JP3920077B2 - Air cooler for internal combustion engine with supercharger - Google Patents

Air cooler for internal combustion engine with supercharger Download PDF

Info

Publication number
JP3920077B2
JP3920077B2 JP2001343434A JP2001343434A JP3920077B2 JP 3920077 B2 JP3920077 B2 JP 3920077B2 JP 2001343434 A JP2001343434 A JP 2001343434A JP 2001343434 A JP2001343434 A JP 2001343434A JP 3920077 B2 JP3920077 B2 JP 3920077B2
Authority
JP
Japan
Prior art keywords
air
cooling
chamber
supercharger
air cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001343434A
Other languages
Japanese (ja)
Other versions
JP2003148148A (en
Inventor
利明 仲川
洪志 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2001343434A priority Critical patent/JP3920077B2/en
Publication of JP2003148148A publication Critical patent/JP2003148148A/en
Application granted granted Critical
Publication of JP3920077B2 publication Critical patent/JP3920077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • F28D7/1623Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium with particular pattern of flow of the heat exchange media, e.g. change of flow direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過給機から加圧された空気が供給される空気冷却器の構造に関するものである。
【0002】
【従来の技術】
図7は、従来の過給機付内燃機関の空気冷却器200の縦断平面図である。空気冷却器200は、多数のフィン91を複数の冷却管90が貫通して冷却管90とフィン91の間で冷却空間を形成している。冷却管90の左端側には仕切89で仕切られた室98と室99とが形成されており、室98には冷却水供給管92が接続されており、室99には排水管94が接続されている。冷却水供給管92から供給される冷却水は室98に連通する冷却管90を通って室93(冷却管90の右端側に形成された室)へ達し、さらに室93から室99と連通する冷却管90を通って昇温した冷却水が室99を経て排水管94から排水されるようになっている。
【0003】
入口95から空気冷却器200内に入った高温の加圧空気は、フィン91と冷却管90とで形成された微細な空間を通る際に冷却され、室97を経て出口96から機関へと向かう。ところで、空気は入口95から入って出口96から出て行くまでの間に冷却されるが、フィン91や冷却管90等が抵抗となり、圧力損失が生じる。また、冷却された空気は体積が減少し、入口95と出口96とで圧力差が生じてしまい、機関の高出力化に伴う空気の供給量を確保するのが困難であった。
【0004】
【発明が解決しようとする課題】
そこで本発明では、空気の入口と出口とで圧力差を減少させることができる空気冷却器を提供することを課題としている。
【0005】
【課題を解決するための手段】
上記課題を解決するため請求項1記載の発明では、冷却水が通過する複数の冷却管27と冷却フィン28とを内蔵し、前記冷却管27と冷却フィン28の間の冷却用の微細空間に、過給機から供給される加圧空気を通過させることにより、該加圧給気を冷却する空気冷却器において、上記冷却用の微細空間を流れる加圧空気の圧力損失を低減させるように、過給機に接続された空気流入口21の入口面積を、空気排出口22の出口面積よりも大きく設定すると共に、前記空気流入口21から空気排出口22まで、空気流通面積が徐々に小さくなるように形成している
【0006】
【発明の実施の形態】
(請求項1の発明の実施例)
図1は、請求項1の発明による空気冷却器100の縦断平面図である。また、図2は図1のII−II断面図である。さらに図5は空気冷却器100を備えた内燃機関の空気の流通経路図である。
【0007】
図5に示すように吸入空気がコンプレッサ50(過給機)で加圧され、加圧された空気が空気冷却器100に供給され、空気冷却器100で冷却された空気は機関60へ供給されて燃焼に寄与し、機関60から排出空気(排気ガス)が排出される。この排気ガスによりタービン70が駆動され、コンプレッサ50で吸入された空気が圧縮されるようになっている。
