 100 has a high temperature (for example, 200.degree. C.) from the supercharger (compressor 50).
(250 ° C) pressurized air is supplied, and the pressurized air is supplied to the cooling pipe 2
It flows into the minute space between the fin 7 and the fin 28, is cooled to about 50 ° C., and flows out from the air outlet 22 to the engine 60 (FIG. 5).

【0012】ところで、図2に示す空気流入口21の流
路幅x(入口面積)と空気流出口22の流路幅y
(出口面積)は、空気流入口21の流路幅xの方が
大きくなるように設定されており、空気流入口21と空
気排出口22とは流路幅が徐々に狭くなるように円滑に
連結されている。
By the way, the flow passage width x 1 (inlet area) of the air inlet 21 and the flow passage width y of the air outlet 22 shown in FIG.
1 (outlet area) is set so that the flow passage width x 1 of the air inlet 21 becomes larger, and the flow passage widths of the air inlet 21 and the air outlet 22 become gradually narrower. It is connected smoothly.

【0013】高温の加圧空気は、冷却されるにつれて体
積が小さくなり、加えてフィン28や冷却管27等が抵
抗として作用し、空気排出口22に近づくにつれて減圧
される。流路幅x及びyはこの減圧を考慮し、空気
流入口21における高温の加圧空気の空気圧と空気排出
口22における低温の空気の空気圧との圧力差が極力小
さくなるように機関60(図5)の運転形態及び運転環
境に応じて任意に設定する。
The volume of the hot pressurized air becomes smaller as it is cooled, and in addition, the fins 28, the cooling pipes 27, etc. act as resistance, and are decompressed as they approach the air outlet 22. In consideration of this pressure reduction, the flow passage widths x 1 and y 1 are set so that the pressure difference between the air pressure of the hot pressurized air at the air inlet 21 and the air pressure of the low temperature air at the air outlet 22 is minimized. It is arbitrarily set according to the operation mode and the operation environment of (FIG. 5).

【0014】また、過給機(コンプレッサ50)の圧縮
率が向上するほど加圧空気の温度は上昇するので、流路
幅y(出口面積)に対して流路幅x(入口面積)を
大きくする。小型機関で高出力が要求される機関ほどそ
の差を大きく設定するのが好ましい。
Further, since the temperature of the pressurized air rises as the compression ratio of the supercharger (compressor 50) increases, the flow passage width x 1 (inlet area) with respect to the flow passage width y 1 (outlet area). To increase. It is preferable to set a larger difference for a small engine that requires higher output.

【0015】(請求項2の発明の実施例)図3は、請求
項2の発明による空気冷却器110の縦断平面図であ
る。空気冷却器110は、複数の冷却管14が多数のフ
ィン15を貫通しており、冷却管14の両端は銅製のプ
レート部材17,32を介して空気通路壁16に固着さ
れている。
(Embodiment of the Invention of Claim 2) FIG. 3 is a vertical plan view of an air cooler 110 according to the invention of Claim 2. In the air cooler 110, a plurality of cooling pipes 14 penetrate a large number of fins 15, and both ends of the cooling pipes 14 are fixed to the air passage wall 16 via copper plate members 17 and 32.

【0016】プレート部材32,17の外側にはハウジ
ング5及び6が設けられ、それぞれ空気通路壁16に固
着されている。プレート部材32とハウジング5の間に
は室11が形成されている。ハウジング6には仕切3が
設けてあり、この仕切3はプレート部材17に当接して
おり、プレート部材17とハウジング6の間には室9と
室10とが形成されている。
Housings 5 and 6 are provided outside the plate members 32 and 17, and are fixed to the air passage wall 16, respectively. A chamber 11 is formed between the plate member 32 and the housing 5. The housing 6 is provided with a partition 3, the partition 3 is in contact with the plate member 17, and a chamber 9 and a chamber 10 are formed between the plate member 17 and the housing 6.

【0017】また、空気通路壁16の右端にはハウジン
グ4が固着されている。冷却管14とフィン15とで形
成された多数の微細空間の右方にはハウジング4で囲わ
れた室12が形成されている。
A housing 4 is fixed to the right end of the air passage wall 16. A chamber 12 surrounded by the housing 4 is formed on the right side of a large number of minute spaces formed by the cooling pipes 14 and the fins 15.

【0018】空気通路壁16で囲われた空気流路は仕切
13で仕切られており、図3で見て仕切13より上側の
左端には、図5に示すコンプレッサ50(過給機)から
加圧空気が供給される空気流入口1が形成されている。
また、図3で見て仕切13より下側の左端には機関60
に連通する空気排出口2が形成されている。
The air flow path surrounded by the air passage wall 16 is partitioned by a partition 13. The compressor 50 (supercharger) shown in FIG. An air inlet 1 to which compressed air is supplied is formed.
Further, as shown in FIG. 3, the engine 60 is provided at the left end below the partition 13.
Is formed with an air outlet 2.

【0019】空気流入口1から流入した高温の加圧空気
は、仕切13より上側の冷却管14とフィン15とで形
成された微細空間を通過して室12内に入り、室12か
ら仕切13より下側の冷却管14とフィン15とで形成
された微細空間を通過して空気排出口2から機関60
(図5)へ冷却された空気が流れる。
The high-temperature pressurized air that has flowed in from the air inlet 1 passes through the fine space formed by the cooling pipes 14 and the fins 15 above the partition 13 into the chamber 12, and then the partition 12 from the chamber 12. After passing through a fine space formed by the cooling pipe 14 and the fins 15 on the lower side, the air is discharged from the air discharge port 2 to the engine 60.
The cooled air flows to (Fig. 5).

【0020】ハウジング6には室9と連通する冷却水供
給管7が接続されており、また、室10と連通する排水
管8が接続されている。冷却水供給管7から室9内に低
温(例えば30℃)の冷却水が供給され、冷却水は室9
と連通する冷却管14を通って室11内へ流入し、さら
に室11から室10と連通する冷却管14を通って室1
0に至り、排水管8からは昇温した冷却水が排出される
ようになっている。
A cooling water supply pipe 7 communicating with the chamber 9 is connected to the housing 6, and a drain pipe 8 communicating with the chamber 10 is also connected to the housing 6. Cooling water at a low temperature (for example, 30 ° C.) is supplied from the cooling water supply pipe 7 into the chamber 9, and the cooling water is supplied to the chamber 9.
Through the cooling pipe 14 communicating with the chamber 11 into the chamber 11, and further from the chamber 11 through the cooling pipe 14 communicating with the chamber 10.
When the temperature reaches 0, the temperature of the cooling water is increased from the drain pipe 8.

【0021】以下に記す流路幅x,yは、図2の流
路幅x,yとは示す向きが異なっている(図1には
,yを示すことができず、x,yは図1の断
面図である図2に示される。)が、ここでは同じ用語の
「流路幅」を用いている。後述の流路幅x,yも同
じである。
The flow passage widths x 2 and y 2 described below are different from the flow passage widths x 1 and y 1 shown in FIG. 2 in different directions (x 1 and y 1 can be shown in FIG. 1). (X 1 , y 1 are shown in FIG. 2, which is a cross-sectional view of FIG. 1.), but the same term “flow channel width” is used here. The flow path widths x 3 and y 3 described later are also the same.

【0022】図3に示すように、空気流入口1の流路幅
と空気排出口2の流路幅yは一致しておらず、空
気流入口1の流路幅xの方が大きくなるように設定さ
れている。空気流入口1から空気冷却器110内に流入
する高温の加圧空気と、空気排出口2から排出される低
温の空気の圧力差が小さくなるように、面積比に換算し
て空気流入口1の面積は、例えば空気排出口2の面積の
1.3倍に設定されている。
As shown in FIG. 3, the flow path width x 2 and channel width y 2 of the air outlet 2 in the air inlet 1 is not coincident, who channel width x 2 of the air inlet 1 Is set to be large. The air inlet 1 is converted into an area ratio so that the pressure difference between the high temperature pressurized air flowing into the air cooler 110 from the air inlet 1 and the low temperature air discharged from the air outlet 2 becomes small. Area is set to 1.3 times the area of the air outlet 2.

【0023】この面積比は、内燃機関の運転の仕方や運
転環境により適正値が異なるため、異なる型式の内燃機
関の場合はもちろんのこと、同じ型式の内燃機関同士で
あっても適正な面積比は異なる。事前に諸条件を調査す
ることにより適正な面積比を設定するのが好ましい。
Since the appropriate value of this area ratio differs depending on the operating method and operating environment of the internal combustion engine, not only in the case of internal combustion engines of different types, but also in the case of internal combustion engines of the same type, the appropriate area ratio is obtained. Is different. It is preferable to set an appropriate area ratio by investigating various conditions in advance.

【0024】図4は、請求項2の発明による別の空気冷
却器120の縦断平面図である。基本的な構造は図3の
空気冷却器110と同じであるが、空気冷却器110で
は空気の進行方向が途中で(室12において)1回変更
するが、空気冷却器120では途中で(室48,49に
おいて)2回変更する。その他の空気冷却器120の構
成は、基本的に空気冷却器110の構成と同じである。
FIG. 4 is a vertical plan view of another air cooler 120 according to the second aspect of the present invention. The basic structure is the same as that of the air cooler 110 in FIG. 3, but the air cooler 110 changes the traveling direction of air once (in the chamber 12) once, but in the air cooler 120 (in the chamber 12). Change twice (at 48, 49). The other configurations of the air cooler 120 are basically the same as the configurations of the air cooler 110.

【0025】冷却水が冷却水供給管40から室52内に
供給され、室52内の低温の冷却水は室52と連通して
いる冷却管43内を通過して室53内に流入する。室5
3内の冷却水は、室54と連通している冷却管43を介
して室54内へ流れ、昇温した冷却水が排水管51から
外部へと排水される。
Cooling water is supplied from the cooling water supply pipe 40 into the chamber 52, and the low-temperature cooling water in the chamber 52 passes through the cooling pipe 43 communicating with the chamber 52 and flows into the chamber 53. Room 5
The cooling water in 3 flows into the chamber 54 through the cooling pipe 43 communicating with the chamber 54, and the heated cooling water is drained from the drain pipe 51 to the outside.

【0026】図4において、流路幅xの空気流入口4
1から流入した高温の加圧空気は、冷却管43とフィン
44の間の微細空間を通って冷却されながら室48に流
入する。室48には後から加圧空気が送りこまれてくる
ので、室48内の多少冷却された空気は、流路幅zの範
囲内にあるフィン44と冷却管43の間の微細空間を通
って室49に到達する。室49内の空気は、室48内の
空気よりも冷却されている。
In FIG. 4, an air inlet 4 having a passage width x 3
The hot pressurized air that has flowed in from No. 1 flows into the chamber 48 while being cooled through the fine space between the cooling pipe 43 and the fins 44. Since the pressurized air is sent into the chamber 48 later, the somewhat cooled air in the chamber 48 passes through the fine space between the fins 44 and the cooling pipes 43 within the range of the flow passage width z. Reach chamber 49. The air in the chamber 49 is cooled more than the air in the chamber 48.

【0027】また、室49内の空気は、流路幅yの範
囲内にあるフィン44と冷却管43の間の微細空間を通
って空気排出口42を経て機関60(図5)へ流れる。
空気排出口42における空気は、室49内の空気よりも
さらに冷却されている。
Further, the air in the chamber 49 flows to the engine 60 (FIG. 5) through the air discharge port 42 through the fine space between the fins 44 and the cooling pipe 43 within the range of the flow passage width y 3 . .
The air in the air outlet 42 is cooled further than the air in the chamber 49.

【0028】ここで、空気流入口41における加圧空気
の空気圧と室48,室49内の空気圧及び空気排出口4
2における空気圧が、ほぼ一致するように(理想的には
完全に一致するように)流路幅x,zおよびy(つ
まり流路面積比)が設定される。
Here, the air pressure of the pressurized air at the air inlet 41, the air pressure in the chamber 48 and the chamber 49, and the air discharge port 4
The flow channel widths x 3 , z and y 3 (that is, the flow channel area ratio) are set so that the air pressures at 2 substantially match (ideally completely match).

【0029】空気冷却器120では空気冷却器100
(図1)や空気冷却器110(図3)と比較して、空気
抵抗が大きくなるので、その分を勘案して各流路の面積
比を設定するのが好ましい。
In the air cooler 120, the air cooler 100
Since the air resistance becomes larger than that of the air cooler 110 (FIG. 1) and the air cooler 110 (FIG. 3), it is preferable to set the area ratio of each flow path in consideration of the air resistance.

【0030】以上の空気冷却器100,110及び12
0は、図5に示す過給機(コンプレッサ50)を備えた
内燃機関に設置して使用することができるが、また、図
6に示す排気ガスの一部をリサイクルするEGR式の内
燃機関に設置して使用することもできる。図6には図5
に加えて排出空気冷却用の空気冷却器が設けてあるが、
この空気冷却器についても図1,図3及び図4に示す空
気冷却器100,110及び120を適用することがで
きる。
The above air coolers 100, 110 and 12
0 can be installed and used in an internal combustion engine equipped with the supercharger (compressor 50) shown in FIG. 5, but also in the EGR type internal combustion engine shown in FIG. 6 for recycling a part of exhaust gas. It can also be installed and used. In FIG. 6, FIG.
In addition to the air cooler for cooling the exhaust air,
The air coolers 100, 110 and 120 shown in FIGS. 1, 3 and 4 can also be applied to this air cooler.

【0031】[0031]

【発明の効果】請求項1の発明によると、圧力損失を低
減させるように空気の入口面積と出口面積の比を設定し
たので、過給機(コンプレッサ50)の空気圧縮効率を
向上させることができ、機関60の高出力化に良好に対
応することができる。
According to the invention of claim 1, the ratio of the inlet area to the outlet area of the air is set so as to reduce the pressure loss, so that the air compression efficiency of the supercharger (compressor 50) can be improved. It is possible to cope with the high output of the engine 60.

【0032】冷却効果を向上させることができるので、
機関60の高出力化に伴い、過給機(コンプレッサ5
0)による圧縮率が向上し加圧空気の温度が上昇して
も、出口温度を50℃程度に設定することができる。
Since the cooling effect can be improved,
With the increase in output of the engine 60, the turbocharger (compressor 5
Even if the compression ratio due to 0) is improved and the temperature of the pressurized air rises, the outlet temperature can be set to about 50 ° C.

【0033】請求項2では、空気流入口1,41と空気
排出口2,42の面積比を、空気冷却器の中で空気の進
行方向が変化する場合に生じる圧力損失を吸収するよう
に設定したので、途中で空気の進行方向が変化する空気
冷却器110,120においても過給機(コンプレッサ
50)の圧縮効率を良好に維持することができる。
In the second aspect, the area ratio of the air inlets 1 and 41 and the air outlets 2 and 42 is set so as to absorb the pressure loss generated when the traveling direction of the air changes in the air cooler. Therefore, the compression efficiency of the supercharger (compressor 50) can be favorably maintained even in the air coolers 110 and 120 in which the traveling direction of air changes.

【0034】新設の内燃機関に限らず、既設の内燃機関
に対しても、改造することにより請求項1又は請求項2
の発明による空気冷却器100,110,120を構成
することができ、過給機(コンプレッサ50)の圧縮効
率を向上させ、機関60の高出力化に対応することがで
きる。
The invention is not limited to the newly installed internal combustion engine, but the existing internal combustion engine may be modified to modify the invention.
The air coolers 100, 110, 120 according to the present invention can be configured, the compression efficiency of the supercharger (compressor 50) can be improved, and high output of the engine 60 can be dealt with.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項1の発明による空気冷却器の縦断平面
図である。
FIG. 1 is a vertical plan view of an air cooler according to the invention of claim 1.

【図2】 図1のII−II断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】 請求項2の発明による空気冷却器の縦断平面
図である。
FIG. 3 is a vertical plan view of the air cooler according to the second aspect of the present invention.

【図4】 請求項2の発明による別の空気冷却器の縦断
平面図である。
FIG. 4 is a vertical plan view of another air cooler according to the invention of claim 2;

【図5】 内燃機関の空気の流通経路図である。FIG. 5 is a flow path diagram of air in the internal combustion engine.

【図6】 EGRを利用する内燃機関の空気の流通経路
図である。
FIG. 6 is a diagram showing a distribution path of air in an internal combustion engine using EGR.

【図7】 従来の過給機付内燃機関の空気冷却器の縦断
平面図である。
FIG. 7 is a vertical plan view of an air cooler of a conventional internal combustion engine with a supercharger.

【符号の説明】 1 空気流入口 2 空気排出口 3 仕切 4〜6 ハウジング 7 冷却水供給管 8 排水管 9〜12 室 13 仕切 14 冷却管 15 フィン 16 空気通路壁 21 空気流入口 22 空気排出口 23,24 ハウジング 25 冷却水供給管 26 排水管 27 冷却管 28 フィン 29 空気通路壁 30,31 室 40 冷却水供給管 41 空気流入口 42 空気排出口 43 冷却管 44 フィン 45 空気通路壁 46,47 ハウジング 48,49 室 50 コンプレッサ(過給機) 51 排水管 52〜54 室 55 仕切 60 機関 100,110,120 空気冷却器[Explanation of symbols] 1 Air inlet 2 Air outlet 3 partitions 4-6 housing 7 Cooling water supply pipe 8 drainage pipes 9-12 rooms 13 partitions 14 Cooling pipe 15 fins 16 air passage walls 21 Air inlet 22 Air outlet 23, 24 housing 25 Cooling water supply pipe 26 drainage pipe 27 Cooling pipe 28 fins 29 Air passage wall 30,31 rooms 40 Cooling water supply pipe 41 Air inlet 42 Air outlet 43 Cooling pipe 44 fins 45 air passage wall 46,47 housing 48,49 rooms 50 Compressor (supercharger) 51 drain pipe 52-54 rooms 55 partitions 60 institutions 100,110,120 Air cooler

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G005 GA01 GB17 HA13 JA12 JA14 JA45 3L103 AA17 BB14 BB39 CC02 CC22 CC26 DD03 DD15 DD52    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3G005 GA01 GB17 HA13 JA12 JA14                       JA45                 3L103 AA17 BB14 BB39 CC02 CC22                       CC26 DD03 DD15 DD52

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧力損失を低減させるように空気の入口
面積と出口面積の比を設定したことを特徴とする過給機
付内燃機関の空気冷却器。
1. An air cooler for an internal combustion engine with a supercharger, wherein a ratio of an inlet area to an outlet area of air is set so as to reduce pressure loss.
【請求項2】 空気の進行方向を内部で変化させる請求
項1に記載の過給機付内燃機関の空気冷却器。
2. The air cooler for an internal combustion engine with a supercharger according to claim 1, wherein a traveling direction of air is internally changed.
JP2001343434A 2001-11-08 2001-11-08 Air cooler for internal combustion engine with supercharger Expired - Fee Related JP3920077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343434A JP3920077B2 (en) 2001-11-08 2001-11-08 Air cooler for internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343434A JP3920077B2 (en) 2001-11-08 2001-11-08 Air cooler for internal combustion engine with supercharger

Publications (2)

Publication Number Publication Date
JP2003148148A true JP2003148148A (en) 2003-05-21
JP3920077B2 JP3920077B2 (en) 2007-05-30

Family

ID=19157133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343434A Expired - Fee Related JP3920077B2 (en) 2001-11-08 2001-11-08 Air cooler for internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP3920077B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823654B1 (en) 2007-10-02 2008-04-21 주식회사 코렌스 Exhaust gas recirculation cooler
US20100071639A1 (en) * 2007-02-28 2010-03-25 Behr Gmbh & Co. Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
US20100089342A1 (en) * 2007-02-28 2010-04-15 Behr Gmbh & Co. Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
JP2012154254A (en) * 2011-01-26 2012-08-16 Toyota Motor Corp Intercooler
JP2012520409A (en) * 2009-03-10 2012-09-06 ベール ゲーエムベーハー ウント コー カーゲー Supply air cooler for placement in the intake pipe
CN102679794A (en) * 2011-03-18 2012-09-19 株式会社丰田自动织机 Heat exchanger
US8707715B2 (en) 2011-03-25 2014-04-29 Kabushiki Kaisha Toyota Jidoshokki Thermoelectric conversion unit
JP2014524005A (en) * 2011-06-30 2014-09-18 ヴァレオ システム テルミク Especially heat exchanger for automobile
WO2016198727A1 (en) * 2015-06-10 2016-12-15 Wärtsilä Finland Oy Charge air cooler arrangement

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071639A1 (en) * 2007-02-28 2010-03-25 Behr Gmbh & Co. Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
US20100089342A1 (en) * 2007-02-28 2010-04-15 Behr Gmbh & Co. Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
KR100823654B1 (en) 2007-10-02 2008-04-21 주식회사 코렌스 Exhaust gas recirculation cooler
WO2009044947A1 (en) * 2007-10-02 2009-04-09 Korens Co., Ltd. Exhaust gas recirculation cooler
JP2012520409A (en) * 2009-03-10 2012-09-06 ベール ゲーエムベーハー ウント コー カーゲー Supply air cooler for placement in the intake pipe
JP2012154254A (en) * 2011-01-26 2012-08-16 Toyota Motor Corp Intercooler
CN102679794A (en) * 2011-03-18 2012-09-19 株式会社丰田自动织机 Heat exchanger
JP2012193937A (en) * 2011-03-18 2012-10-11 Toyota Industries Corp Heat exchanger
US8707715B2 (en) 2011-03-25 2014-04-29 Kabushiki Kaisha Toyota Jidoshokki Thermoelectric conversion unit
JP2014524005A (en) * 2011-06-30 2014-09-18 ヴァレオ システム テルミク Especially heat exchanger for automobile
WO2016198727A1 (en) * 2015-06-10 2016-12-15 Wärtsilä Finland Oy Charge air cooler arrangement
JP2018516333A (en) * 2015-06-10 2018-06-21 ワルトシラ フィンランド オサケユキチュア Supply air cooler device
US10487723B2 (en) 2015-06-10 2019-11-26 Wärtsilä Finland Oy Charge air cooler arrangement

Also Published As

Publication number Publication date
JP3920077B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
US7992628B2 (en) Multi-passing liquid cooled charge air cooler with coolant bypass ports for improved flow distribution
KR101341469B1 (en) Egr cooler with dual coolant loop
JP2001027157A (en) Strut for egr cooler
US20140230797A1 (en) Charge air cooler, and intake manifold including the same
JPH10220203A (en) Stationary blade for gas turbine
JP2001248448A (en) Intake air cooling device of internal combustion engine
JP2003148148A (en) Air cooler of internal combustion engine with supercharger
JP2000161875A (en) Heat exchanger and cooling apparatus
JP2009180109A (en) Cooling structure of exhaust manifold integrated cylinder head
JP4228209B2 (en) EGR cooler
JP2003155928A (en) Heat exchanger
JPS60261933A (en) Cooling apparatus of rotary engine
JP3861968B2 (en) EGR cooler installation structure
KR20160111505A (en) Engine
KR102011269B1 (en) Water-Cooled Intercooler
JP2012017921A (en) Heat exchanger and intake air cooling system of engine using the same
JP2022540247A (en) Novel cooling system for internal combustion engines
CN217380714U (en) Double-layer cooling intercooler
JP3406896B2 (en) Heat exchanger and gas turbine device using the same
JP4274746B2 (en) Internal combustion engine with multiple air coolers
JP2000018103A (en) Exhaust gas cooler
KR100882643B1 (en) Egr cooler for v-shaped engine
US10895196B2 (en) Supercharger charge air cooler with improved air flow characteristics
JP3378850B2 (en) Heat exchanger and gas turbine device using the same
JPS60135604A (en) Gas turbine cooling blade

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Ref document number: 3920077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150223

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees