JP2001248448A - Intake air cooling device of internal combustion engine - Google Patents

Intake air cooling device of internal combustion engine

Info

Publication number
JP2001248448A
JP2001248448A JP2000061907A JP2000061907A JP2001248448A JP 2001248448 A JP2001248448 A JP 2001248448A JP 2000061907 A JP2000061907 A JP 2000061907A JP 2000061907 A JP2000061907 A JP 2000061907A JP 2001248448 A JP2001248448 A JP 2001248448A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
air supply
intake air
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000061907A
Other languages
Japanese (ja)
Inventor
Katsunori Kubo
勝範 久保
Koichi Hirose
宏一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP2000061907A priority Critical patent/JP2001248448A/en
Publication of JP2001248448A publication Critical patent/JP2001248448A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase an intake air cooling efficiency, increase an engine thermal efficiency by preventing a knocking, and reduce the size and facilitate the assembly of a cooling device. SOLUTION: In an intake air cooling device of an internal combustion engine for cooling intake air by double stages using two cooling cores 5 and 6 for making cooling water therethrough, both cooling cores 5 and 6 are connected integrally with each other and incorporated in an intake air manifold 2. The temperature of the cooling water in the first stage cooling core 5 in the upstream of the intake air is set higher, and that in the second stage cooling core 6 in the downstream of the intake air is set lower. The intake air manifold 2 is desirably formed into a split structure comprising an upstream case 26 and a downstream case 27, the cases 26 and 27 form connection flange parts 35 and 36 respectively, and the mounting parts 40 and 40 of the cooling cores 5 and 6 are held between the connection flange parts 35 and 36 and tightened together. Thus, both cooling cores 5 and 6 are fixed connected to each other as well as the intake air manifold 2 is assembled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、ガス機関等の内
燃機関の給気冷却装置に関し、特に、給気冷却装置を2
段式とし、上流側の第1段目は高温水で給気を冷却し、
下流側の第2段目は低温水で冷却する給気冷却装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air supply cooling device for an internal combustion engine such as a gas engine, and more particularly, to an air supply cooling device for a gas engine.
The first stage on the upstream side cools the supply air with high-temperature water,
The second stage on the downstream side relates to an air supply cooling device for cooling with low-temperature water.

【0002】[0002]

【従来の技術】この種2段式の給気冷却装置としては、
たとえば特開平8−291715号公報があり、図5に
示すように、給気管80の途中に第1段目の冷却機構と
してインタークーラー81を設け、第2段目の冷却機構
として、上記インタークーラー81とは分離した状態
で、給気マニホールド83の各給気出口84にそれぞれ
吹き返し給気冷却用クーラー85を備えている。インタ
ークーラー81には高温(たとえば80°〜100°
C)の冷却水を流通させ、吹き返し給気冷却用クーラー
85には低温(たとえば30°C〜35°C)の冷却水
を流通させるようにしてある。
2. Description of the Related Art As a two-stage type air supply cooling device of this kind,
For example, there is JP-A-8-291715, and as shown in FIG. 5, an intercooler 81 is provided in the middle of an air supply pipe 80 as a first-stage cooling mechanism, and the intercooler 81 is provided as a second-stage cooling mechanism. The air supply manifold 83 is provided with a blower air supply cooling cooler 85 at each air supply outlet 84 of the air supply manifold 83 in a separated state. The intercooler 81 has a high temperature (for example, 80 ° to 100 °).
The cooling water of C) is made to circulate, and the cooling water of low temperature (for example, 30 ° C. to 35 ° C.) is made to flow through the blower supply air cooling cooler 85.

【0003】[0003]

【発明が解決しようとする課題】図5の従来例では、高
温と低温の2段冷却とすることにより、冷却効率を向上
させることができると共に、燃焼室からの吹き返しガス
の冷却並びに高温の冷却水を利用することによる熱回収
量の増大化を図ることができる。しかしながら、第1段
目の冷却を行なうインタークーラー81と、第2段目の
冷却を行なう各吹き返し給気冷却用クーラー85を、互
いに離れた位置に個々に配置しており、しかも各吹き返
し給気冷却用クーラー85同士も、各気筒毎にそれぞれ
分離した状態で備えているので、部品点数及び組付工数
が増加すると共に、冷却装置全体が大形化する。
In the prior art shown in FIG. 5, the cooling efficiency can be improved by performing two-stage cooling at a high temperature and a low temperature, while cooling the blowback gas from the combustion chamber and cooling at a high temperature. The use of water can increase the amount of heat recovery. However, the intercooler 81 for cooling the first stage and the blower supply cooling coolers 85 for performing the second stage cooling are individually arranged at positions separated from each other. Since the coolers 85 are provided separately for each cylinder, the number of parts and the number of assembling steps are increased, and the size of the entire cooling device is increased.

【0004】[0004]

【発明の目的】本願発明の目的は、(1)給気マニホー
ルド及び給気冷却装置の小形コンパクト化、(2)ノッ
キングの防止による機関効率の向上と、熱回収増大によ
る総合効率の向上、(3)冷却装置の組付け及びメンテ
ナンスの容易化を図ることである。
It is an object of the present invention to (1) reduce the size of the air supply manifold and the air supply cooling device, (2) improve engine efficiency by preventing knocking, and improve overall efficiency by increasing heat recovery; 3) To facilitate assembly and maintenance of the cooling device.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本願請求項1記載の発明は、冷却水が流通する2つの
冷却用コアを互いに接近させて結合すると共に、給気マ
ニホールド内の給気流を2段構えで冷却するように給気
マニホールドに内蔵し、給気上流側の第1段目冷却用コ
アに流す冷却水の温度よりも、給気下流側の第2段目冷
却用コアに流す冷却水の温度を低く設定していることを
特徴とする内燃機関の給気冷却装置である。
In order to achieve the above object, according to the first aspect of the present invention, two cooling cores, through which cooling water flows, are connected to each other close to each other, and the cooling core in an air supply manifold is connected. A second-stage cooling core downstream of the supply air, which is built in the air supply manifold so as to cool the airflow in two stages and is lower than the temperature of the cooling water flowing through the first-stage cooling core upstream of the air supply. And a cooling water supply device for the internal combustion engine.

【0006】請求項2記載の発明は、請求項1記載の内
燃機関の給気冷却装置において、給気マニホールドを上
流側ケースと下流側ケースの2分割構造とし、各ケース
にはそれぞれ接続用フランジ部を設け、各冷却用コアに
は取付部を形成し、両ケースの接続用フランジ部間に両
コアの取付部を挟持して、両接続用フランジ部を締結す
ることにより、給気マニホールドを組み立てると同時に
両冷却用コアを結合固定していることを特徴としてい
る。
According to a second aspect of the present invention, in the air supply cooling device for an internal combustion engine according to the first aspect, the air supply manifold has a two-part structure of an upstream case and a downstream case, and each case has a connecting flange. The cooling air supply manifold is formed by forming a mounting part on each cooling core, holding the mounting parts of both cores between the connecting flange parts of both cases, and fastening the two connecting flange parts. It is characterized in that both cooling cores are connected and fixed at the same time as assembly.

【0007】[0007]

【発明の実施の形態】図1は本願発明を適用した6気筒
ガス機関の冷却水系統配管略図であり、シリンダヘッド
1の給気ポート側の端面に給気マニホールド2を取り付
けており、給気マニホールド2の給気入口8は過給機7
のコンプレッサ部に接続し、給気マニホールド2のシリ
ンダヘッド側の端面には、各気筒用にそれぞれ給気出口
56が形成されている。給気マニホールド2内には、給
気上流側の第1段目冷却用コア5と、これと一体的に結
合された下流側の第2段目冷却用コア6を内蔵してい
る。
FIG. 1 is a schematic diagram of a cooling water system piping of a six-cylinder gas engine to which the present invention is applied. An air supply manifold 2 is attached to an end face of a cylinder head 1 on an air supply port side. The air inlet 8 of the manifold 2 is connected to the turbocharger 7
And an air supply outlet 56 for each cylinder is formed on the end face of the air supply manifold 2 on the cylinder head side. In the air supply manifold 2, a first-stage cooling core 5 on the upstream side of the air supply and a second-stage cooling core 6 on the downstream side integrally connected thereto are incorporated.

【0008】このガス機関は2つの冷却水系統を備えて
おり、1つはシリンダブロック3及びシリンダヘッド1
を冷却するための高温冷却水系統であり、熱交換器10
及び冷却水ポンプ11を備え、冷却水ポンプ11の吐出
口に接続された冷却水供給管12はシリンダブロック3
の冷却水入口14に接続し、熱交換器10の戻り口は戻
り管16を介してシリンダヘッド1の冷却水出口15に
接続している。高温冷却水系統の冷却水温度は、冷却水
入口14において、たとえば80°C〜100°C程度
となるように設定されている。
This gas engine has two cooling water systems, one of which is a cylinder block 3 and a cylinder head 1.
High-temperature cooling water system for cooling the heat exchanger 10
And a cooling water pump 11, and a cooling water supply pipe 12 connected to a discharge port of the cooling water pump 11 is connected to the cylinder block 3.
Of the heat exchanger 10 is connected to a cooling water outlet 15 of the cylinder head 1 via a return pipe 16. The cooling water temperature of the high-temperature cooling water system is set to be, for example, about 80 ° C. to 100 ° C. at the cooling water inlet 14.

【0009】第1段目冷却用コア5は上記高温冷却水系
統の冷却水を利用しており、第1段目冷却用コア5の冷
却水入口部20は、冷却水供給枝管21を介して前記冷
却水供給管12に接続し、第1段目冷却用コア5の冷却
水出口部23は、冷却水戻り枝管24を介して前記冷却
水戻り管16に接続している。したがって、第1段目冷
却用コア5の冷却水入口部20の温度は、シリンダブロ
ック冷却水入口14と略同様に、80°C〜100°C
程度となっている。
The first-stage cooling core 5 utilizes the cooling water of the high-temperature cooling water system, and the cooling water inlet 20 of the first-stage cooling core 5 is connected through a cooling water supply branch pipe 21. The cooling water supply pipe 12 is connected to the cooling water supply pipe 12, and the cooling water outlet 23 of the first stage cooling core 5 is connected to the cooling water return pipe 16 via a cooling water return branch pipe 24. Therefore, the temperature of the cooling water inlet portion 20 of the first stage cooling core 5 is set to 80 ° C. to 100 ° C., substantially similarly to the cylinder block cooling water inlet 14.
It has become about.

【0010】低温冷却水系統は図面中に破線で示してお
り、第2段目冷却用コア6に冷却水を供給するために用
い、前記高温冷却水系統とは別に熱交換器28及び冷却
水ポンプ29を備えている。冷却水ポンプ29の吐出口
に接続された冷却水供給管31は、第2段目冷却用コア
6の冷却水入口部32に接続し、第2段目冷却用コア6
の冷却水出口部34は冷却水戻り管33を介して熱交換
器28の戻り口に接続している。低温冷却水系統の冷却
水温度は、上記高温冷却水系統よりも低く設定されてお
り、たとえば冷却水入口部32において、30°C〜3
5°C程度となるように設定されている。
The low-temperature cooling water system is shown by a broken line in the drawing, and is used for supplying cooling water to the second stage cooling core 6, and is provided with a heat exchanger 28 and a cooling water separately from the high-temperature cooling water system. A pump 29 is provided. The cooling water supply pipe 31 connected to the discharge port of the cooling water pump 29 is connected to the cooling water inlet 32 of the second stage cooling core 6, and the second stage cooling core 6
The cooling water outlet 34 is connected to a return port of the heat exchanger 28 via a cooling water return pipe 33. The cooling water temperature of the low-temperature cooling water system is set lower than that of the high-temperature cooling water system.
The temperature is set to about 5 ° C.

【0011】図2は図1のII-II断面詳細図であり、給
気マニホールド2は上下2分割構造となっており、上側
の上流側ケース26と下側の下流側ケース27を備え、
上流側ケース26の下面(合わせ面)及び下流側ケース
27の上面(合わせ面)には、それぞれ外向きの接続用
フランジ部35,36が一体的に設けられている。
FIG. 2 is a detailed sectional view taken along the line II-II of FIG. 1. The air supply manifold 2 has an upper and lower two-part structure, and includes an upper upstream case 26 and a lower downstream case 27.
Outward connecting flange portions 35 and 36 are integrally provided on the lower surface (matching surface) of the upstream case 26 and the upper surface (matching surface) of the downstream case 27, respectively.

【0012】給気マニホールド2内に内蔵される第1,
第2段目冷却用コア5,6は同一構造物を上下対称に配
置したものであり、第1段目冷却用コア5は上流側ケー
ス26内に位置し、第2段目冷却用コア6は下流側ケー
ス27内に位置し、それぞれ外向きの板状取付部40,
40を備えている。各取付部40,40の合わせ面側に
はそれぞれシール40a、40aが張り付けられてい
る。両取付部40,40は断熱性及び気密性を有するシ
ート部材(間座)43を介して互いに接合されると共
に、上下の接続用フランジ部35,36間に挟持され、
フランジ部結合用のボルト46及びナット47により接
続用フランジ部35,36と共締めされている。すなわ
ち、上記ボルト46及びナット47により、ケース2
6,27同士を結合すると同時に、両冷却用コア5、6
を一体的に結合し、かつ、給気マニホールド2内に固定
しているのである。
[0012] The first and the first built in the air supply manifold 2
The second-stage cooling cores 5 and 6 have the same structure arranged vertically symmetrically. The first-stage cooling core 5 is located in the upstream side case 26 and the second-stage cooling core 6 Are located in the downstream side case 27, and each have an outwardly facing plate-like mounting portion 40,
40 is provided. Seals 40a, 40a are attached to the mating surfaces of the mounting portions 40, 40, respectively. The two mounting portions 40, 40 are joined to each other via a sheet member (spacing) 43 having heat insulation and airtightness, and are sandwiched between upper and lower connection flange portions 35, 36.
It is fastened together with the connection flanges 35 and 36 by the flange connection bolts 46 and nuts 47. That is, the case 2 is formed by the bolt 46 and the nut 47.
6 and 27, and at the same time, both cooling cores 5, 6
Are integrally connected and fixed in the air supply manifold 2.

【0013】図2のIV-IV断面図である図4において、
第1段目冷却用コア5と第2段目冷却用コア6は前述の
ように同一構造物であり、上下逆向きの姿勢で配置され
ているので、第1段目冷却用コア5の構造を詳細に説明
し、第2段目冷却用コア6については、同じ部分に同じ
符号を付し、重複説明は省略する。ただし、第1段目冷
却用コア5の冷却水入口部20と第2段目冷却用コア6
の冷却水入口部32は、互いに反対側に配置され、それ
に伴って第1段目冷却用コア5の冷却水出口部23と第
2段目冷却用コア6の冷却水出口部34も、互いに反対
側に配置されている。
In FIG. 4, which is a sectional view taken along the line IV-IV in FIG.
The first-stage cooling core 5 and the second-stage cooling core 6 have the same structure as described above, and are arranged in an upside-down orientation. Will be described in detail, and for the second stage cooling core 6, the same portions will be denoted by the same reference symbols, without redundant description. However, the cooling water inlet 20 of the first stage cooling core 5 and the second stage cooling core 6
The cooling water inlets 32 of the first cooling core 5 and the cooling water outlets 34 of the second cooling core 6 are also disposed opposite to each other. It is located on the opposite side.

【0014】上側の第1段目冷却用コア5は、長さ方向
両端部に配置された1対のハウジング部51と、両ハウ
ジング部51を連通連結する多数の冷却水管52から構
成されており、各ハウジング部51には、それぞれ入口
用と出口用の口金53,54が形成されている。各口金
53,54は、上流側ケース26の長さ方向の端壁に形
成された下端開口状のU字溝66,66を通って外部に
突出しており、外部からOリングを介して入口用及び出
口用の継手管67,68がそれぞれ嵌着され、前記冷却
水入口部20及び冷却水出口部23を構成している。継
手管67,68は取付板67a、68aを一体に有し、
前記U字溝66,66をシールするように、ボルト等に
より上流側ケース26の端壁に着脱自在に固定されてい
る。
The upper first stage cooling core 5 is composed of a pair of housing portions 51 arranged at both ends in the longitudinal direction, and a number of cooling water pipes 52 communicating and connecting the two housing portions 51. Each housing portion 51 is formed with inlet and outlet caps 53 and 54, respectively. Each of the bases 53, 54 protrudes to the outside through U-shaped grooves 66, 66 having an open lower end formed in the longitudinal end wall of the upstream case 26, and is provided with an O-ring from the outside for entrance. And outlet joint pipes 67 and 68 are fitted respectively to form the cooling water inlet 20 and the cooling water outlet 23. The joint pipes 67 and 68 integrally have mounting plates 67a and 68a,
The U-shaped grooves 66, 66 are detachably fixed to the end wall of the upstream case 26 by bolts or the like so as to seal the U-shaped grooves 66, 66.

【0015】上流側ケース26の上壁26cは、長さ方
向の一方側が高くなるように傾斜状に形成されており、
高く形成された一方側の端壁26aに、第1段目冷却用
コア5よりも上方に位置する給気入口8が形成されてい
る。下流側ケース27には、シリンダヘッド側の端面に
前記各気筒用の給気出口56が開口している。各給気出
口56は、図3に示すようにそれぞれ連結管57を介し
てシリンダヘッド1の各給気ポート59に接続してい
る。
The upper wall 26c of the upstream case 26 is formed so as to be inclined so that one side in the longitudinal direction is higher.
An air supply inlet 8 located above the first stage cooling core 5 is formed in one end wall 26a that is formed higher. In the downstream case 27, an air supply outlet 56 for each of the cylinders is opened at the end face on the cylinder head side. Each air supply outlet 56 is connected to each air supply port 59 of the cylinder head 1 via a connection pipe 57 as shown in FIG.

【0016】また、図3において、上流側ケース26の
接続用フランジ部35は、給気マニホールド2の全周を
囲むように形成されており、冷却水入口部20と冷却水
出口部23とは、コア幅方向に互いにずれた位置に配置
されている。図4の下流側ケース27の接続用フランジ
部36も、前記上流側ケース26の接続用フランジ部3
5と同じ形状となっており、給気マニホールド2の全周
を囲むように形成されている。
In FIG. 3, the connection flange 35 of the upstream case 26 is formed so as to surround the entire circumference of the air supply manifold 2. The cooling water inlet 20 and the cooling water outlet 23 are connected to each other. Are arranged at positions shifted from each other in the core width direction. The connecting flange 36 of the downstream case 27 in FIG.
5 and is formed so as to surround the entire circumference of the air supply manifold 2.

【0017】[0017]

【作用】図1において、高温冷却水系統の冷却水ポンプ
11から吐出される冷却水は、冷却水供給管12からシ
リンダブロック3の冷却水入口14に供給されると共
に、一部が分岐して、冷却水供給枝管21を介して第1
段目冷却用コア5の冷却水入口部20に供給される。シ
リンダブロック3に供給された冷却水は、周知のように
冷却水ジャケット等を通ってシリンダライナ等を冷却す
ると共に、シリンダヘッド1内を冷却し、シリンダヘッ
ド1の上端冷却水出口15から冷却水戻り管16を介し
て熱交換器10に戻される。一方、第1段目冷却用コア
5に供給された冷却水は、第1段目の冷却として、給気
マニホールド2内の給気を冷却し、冷却水出口部23か
ら冷却水戻り枝管24を介して冷却水戻り管16に合流
し、熱交換器10へ戻される。第1段目冷却用コア5の
冷却水入口部20において、冷却水温度がたとえば80
°程度に設定されていると、冷却水出口部23では82
°C程度まで上昇する。また、給気の温度は、第1段目
冷却用コア5により、160°C程度から100°C程
度まで下げられる。
In FIG. 1, cooling water discharged from a cooling water pump 11 of a high-temperature cooling water system is supplied from a cooling water supply pipe 12 to a cooling water inlet 14 of a cylinder block 3 and partially branched. Through the cooling water supply branch 21
The cooling water is supplied to the cooling water inlet 20 of the stage cooling core 5. The cooling water supplied to the cylinder block 3 cools the cylinder liner and the like through a cooling water jacket and the like, cools the inside of the cylinder head 1, and cools the cooling water through an upper cooling water outlet 15 of the cylinder head 1 as is well known. It is returned to the heat exchanger 10 via the return pipe 16. On the other hand, the cooling water supplied to the first stage cooling core 5 cools the supply air in the air supply manifold 2 as the first stage cooling, and the cooling water return branch pipe 24 extends from the cooling water outlet 23. Through the cooling water return pipe 16 and returned to the heat exchanger 10. At the cooling water inlet 20 of the first stage cooling core 5, the cooling water temperature is, for example, 80
°, the cooling water outlet 23
° C. Further, the temperature of the air supply is reduced from about 160 ° C. to about 100 ° C. by the first stage cooling core 5.

【0018】低温用冷却水系統の冷却水ポンプ29から
吐出される冷却水は、冷却水供給管31から第2段目冷
却用コア6の冷却水入口部32に供給され、上記第1段
目冷却用コア5による冷却に続いて、第2段目として給
気をさらに冷却し、冷却水出口部34から冷却水戻り枝
管33を介して熱交換器28へ戻される。第2段目冷却
用コア6の冷却水入口部32において、冷却水温度がた
とえば35°程度に設定されていると、冷却水出口部3
4では37°C程度まで上昇する。給気の温度は、第2
段目冷却用コア6により、100°C程度から50°C
程度まで下げられる。
The cooling water discharged from the cooling water pump 29 of the low-temperature cooling water system is supplied from the cooling water supply pipe 31 to the cooling water inlet 32 of the second-stage cooling core 6, and the first-stage cooling water is supplied to the first-stage cooling water inlet 32. Subsequent to the cooling by the cooling core 5, the supply air is further cooled as a second stage, and is returned from the cooling water outlet 34 to the heat exchanger 28 via the cooling water return branch pipe 33. At the cooling water inlet 32 of the second stage cooling core 6, if the cooling water temperature is set to, for example, about 35 °, the cooling water outlet 3
In No. 4, the temperature rises to about 37 ° C. The supply air temperature is
100 ° C to 50 ° C depending on the stage cooling core 6
Can be lowered to the extent.

【0019】図2において、給気入口8から給気マニホ
ールド2の上流側ケース26内に供給される給気は、第
1段目冷却用コア5の冷却水管52の間を通過すること
により、前述のように160°Cから100°C程度ま
で冷却され、続いて第2段目冷却用コア6の冷却水管5
2の間を通過することにより、100°Cから50°C
程度まで冷却される。そして、着火順序に従って、順次
対応する給気出口56から給気ポート59へと供給され
る。
In FIG. 2, the air supply supplied from the air supply inlet 8 into the upstream case 26 of the air supply manifold 2 passes between the cooling water pipes 52 of the first stage cooling core 5, As described above, the cooling water pipe 5 of the second stage cooling core 6 is cooled from about 160 ° C. to about 100 ° C.
2 to 100 ° C to 50 ° C
Cool to a degree. Then, the air is sequentially supplied from the corresponding air supply outlet 56 to the air supply port 59 in accordance with the ignition order.

【0020】[0020]

【発明の他の実施の形態】(1)図1に示す給気冷却装
置は、第1段目冷却用コア5の冷却水入口部20及び冷
却水出口部23と、第2段目冷却用6の冷却水入口部3
2及び冷却水出口部34を逆に配置しているが、冷却水
入口部20,32同士及び冷却水出口部23,34同士
を同一側に配置する構造とすることも可能である。
(1) The air supply cooling device shown in FIG. 1 comprises a cooling water inlet 20 and a cooling water outlet 23 of a first stage cooling core 5 and a second stage cooling core. 6 cooling water inlet 3
Although the cooling water outlets 2 and 34 are arranged in reverse, the cooling water inlets 20 and 32 and the cooling water outlets 23 and 34 may be arranged on the same side.

【0021】(2)冷却用コア5,6の構造は、図4等
では冷却水が一端から入って他端に抜ける方式(通り抜
け方式)を採用し、一層のコンパクト化を図っている
が、たとえば冷却水管52としてU字管を採用し、入口
端と出口端が同じ側に位置する往復方式を採用すること
も可能である。
(2) The structure of the cooling cores 5, 6 adopts a system in which the cooling water enters at one end and escapes to the other end (through system) in FIG. 4 and the like, thereby further reducing the size. For example, it is also possible to adopt a U-shaped pipe as the cooling water pipe 52 and adopt a reciprocating method in which the inlet end and the outlet end are located on the same side.

【0022】(3)ディーゼル機関又はガソリン機関に
も本願発明を適用することも可能である。
(3) The present invention can be applied to a diesel engine or a gasoline engine.

【0023】[0023]

【発明の効果】以上説明したように本願発明によると、 (1)冷却水を流通させる冷却用コア5,6を2つ用い
て給気を二段構えで冷却する内燃機関の給気冷却装置に
おいて、両冷却用コア5,6を一体的に結合すると共
に、給気マニホールド2に内蔵しているので、冷却効率
を向上させながらも、給気冷却装置を小形コンパクト化
し、かつ、組立及びメンテナンスを容易にすることがで
きる。
As described above, according to the present invention, (1) an air supply cooling device for an internal combustion engine that uses two cooling cores 5 and 6 for circulating cooling water to cool air supply in two stages. In this case, the cooling cores 5 and 6 are integrally connected and are built in the air supply manifold 2, so that the cooling air supply device can be downsized and compact while improving cooling efficiency, and assembling and maintenance can be performed. Can be facilitated.

【0024】(2)給気上流側の第1段目冷却用コア5
の冷却水温度を高くし、給気下流側の第2段目冷却用コ
ア6の冷却水温度を低く設定しているので、たとえば第
1段目冷却用コア5の高温水として、シリンダブロック
3及びシリンダヘッド1の冷却水を利用することによ
り、シリンダヘッド1等の冷却水を高温に保つことがで
き、熱回収量が増大し、総合効率が向上する。一方、給
気ポートに近い第2段目冷却用コア6の冷却水温度を低
くしているので、燃焼室からの吹き返しガスを効果的に
冷却し、ノッキングの発生を確実に防止し、機関効率を
向上させることができる。
(2) First-stage cooling core 5 on the upstream side of air supply
The cooling water temperature of the second-stage cooling core 6 on the downstream side of the air supply is set low, so that, for example, the high-temperature water of the first-stage cooling core 5 is used as the cylinder block 3. Further, by using the cooling water of the cylinder head 1, the cooling water of the cylinder head 1 and the like can be maintained at a high temperature, the heat recovery amount increases, and the overall efficiency improves. On the other hand, since the cooling water temperature of the second stage cooling core 6 close to the air supply port is lowered, the blow-back gas from the combustion chamber is effectively cooled, knocking is reliably prevented, and the engine efficiency is reduced. Can be improved.

【0025】(3)請求項2記載の発明のように、給気
マニホールド2を上流側ケース26と下流側ケース27
の2分割構造とし、各ケース26,27にはそれぞれ接
続用フランジ部35,36を設け、各冷却用コア5,6
には取付部40,40を形成し、両接続用フランジ部3
5,36間に冷却用コア5,6の取付部40、,40を
挟持して、両接続用フランジ部35,36を締結するこ
とにより、給気マニホールド2を組み立てると同時に両
冷却用コア5,6を結合固定しているので、冷却装置の
組付け及びメンテナンスが一層容易になると共に、コン
パクトにもなる。
(3) As in the second aspect of the present invention, the air supply manifold 2 is connected to the upstream case 26 and the downstream case 27.
In each of the cases 26 and 27, connecting flanges 35 and 36 are provided, respectively.
Are formed with mounting portions 40, 40, and both connection flange portions 3 are formed.
By attaching the mounting portions 40, 40 of the cooling cores 5, 6 between the cooling cores 5, 36 and fastening the connection flange portions 35, 36, the air supply manifold 2 is assembled and at the same time, the cooling cores 5 are mounted. , 6 are connected and fixed, so that the assembling and maintenance of the cooling device are further facilitated, and the cooling device is also made compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願発明を適用したガス機関の冷却水系統配
管略図である。
FIG. 1 is a schematic diagram of a cooling water system piping of a gas engine to which the present invention is applied.

【図2】 図1のII-II断面拡大図である。FIG. 2 is an enlarged cross-sectional view taken along the line II-II of FIG.

【図3】 図2のIII-III断面図である。FIG. 3 is a sectional view taken along the line III-III in FIG. 2;

【図4】 図2のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 2;

【図5】 従来例の断面図である。FIG. 5 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 シリンダヘッド 2 給気マニホールド 3 シリンダブロック 5 第1段目冷却用コア 6 第2段目冷却用コア 7 過給機 26 上流側ケース 27 下流側ケース 35,36 接続用フランジ部 40 取付部 43 間座 DESCRIPTION OF SYMBOLS 1 Cylinder head 2 Air supply manifold 3 Cylinder block 5 First stage cooling core 6 Second stage cooling core 7 Supercharger 26 Upstream case 27 Downstream case 35, 36 Flange for connection 40 Between mounting parts 43 seat

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 35/104 F02M 35/10 311C 35/10 311 102P 102A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02M 35/104 F02M 35/10 311C 35/10 311 102P 102A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷却水が流通する2つの冷却用コアを互
いに接近させて結合すると共に、給気マニホールド内の
給気流を2段構えで冷却するように給気マニホールドに
内蔵し、給気上流側の第1段目冷却用コアに流す冷却水
の温度よりも、給気下流側の第2段目冷却用コアに流す
冷却水の温度を低く設定していることを特徴とする内燃
機関の給気冷却装置。
1. A cooling system in which two cooling cores through which cooling water flows are brought close to each other and coupled together, and built in the air supply manifold so as to cool the air supply flow in the air supply manifold in two stages. The temperature of the cooling water flowing to the second cooling core downstream of the air supply is set lower than the temperature of the cooling water flowing to the first cooling core on the side of the internal combustion engine. Supply air cooling device.
【請求項2】 請求項1記載の内燃機関の給気冷却装置
において、給気マニホールドを上流側ケースと下流側ケ
ースの2分割構造とし、各ケースにはそれぞれ接続用フ
ランジ部を設け、各冷却用コアには取付部を形成し、両
ケースの接続用フランジ部間に両コアの取付部を挟持し
て、両接続用フランジ部を締結することにより、給気マ
ニホールドを組み立てると同時に両冷却用コアを結合固
定していることを特徴とする内燃機関の給気冷却装置。
2. The air supply cooling device for an internal combustion engine according to claim 1, wherein the air supply manifold is divided into an upstream case and a downstream case, and each case is provided with a connecting flange portion. A mounting part is formed on the core, and the mounting part of both cores is sandwiched between the connecting flange parts of both cases, and the two connecting flange parts are fastened to assemble the air supply manifold and simultaneously cool both An air supply cooling device for an internal combustion engine, wherein a core is fixedly connected.
JP2000061907A 2000-03-07 2000-03-07 Intake air cooling device of internal combustion engine Pending JP2001248448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000061907A JP2001248448A (en) 2000-03-07 2000-03-07 Intake air cooling device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000061907A JP2001248448A (en) 2000-03-07 2000-03-07 Intake air cooling device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001248448A true JP2001248448A (en) 2001-09-14

Family

ID=18581984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000061907A Pending JP2001248448A (en) 2000-03-07 2000-03-07 Intake air cooling device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001248448A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844009A1 (en) * 2002-08-29 2004-03-05 Valeo Thermique Moteur Sa INTAKE AIR CIRCUIT FOR A HEAT ENGINE WITH A TURBOCHARGER
US6910469B2 (en) * 2002-01-17 2005-06-28 Wartsila Technology Oy Ab Inlet air arrangement for piston engine
EP1853803A1 (en) * 2005-02-21 2007-11-14 Scania CV AB (PUBL) Charge air cooler
JP2010127143A (en) * 2008-11-26 2010-06-10 Calsonic Kansei Corp Charge air cooler
WO2010110111A1 (en) * 2009-03-23 2010-09-30 カルソニックカンセイ株式会社 Charge air cooler, cooling system, and intake control system
JP2010223038A (en) * 2009-03-23 2010-10-07 Calsonic Kansei Corp Intake control system
JP2010249129A (en) * 2009-03-27 2010-11-04 Calsonic Kansei Corp Charge air cooler and cooling system
EP2278138A1 (en) * 2009-06-19 2011-01-26 Volkswagen Aktiengesellschaft Combustion engine and method for operating a combustion engine
WO2011026704A1 (en) * 2009-09-01 2011-03-10 Behr Gmbh & Co. Kg Gas cooler for an internal combustion engine
JP2012219657A (en) * 2011-04-05 2012-11-12 Denso Corp Air intake device
WO2013073566A1 (en) * 2011-11-17 2013-05-23 川崎重工業株式会社 Engine intake structure and motorcycle including same
JP2013130111A (en) * 2011-12-21 2013-07-04 Toyota Motor Corp Egr gas cooling system in internal combustion engine
US20130227932A1 (en) * 2012-03-02 2013-09-05 Denso Thermal Systems S.P.A. Heater/cooler module, integrated into an intake manifold of an internal combustion engine for conditioning a gaseous intake fluid
US20130263797A1 (en) * 2012-04-05 2013-10-10 Denso Corporation Intake system for internal combustion engine
JP2013253493A (en) * 2012-06-05 2013-12-19 Denso Corp Intake device
JP2013545934A (en) * 2010-12-17 2013-12-26 ベール ゲーエムベーハー ウント コー カーゲー Supply air cooling device for internal combustion engine, supply air adjustment system, and intake module
JP2014199056A (en) * 2013-03-29 2014-10-23 株式会社デンソー Cooling device for internal combustion engine and intake gas cooling device for internal combustion engine
KR20160072034A (en) * 2014-12-12 2016-06-22 도요타지도샤가부시키가이샤 Control device for internal combustion engine
JP2016211435A (en) * 2015-05-08 2016-12-15 マツダ株式会社 Intake air cooling device of engine
JP2017141786A (en) * 2016-02-12 2017-08-17 マツダ株式会社 Intake air cooling device for engine
JP2017141787A (en) * 2016-02-12 2017-08-17 マツダ株式会社 Intake air cooling device for engine
DE102017000710A1 (en) 2016-02-12 2017-08-17 Mazda Motor Corporation Inlet air cooling device for a motor

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910469B2 (en) * 2002-01-17 2005-06-28 Wartsila Technology Oy Ab Inlet air arrangement for piston engine
FR2844009A1 (en) * 2002-08-29 2004-03-05 Valeo Thermique Moteur Sa INTAKE AIR CIRCUIT FOR A HEAT ENGINE WITH A TURBOCHARGER
WO2004020812A1 (en) * 2002-08-29 2004-03-11 Valeo Thermique Moteur Air inlet system for a turbocharger-equipped heat engine
EP1853803A1 (en) * 2005-02-21 2007-11-14 Scania CV AB (PUBL) Charge air cooler
JP2008530448A (en) * 2005-02-21 2008-08-07 スカニア シーブイ アクチボラグ(パブル) Supply air cooler
EP1853803A4 (en) * 2005-02-21 2010-07-14 Scania Cv Abp Charge air cooler
JP2010127143A (en) * 2008-11-26 2010-06-10 Calsonic Kansei Corp Charge air cooler
CN102362054A (en) * 2009-03-23 2012-02-22 康奈可关精株式会社 Charge air cooler, cooling system, and intake control system
WO2010110111A1 (en) * 2009-03-23 2010-09-30 カルソニックカンセイ株式会社 Charge air cooler, cooling system, and intake control system
JP2010223038A (en) * 2009-03-23 2010-10-07 Calsonic Kansei Corp Intake control system
US9551273B2 (en) 2009-03-23 2017-01-24 Calsonic Kansei Corporation Charge air cooling system
JP2010249129A (en) * 2009-03-27 2010-11-04 Calsonic Kansei Corp Charge air cooler and cooling system
EP2278138A1 (en) * 2009-06-19 2011-01-26 Volkswagen Aktiengesellschaft Combustion engine and method for operating a combustion engine
WO2011026704A1 (en) * 2009-09-01 2011-03-10 Behr Gmbh & Co. Kg Gas cooler for an internal combustion engine
CN102510937A (en) * 2009-09-01 2012-06-20 贝洱两合公司 Gas cooler for an internal combustion engine
US8701604B2 (en) 2009-09-01 2014-04-22 Behr Gmbh & Co. Kg Gas cooler for an internal combustion engine
JP2013545934A (en) * 2010-12-17 2013-12-26 ベール ゲーエムベーハー ウント コー カーゲー Supply air cooling device for internal combustion engine, supply air adjustment system, and intake module
US9512776B2 (en) 2010-12-17 2016-12-06 Mahle International Gmbh Device for cooling charge air, system for conditioning charge air, and intake module for an internal combustion engine
JP2012219657A (en) * 2011-04-05 2012-11-12 Denso Corp Air intake device
US8955497B2 (en) 2011-04-05 2015-02-17 Denso Corporation Air intake device
JPWO2013073566A1 (en) * 2011-11-17 2015-04-02 川崎重工業株式会社 Engine intake structure and motorcycle equipped with the same
US9518504B2 (en) 2011-11-17 2016-12-13 Kawasaki Jukogyo Kabushiki Kaisha Air intake structure of engine and motorcycle having the same
CN103946510A (en) * 2011-11-17 2014-07-23 川崎重工业株式会社 Engine intake structure and motorcycle including same
EP2781715A4 (en) * 2011-11-17 2015-05-27 Kawasaki Heavy Ind Ltd Engine intake structure and motorcycle including same
WO2013073566A1 (en) * 2011-11-17 2013-05-23 川崎重工業株式会社 Engine intake structure and motorcycle including same
JP2013130111A (en) * 2011-12-21 2013-07-04 Toyota Motor Corp Egr gas cooling system in internal combustion engine
US20130227932A1 (en) * 2012-03-02 2013-09-05 Denso Thermal Systems S.P.A. Heater/cooler module, integrated into an intake manifold of an internal combustion engine for conditioning a gaseous intake fluid
JP2013217229A (en) * 2012-04-05 2013-10-24 Denso Corp Intake system for internal combustion engine
CN103362632A (en) * 2012-04-05 2013-10-23 株式会社电装 Intake system for internal combustion engine
US9032914B2 (en) 2012-04-05 2015-05-19 Denso Corporation Intake system for internal combustion engine
US20130263797A1 (en) * 2012-04-05 2013-10-10 Denso Corporation Intake system for internal combustion engine
JP2013253493A (en) * 2012-06-05 2013-12-19 Denso Corp Intake device
JP2014199056A (en) * 2013-03-29 2014-10-23 株式会社デンソー Cooling device for internal combustion engine and intake gas cooling device for internal combustion engine
US9995199B2 (en) 2014-12-12 2018-06-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
KR20160072034A (en) * 2014-12-12 2016-06-22 도요타지도샤가부시키가이샤 Control device for internal combustion engine
EP3040534A2 (en) 2014-12-12 2016-07-06 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
KR101723313B1 (en) 2014-12-12 2017-04-04 도요타지도샤가부시키가이샤 Control device for internal combustion engine
JP2016211435A (en) * 2015-05-08 2016-12-15 マツダ株式会社 Intake air cooling device of engine
JP2017141787A (en) * 2016-02-12 2017-08-17 マツダ株式会社 Intake air cooling device for engine
DE102017000710A1 (en) 2016-02-12 2017-08-17 Mazda Motor Corporation Inlet air cooling device for a motor
JP2017141786A (en) * 2016-02-12 2017-08-17 マツダ株式会社 Intake air cooling device for engine
US10180102B2 (en) 2016-02-12 2019-01-15 Mazda Motor Corporation Intake air cooling device for engine
DE102017000710B4 (en) * 2016-02-12 2020-11-12 Mazda Motor Corporation Intake air cooling device for an engine

Similar Documents

Publication Publication Date Title
JP2001248448A (en) Intake air cooling device of internal combustion engine
AU756183B2 (en) Engine air intake manifold having built-in intercooler
US9777680B2 (en) Exhaust gas heat exchanger
US7793498B2 (en) Integrated charge air cooler and exhaust gas recirculation mixer
US4702079A (en) Air-cooled type intercooler for a supercharged internal combustion engine
JP4512873B2 (en) Intercooler
JPH102256A (en) Exhaust gas recirculation system (egr) for engine
JP2002188526A (en) Egr device
US6546919B2 (en) Combined remote first intake air aftercooler and a second fluid from an engine cooler for an engine
US20070227141A1 (en) Multi-stage jacket water aftercooler system
JPH0666146A (en) Engine equipped with two-stage supercharger
US6976479B1 (en) Engine with optimized engine charge air-cooling system
JP2002310007A (en) Egr gas cooling structure
JPH10220305A (en) Egr device with intercooler
JPS627925A (en) Intake device having air cooler for multiple cylinder engine
JPH10509225A (en) Device installed in the intake manifold of an internal combustion engine
US11542858B2 (en) Charge air cooling unit for a two-staged turbocharger
JP2004257322A (en) Egr device of engine
US20200224568A1 (en) Heat Shield System And Method
JP3388157B2 (en) EGR valve cooling structure
JPH0374518A (en) Air cooler for engine
JP2012127266A (en) Egr device of multicylinder engine
JP2517063Y2 (en) Intake manifold cooling device for V-type internal combustion engine in automobile
JPH0435608B2 (en)
JPH09242549A (en) Inter cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202