【0008】
図1に示すように空気冷却器100は、多数のフィン28が空気の流れ方向と平行に配置され、このフィン28を複数の冷却管27が貫通している。冷却管27の両端は側板18,19を介して空気通路壁29に固定されている。
【0009】
空気通路壁29には図1で見て左側にハウジング23が固着されており、右側にはハウジング24が固着されている。側板18とハウジング23の間には室30が形成されており、また、側板19とハウジング24の間には室31が形成されている。
【0010】
さらにハウジング23には冷却水供給管25が接続されており、ハウジング24には排水管26が接続されている。冷却水供給管25から室30に低温(例えば30℃程度)の冷却水が供給され、冷却水は冷却管27を通って室31に至り、昇温した冷却水が室31から排水管26を経て外部へ排出される。
【0011】
空気冷却器100の空気流入口21には過給機(コンプレッサ50)から高温(例えば200℃〜250℃)の加圧空気が供給され、加圧空気は冷却管27とフィン28の間の微細空間内に流入して50℃程度に冷却され空気排出口22から機関60(図5)へ流出する。
【0012】
ところで、図2に示す空気流入口21の流路幅x(入口面積)と空気流出口22の流路幅y(出口面積)は、空気流入口21の流路幅xの方が大きくなるように設定されており、空気流入口21と空気排出口22とは流路幅が徐々に狭くなるように円滑に連結されている。
【0013】
高温の加圧空気は、冷却されるにつれて体積が小さくなり、加えてフィン28や冷却管27等が抵抗として作用し、空気排出口22に近づくにつれて減圧される。流路幅x及びyはこの減圧を考慮し、空気流入口21における高温の加圧空気の空気圧と空気排出口22における低温の空気の空気圧との圧力差が極力小さくなるように機関60(図5)の運転形態及び運転環境に応じて任意に設定する。
【0014】
また、過給機(コンプレッサ50)の圧縮率が向上するほど加圧空気の温度は上昇するので、流路幅y(出口面積)に対して流路幅x(入口面積)を大きくする。小型機関で高出力が要求される機関ほどその差を大きく設定するのが好ましい。
【0015】
(参考例)
図3は、参考例を示す空気冷却器110の縦断平面図である。空気冷却器110は、複数の冷却管14が多数のフィン15を貫通しており、冷却管14の両端は銅製のプレート部材17,32を介して空気通路壁16に固着されている。
【0016】
プレート部材32,17の外側にはハウジング5及び6が設けられ、それぞれ空気通路壁16に固着されている。プレート部材32とハウジング5の間には室11が形成されている。ハウジング6には仕切3が設けてあり、この仕切3はプレート部材17に当接しており、プレート部材17とハウジング6の間には室9と室10とが形成されている。
【0017】
また、空気通路壁16の右端にはハウジング4が固着されている。冷却管14とフィン15とで形成された多数の微細空間の右方にはハウジング4で囲われた室12が形成されている。
【0018】
空気通路壁16で囲われた空気流路は仕切13で仕切られており、図3で見て仕切13より上側の左端には、図5に示すコンプレッサ50(過給機)から加圧空気が供給される空気流入口1が形成されている。また、図3で見て仕切13より下側の左端には機関60に連通する空気排出口2が形成されている。
【0019】
空気流入口1から流入した高温の加圧空気は、仕切13より上側の冷却管14とフィン15とで形成された微細空間を通過して室12内に入り、室12から仕切13より下側の冷却管14とフィン15とで形成された微細空間を通過して空気排出口2から機関60(図5)へ冷却された空気が流れる。
【0020】
ハウジング6には室9と連通する冷却水供給管7が接続されており、また、室10と連通する排水管8が接続されている。冷却水供給管7から室9内に低温(例えば30℃)の冷却水が供給され、冷却水は室9と連通する冷却管14を通って室11内へ流入し、さらに室11から室10と連通する冷却管14を通って室10に至り、排水管8からは昇温した冷却水が排出されるようになっている。
【0021】
以下に記す流路幅x,yは、図2の流路幅x,yとは示す向きが異なっている(図1にはx,yを示すことができず、x,yは図1の断面図である図2に示される。)が、ここでは同じ用語の「流路幅」を用いている。後述の流路幅x,yも同じである。
【0022】
図3に示すように、空気流入口1の流路幅xと空気排出口2の流路幅yは一致しておらず、空気流入口1の流路幅xの方が大きくなるように設定されている。空気流入口1から空気冷却器110内に流入する高温の加圧空気と、空気排出口2から排出される低温の空気の圧力差が小さくなるように、面積比に換算して空気流入口1の面積は、例えば空気排出口2の面積の1.3倍に設定されている。
【0023】
この面積比は、内燃機関の運転の仕方や運転環境により適正値が異なるため、異なる型式の内燃機関の場合はもちろんのこと、同じ型式の内燃機関同士であっても適正な面積比は異なる。事前に諸条件を調査することにより適正な面積比を設定するのが好ましい。
【0024】
図4は、別の参考例を示す空気冷却器120の縦断平面図である。基本的な構造は図3の空気冷却器110と同じであるが、空気冷却器110では空気の進行方向が途中で(室12において)1回変更するが、空気冷却器120では途中で(室48,49において)2回変更する。その他の空気冷却器120の構成は、基本的に空気冷却器110の構成と同じである。
【0025】
冷却水が冷却水供給管40から室52内に供給され、室52内の低温の冷却水は室52と連通している冷却管43内を通過して室53内に流入する。室53内の冷却水は、室54と連通している冷却管43を介して室54内へ流れ、昇温した冷却水が排水管51から外部へと排水される。
【0026】
図4において、流路幅xの空気流入口41から流入した高温の加圧空気は、冷却管43とフィン44の間の微細空間を通って冷却されながら室48に流入する。室48には後から加圧空気が送りこまれてくるので、室48内の多少冷却された空気は、流路幅zの範囲内にあるフィン44と冷却管43の間の微細空間を通って室49に到達する。室49内の空気は、室48内の空気よりも冷却されている。
【0027】
また、室49内の空気は、流路幅yの範囲内にあるフィン44と冷却管43の間の微細空間を通って空気排出口42を経て機関60(図5)へ流れる。空気排出口42における空気は、室49内の空気よりもさらに冷却されている。
【0028】
ここで、空気流入口41における加圧空気の空気圧と室48,室49内の空気圧及び空気排出口42における空気圧が、ほぼ一致するように(理想的には完全に一致するように)流路幅x,zおよびy(つまり流路面積比)が設定される。
【0029】
空気冷却器120では空気冷却器100(図1)や空気冷却器110(図3)と比較して、空気抵抗が大きくなるので、その分を勘案して各流路の面積比を設定するのが好ましい。
【0030】
以上の空気冷却器100,110及び120は、図5に示す過給機(コンプレッサ50)を備えた内燃機関に設置して使用することができるが、また、図6に示す排気ガスの一部をリサイクルするEGR式の内燃機関に設置して使用することもできる。図6には図5に加えて排出空気冷却用の空気冷却器が設けてあるが、この空気冷却器についても図1,図3及び図4に示す空気冷却器100,110及び120を適用することができる。
【0031】
【発明の効果】
請求項1の発明によると、圧力損失を低減させるように空気の入口面積と出口面積の比を設定したので、過給機(コンプレッサ50)の空気圧縮効率を向上させることができ、機関60の高出力化に良好に対応することができる。
【0032】
冷却効果を向上させることができるので、機関60の高出力化に伴い、過給機(コンプレッサ50)による圧縮率が向上し加圧空気の温度が上昇しても、出口温度を50℃程度に設定することができる。
【0034】
新設の内燃機関に限らず、既設の内燃機関に対しても、改造することにより本発明による空気冷却器100を構成することができ、過給機(コンプレッサ50)の圧縮効率を向上させ、機関60の高出力化に対応することができる。
【図面の簡単な説明】
【図1】 本発明による空気冷却器の実施例の縦断平面図である。
【図2】 図1のII−II断面図である。
【図3】 参考例を示す空気冷却器の縦断平面図である。
【図4】 参考例を示す空気冷却器空気冷却器の縦断平面図である。
【図5】 内燃機関の空気の流通経路図である。
【図6】 EGRを利用する内燃機関の空気の流通経路図である。
【図7】 従来の過給機付内燃機関の空気冷却器の縦断平面図である。
【符号の説明】
1 空気流入口
2 空気排出口
3 仕切
4〜6 ハウジング
7 冷却水供給管
8 排水管
9〜12 室
13 仕切
14 冷却管
15 フィン
16 空気通路壁
21 空気流入口
22 空気排出口
23,24 ハウジング
25 冷却水供給管
26 排水管
27 冷却管
28 フィン
29 空気通路壁
30,31 室
40 冷却水供給管
41 空気流入口
42 空気排出口
43 冷却管
44 フィン
45 空気通路壁
46,47 ハウジング
48,49 室
50 コンプレッサ(過給機)
51 排水管
52〜54 室
55 仕切
60 機関
100 空気冷却器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of an air cooler to which pressurized air is supplied from a supercharger.
[0002]
[Prior art]
FIG. 7 is a longitudinal plan view of a conventional air cooler 200 for a supercharged internal combustion engine. In the air cooler 200, a plurality of fins 91 are penetrated by a plurality of cooling pipes 90 to form a cooling space between the cooling pipes 90 and the fins 91. A chamber 98 and a chamber 99 partitioned by a partition 89 are formed on the left end side of the cooling pipe 90, a cooling water supply pipe 92 is connected to the chamber 98, and a drain pipe 94 is connected to the chamber 99. Has been. The cooling water supplied from the cooling water supply pipe 92 passes through the cooling pipe 90 communicating with the chamber 98 to reach the chamber 93 (the chamber formed on the right end side of the cooling pipe 90), and further communicates with the chamber 99 from the chamber 93. The cooling water heated through the cooling pipe 90 is drained from the drain pipe 94 through the chamber 99.
[0003]
The high-temperature pressurized air that has entered the air cooler 200 from the inlet 95 is cooled when passing through a fine space formed by the fins 91 and the cooling pipe 90, and travels from the outlet 96 to the engine through the chamber 97. . By the way, the air is cooled until it enters from the inlet 95 and exits from the outlet 96, but the fins 91, the cooling pipes 90, and the like become resistance and a pressure loss occurs. Further, the volume of the cooled air is reduced, and a pressure difference is generated between the inlet 95 and the outlet 96, so that it is difficult to ensure the amount of air supplied as the engine output increases.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an air cooler that can reduce a pressure difference between an air inlet and an outlet.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 includes a plurality of cooling pipes 27 and cooling fins 28 through which cooling water passes, and a cooling space between the cooling pipes 27 and the cooling fins 28. In the air cooler for cooling the pressurized supply air by passing the pressurized air supplied from the supercharger, so as to reduce the pressure loss of the pressurized air flowing through the cooling fine space, The inlet area of the air inlet 21 connected to the supercharger is set larger than the outlet area of the air outlet 22, and the air circulation area gradually decreases from the air inlet 21 to the air outlet 22. It is formed as follows .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment of Invention of Claim 1)
FIG. 1 is a longitudinal plan view of an air cooler 100 according to the invention of claim 1. 2 is a cross-sectional view taken along the line II-II in FIG. Further, FIG. 5 is an air flow path diagram of the internal combustion engine provided with the air cooler 100.
[0007]
As shown in FIG. 5, the intake air is pressurized by the compressor 50 (supercharger), the pressurized air is supplied to the air cooler 100, and the air cooled by the air cooler 100 is supplied to the engine 60. This contributes to combustion, and exhaust air (exhaust gas) is discharged from the engine 60. The turbine 70 is driven by the exhaust gas, and the air taken in by the compressor 50 is compressed.
[0008]
As shown in FIG. 1, in the air cooler 100, a large number of fins 28 are arranged in parallel to the air flow direction, and a plurality of cooling pipes 27 pass through the fins 28. Both ends of the cooling pipe 27 are fixed to the air passage wall 29 via the side plates 18 and 19.
[0009]
A housing 23 is fixed to the left side of the air passage wall 29 in FIG. 1, and a housing 24 is fixed to the right side. A chamber 30 is formed between the side plate 18 and the housing 23, and a chamber 31 is formed between the side plate 19 and the housing 24.
[0010]
Further, a cooling water supply pipe 25 is connected to the housing 23, and a drain pipe 26 is connected to the housing 24. Cooling water at a low temperature (for example, about 30 ° C.) is supplied from the cooling water supply pipe 25 to the chamber 30, the cooling water passes through the cooling pipe 27 to reach the chamber 31, and the raised cooling water passes through the drain pipe 26 from the chamber 31. After that, it is discharged to the outside.
[0011]
The air inlet 21 of the air cooler 100 is supplied with high-temperature (for example, 200 ° C. to 250 ° C.) pressurized air from a supercharger (compressor 50), and the compressed air is fine between the cooling pipe 27 and the fins 28. It flows into the space, is cooled to about 50 ° C., and flows out from the air discharge port 22 to the engine 60 (FIG. 5).
[0012]
Incidentally, the flow path width x 1 of the air inlet 21 shown in FIG. 2 passage width y 1 of (inlet area) and an air outlet 22 (the outlet area), the direction of channel width x 1 of the air inlet 21 The air inlet 21 and the air outlet 22 are smoothly connected so that the flow path width is gradually narrowed.
[0013]
The volume of the hot pressurized air decreases as it cools, and in addition, the fins 28, the cooling pipes 27, etc. act as resistances and are depressurized as they approach the air outlet 22. The flow path widths x 1 and y 1 take this pressure reduction into consideration, and the engine 60 is designed so that the pressure difference between the air pressure of the hot pressurized air at the air inlet 21 and the air pressure of the low temperature air at the air outlet 22 is minimized. It is arbitrarily set according to the driving mode and driving environment in FIG.
[0014]
The temperature of the pressurized air as the compression ratio is improved supercharger (compressor 50) is so increased, increasing the channel width x 1 (inlet area) to the flow path width y 1 (exit area) . It is preferable to set the difference larger for a small engine that requires high output.
[0015]
(Reference example)
FIG. 3 is a longitudinal plan view of the air cooler 110 showing a reference example . In the air cooler 110, a plurality of cooling pipes 14 pass through a large number of fins 15, and both ends of the cooling pipe 14 are fixed to the air passage wall 16 via copper plate members 17 and 32.
[0016]
Housings 5 and 6 are provided outside the plate members 32 and 17, and are respectively fixed to the air passage wall 16. A chamber 11 is formed between the plate member 32 and the housing 5. The housing 6 is provided with a partition 3, which abuts against a plate member 17, and a chamber 9 and a chamber 10 are formed between the plate member 17 and the housing 6.
[0017]
The housing 4 is fixed to the right end of the air passage wall 16. A chamber 12 surrounded by the housing 4 is formed on the right side of a large number of fine spaces formed by the cooling pipes 14 and the fins 15.
[0018]
The air flow path surrounded by the air passage wall 16 is partitioned by a partition 13, and pressurized air from the compressor 50 (supercharger) shown in FIG. A supplied air inlet 1 is formed. Further, an air discharge port 2 communicating with the engine 60 is formed at the left end below the partition 13 as viewed in FIG.
[0019]
The high-temperature pressurized air flowing in from the air inlet 1 passes through the fine space formed by the cooling pipe 14 and the fins 15 above the partition 13 and enters the chamber 12, and from the chamber 12 below the partition 13. The cooled air flows through the fine space formed by the cooling pipes 14 and the fins 15 from the air outlet 2 to the engine 60 (FIG. 5).
[0020]
A cooling water supply pipe 7 that communicates with the chamber 9 is connected to the housing 6, and a drain pipe 8 that communicates with the chamber 10 is connected to the housing 6. Cooling water having a low temperature (for example, 30 ° C.) is supplied from the cooling water supply pipe 7 into the chamber 9, and the cooling water flows into the chamber 11 through the cooling pipe 14 communicating with the chamber 9. The cooling water 14 is connected to the chamber 10 through the cooling pipe 14 communicating therewith, and the heated cooling water is discharged from the drain pipe 8.
[0021]
The flow path widths x 2 and y 2 described below are different from the flow path widths x 1 and y 1 in FIG. 2 (x 1 and y 1 cannot be shown in FIG. 1 and y 1 are shown in FIG. 2 which is a cross-sectional view of FIG. 1), but here the same term “channel width” is used. The same applies to channel widths x 3 and y 3 described later.
[0022]
As shown in FIG. 3, the flow path width x 2 and channel width y 2 of the air outlet 2 in the air inlet 1 is not coincident, who channel width x 2 of the air inlet 1 increases Is set to The air inlet 1 is converted into an area ratio so that the pressure difference between the hot pressurized air flowing into the air cooler 110 from the air inlet 1 and the low-temperature air discharged from the air outlet 2 is reduced. Is set to 1.3 times the area of the air discharge port 2, for example.
[0023]
Since the appropriate ratio of the area ratio varies depending on how the internal combustion engine is operated and the operating environment, the appropriate area ratio is different between internal combustion engines of the same type as well as different types of internal combustion engines. It is preferable to set an appropriate area ratio by investigating various conditions in advance.
[0024]
FIG. 4 is a longitudinal plan view of an air cooler 120 showing another reference example . The basic structure is the same as that of the air cooler 110 in FIG. 3, but in the air cooler 110, the air traveling direction is changed once in the middle (in the chamber 12), but in the air cooler 120 (in the chamber) 48 and 49) change twice. Other configurations of the air cooler 120 are basically the same as those of the air cooler 110.
[0025]
Cooling water is supplied from the cooling water supply pipe 40 into the chamber 52, and the low-temperature cooling water in the chamber 52 passes through the cooling pipe 43 communicating with the chamber 52 and flows into the chamber 53. The cooling water in the chamber 53 flows into the chamber 54 through the cooling pipe 43 communicating with the chamber 54, and the cooling water whose temperature has been raised is drained from the drain pipe 51 to the outside.
[0026]
In FIG. 4, the high-temperature pressurized air that has flowed from the air inlet 41 having the flow path width x 3 flows into the chamber 48 while being cooled through the fine space between the cooling pipe 43 and the fins 44. Since pressurized air is sent into the chamber 48 later, the air that has been slightly cooled in the chamber 48 passes through a fine space between the fin 44 and the cooling pipe 43 within the range of the flow path width z. Reach chamber 49. The air in the chamber 49 is cooled more than the air in the chamber 48.
[0027]
The air in chamber 49 flows through the minute space between the fins 44 cooling pipe 43 which is within the range of the channel width y 3 to the engine 60 through the air outlet 42 (FIG. 5). The air at the air outlet 42 is further cooled than the air in the chamber 49.
[0028]
Here, the flow path is such that the air pressure of the pressurized air at the air inlet 41, the air pressure in the chambers 48 and 49, and the air pressure at the air outlet 42 substantially coincide (ideally perfectly coincide). The widths x 3 , z and y 3 (that is, the flow path area ratio) are set.
[0029]
The air cooler 120 has higher air resistance than the air cooler 100 (FIG. 1) and the air cooler 110 (FIG. 3). Therefore, the area ratio of each flow path is set in consideration of the air resistance. Is preferred.
[0030]
The above air coolers 100, 110 and 120 can be used by being installed in an internal combustion engine provided with a supercharger (compressor 50) shown in FIG. 5, but a part of the exhaust gas shown in FIG. It can also be installed and used in an EGR type internal combustion engine that recycles. 6 includes an air cooler for cooling the exhaust air in addition to FIG. 5. The air coolers 100, 110, and 120 shown in FIGS. 1, 3, and 4 are also applied to this air cooler. be able to.
[0031]
【The invention's effect】
According to the first aspect of the present invention, since the ratio of the air inlet area to the outlet area is set so as to reduce the pressure loss, the air compression efficiency of the supercharger (compressor 50) can be improved. It can cope with high output well.
[0032]
Since the cooling effect can be improved, the outlet temperature is reduced to about 50 ° C. even when the compression ratio of the supercharger (compressor 50) is improved and the temperature of the pressurized air is increased as the output of the engine 60 is increased. Can be set.
[0034]
The air cooler 100 according to the present invention can be configured by modifying the existing internal combustion engine as well as the existing internal combustion engine, and the compression efficiency of the supercharger (compressor 50) can be improved. It is possible to cope with a high output of 60.
[Brief description of the drawings]
FIG. 1 is a longitudinal plan view of an embodiment of an air cooler according to the present invention.
2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a longitudinal plan view of an air cooler showing a reference example .
FIG. 4 is a longitudinal plan view of an air cooler showing a reference example .
FIG. 5 is an air flow path diagram of the internal combustion engine.
FIG. 6 is an air flow path diagram of an internal combustion engine using EGR.
FIG. 7 is a longitudinal plan view of a conventional air cooler of a supercharged internal combustion engine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air inlet 2 Air outlet 3 Partition 4-6 Housing 7 Cooling water supply pipe 8 Drain pipe 9-12 Chamber 13 Partition 14 Cooling pipe 15 Fin 16 Air passage wall 21 Air inlet 22 Air outlet 23, 24 Housing 25 Cooling water supply pipe 26 Drain pipe 27 Cooling pipe 28 Fin 29 Air passage wall 30, 31 chamber 40 Cooling water supply pipe 41 Air inlet 42 Air outlet 43 Cooling pipe 44 Fin 45 Air passage wall 46, 47 Housing 48, 49 Chamber 50 Compressor (supercharger)
51 Drain pipe 52-54 Chamber 55 Partition 60 Engine
100 air cooler

Claims (1)

冷却水が通過する複数の冷却管27と冷却フィン28とを内蔵し、前記冷却管27と冷却フィン28の間の冷却用の微細空間に、過給機から供給される加圧空気を通過させることにより、該加圧給気を冷却する空気冷却器において、
上記冷却用の微細空間を流れる加圧空気の圧力損失を低減させるように、過給機に接続された空気流入口21の入口面積を、空気排出口22の出口面積よりも大きく設定すると共に、前記空気流入口21から空気排出口22まで、空気流通面積が徐々に小さくなるように形成していることを特徴とする過給機付内燃機関の空気冷却器。
A plurality of cooling pipes 27 and cooling fins 28 through which cooling water passes are built in, and pressurized air supplied from a supercharger is passed through a fine cooling space between the cooling pipes 27 and the cooling fins 28. In the air cooler for cooling the pressurized supply air,
While setting the inlet area of the air inlet 21 connected to the supercharger to be larger than the outlet area of the air outlet 22 so as to reduce the pressure loss of the pressurized air flowing through the cooling fine space , An air cooler for an internal combustion engine with a supercharger, wherein the air flow area is gradually reduced from the air inlet 21 to the air outlet 22 .
JP2001343434A 2001-11-08 2001-11-08 Air cooler for internal combustion engine with supercharger Expired - Fee Related JP3920077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343434A JP3920077B2 (en) 2001-11-08 2001-11-08 Air cooler for internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343434A JP3920077B2 (en) 2001-11-08 2001-11-08 Air cooler for internal combustion engine with supercharger

Publications (2)

Publication Number Publication Date
JP2003148148A JP2003148148A (en) 2003-05-21
JP3920077B2 true JP3920077B2 (en) 2007-05-30

Family

ID=19157133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343434A Expired - Fee Related JP3920077B2 (en) 2001-11-08 2001-11-08 Air cooler for internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP3920077B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104402A1 (en) * 2007-02-28 2008-09-04 Behr Gmbh & Co.Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
DE102007010123A1 (en) * 2007-02-28 2008-09-04 Behr Gmbh & Co. Kg Charge-cooling device for a motor vehicle's internal combustion engine has heat-exchangers for high-pressure and low-pressure charge cooling with a coolant feed and coolant drain line
KR100823654B1 (en) 2007-10-02 2008-04-21 주식회사 코렌스 Exhaust gas recirculation cooler
DE102009012024A1 (en) * 2009-03-10 2010-09-16 Behr Gmbh & Co. Kg Intercooler for arrangement in a suction pipe
JP5625952B2 (en) * 2011-01-26 2014-11-19 トヨタ自動車株式会社 Intercooler
JP5229344B2 (en) * 2011-03-18 2013-07-03 株式会社豊田自動織機 Heat exchanger
JP5488510B2 (en) 2011-03-25 2014-05-14 株式会社豊田自動織機 Thermoelectric conversion unit
FR2977306B1 (en) * 2011-06-30 2017-12-15 Valeo Systemes Thermiques HEAT EXCHANGER, IN PARTICULAR FOR MOTOR VEHICLE
KR101821536B1 (en) * 2015-06-10 2018-01-23 바르실라 핀랜드 오이 Charge air cooler arrangement

Also Published As

Publication number Publication date
JP2003148148A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US7992628B2 (en) Multi-passing liquid cooled charge air cooler with coolant bypass ports for improved flow distribution
KR101341469B1 (en) Egr cooler with dual coolant loop
US8794299B2 (en) 2-Pass heat exchanger including thermal expansion joints
US9038609B2 (en) Charge air cooler, and intake manifold including the same
US7059308B2 (en) Cooling device
US20080087402A1 (en) Apparatus for cooling charge air for a combustion engine, system with an apparatus for cooling charge air
US20140345577A1 (en) Charge air cooler, and intake manifold including the same
US20090260605A1 (en) Staged arrangement of egr coolers to optimize performance
JP2010521619A (en) Filled fluid suction module and internal combustion engine
PL1957784T3 (en) Three-pass heat exchanger for an egr system
JP2001027157A (en) Strut for egr cooler
JP5039065B2 (en) Heat transfer device
JP2011132852A (en) Exhaust emission control device for engine
JP3920077B2 (en) Air cooler for internal combustion engine with supercharger
JP2011185267A (en) Cooling circuit of internal combustion engine
CN108603729A (en) Heat exchanger and core for heat exchanger
JP2001248448A (en) Intake air cooling device of internal combustion engine
KR20090103405A (en) EGR cooler for automobile
JPH1113550A (en) Egr cooler
JP2001280130A (en) Cooling structure for engine
JP4274746B2 (en) Internal combustion engine with multiple air coolers
US10895196B2 (en) Supercharger charge air cooler with improved air flow characteristics
EP3847357A1 (en) Charge air cooling unit for a two-staged turbocharger
KR20200031905A (en) Engine system
KR20150133019A (en) Water-Cooled Intercooler

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Ref document number: 3920077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150223

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees