JP2003145146A - Method for producing ultrapure water and apparatus therefor - Google Patents

Method for producing ultrapure water and apparatus therefor

Info

Publication number
JP2003145146A
JP2003145146A JP2001345510A JP2001345510A JP2003145146A JP 2003145146 A JP2003145146 A JP 2003145146A JP 2001345510 A JP2001345510 A JP 2001345510A JP 2001345510 A JP2001345510 A JP 2001345510A JP 2003145146 A JP2003145146 A JP 2003145146A
Authority
JP
Japan
Prior art keywords
water
ultraviolet rays
ultraviolet
exchange resin
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001345510A
Other languages
Japanese (ja)
Inventor
Toshiaki Matsuo
俊明 松尾
Takayuki Matsumoto
隆行 松本
Takashi Nishi
高志 西
Masahiro Fujima
正博 藤間
Toshikatsu Mori
利克 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001345510A priority Critical patent/JP2003145146A/en
Publication of JP2003145146A publication Critical patent/JP2003145146A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of decomposing organic matter without increasing the size of the apparatus. SOLUTION: Raw water is irradiated with an ultraviolet rays emitted from an ultraviolet source 3 (which, like an Ar-F excimer source, emits at least an ultraviolet rays of a wavelength in the range of 190-210 nm) in an ultraviolet irradiation tank 2. Benzene-ring-containing organic matter (such as aromatic polymers) contained in the raw water can be decomposed. When a pump 12 runs, the water is sent from the tank 2 to an ion exchange resin tower 6. The ion exchange resin in the tower 6 adsorptively removes ions from the water. The effluent water is further sent to a filter 7 to be stripped of a particulate component. The ultraviolet rays having the above wavelength can avoid being absorbed by water and can directly decompose the benzene-ring-containing organic matter. Further, the amount of H2 O2 formed can be reduced, and the deterioration of the ion exchange resin can therefore be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超純水の製造方法
及びその製造装置に係り、特に水中に含まれる有機物の
酸化処理装置に適用するのに好適な超純水の製造方法及
びその製造装置関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrapure water and an apparatus for producing the same, and particularly to a method for producing ultrapure water suitable for application to an apparatus for oxidizing organic substances contained in water and an apparatus for producing the same. Regarding equipment.

【0002】[0002]

【従来の技術】原子力発電所では、原子炉停止中に鉄錆
が、冷却水が流れる系統内に発生するため、起動前に行
われる給復水系の浄化運転時には復水脱塩器,廃水脱塩
器の逆洗・薬注再生が行われる。その際、逆洗・再生操
作に伴い大量に発生する廃液(100m3/d )には、
脱塩器内のイオン交換樹脂から、スルホン酸基(−SO
3 -)を含む芳香族系の高分子化合物がTOC(Total Or
ganic CarbonConcentration 、全有機炭素濃度)成分と
して溶出する場合がある。このTOC成分は、上記脱塩
器で吸着除去されないまま、原子炉給水,制御棒駆動
水,高圧炉心スプレイ水として用いられるプラント余剰
水に含まれる。TOC成分は、原子炉内に達すると分解
して硫酸イオン(SO4 2-)を生成する。しかし、TOC
濃度が高い場合には原子炉圧力容器に腐食が起こる可能
性がある。原子力発電所で発生する放射性廃液は、放射
性物質を取り除くなどの所定の処理を行っている。この
処理によって発生する、放射性物質を含まない水(TO
C>200ppb)は、系外に排出されているが、排出量
の増大は望ましくない。そこでTOC成分を効率的に分
解できると共に、操作性,メンテナンス性に優れた廃棄
物処理設備に対するニーズが高まっている。
2. Description of the Related Art In a nuclear power plant, iron rust is generated in the system through which cooling water flows while the reactor is shut down. Backwashing and re-dosing of salt containers are performed. At that time, a large amount of waste liquid (100 m 3 / d) generated by backwashing / regeneration operation,
From the ion exchange resin in the desalinator, the sulfonic acid group (-SO
3 -) The polymer compound of the aromatic system containing the TOC (Total Or
ganic Carbon Concentration, total organic carbon concentration) may be eluted as a component. This TOC component is contained in the plant surplus water used as reactor feed water, control rod drive water, and high pressure core spray water without being adsorbed and removed by the desalting device. When the TOC component reaches the inside of the nuclear reactor, it decomposes and produces sulfate ions (SO 4 2− ). However, TOC
If the concentration is high, corrosion may occur in the reactor pressure vessel. The radioactive liquid waste generated at a nuclear power plant is subjected to predetermined processing such as removal of radioactive substances. Water that does not contain radioactive substances generated by this treatment (TO
C> 200 ppb) is discharged to the outside of the system, but an increase in the discharge amount is not desirable. Therefore, there is an increasing need for waste treatment equipment that can efficiently decompose TOC components and is excellent in operability and maintainability.

【0003】一方、半導体の製造の分野においても、上
記の原子力発電所と類似した課題が存在する。半導体の
製造工程において、ウェハ処理,エッチング等、多くの
プロセスにおいて超純水が用いられるため、半導体製造
工場では超純水製造装置が設置されている。超純水製造
装置は、活性炭塔を中心とした前処理設備(水中のTO
Cは1000ppb 程度),逆浸透膜濃縮設備とイオン交
換樹脂塔を中心とした純水設備(水中のTOCは50pp
b 程度)、及び紫外線酸化装置,イオン交換樹脂塔及び
超ろ過器で主に構成される超純水設備(水中のTOCは
1ppb以下)を備えている。超純水設備は、紫外線酸化
装置において低圧水銀ランプを用いてTOC成分を紫外
線酸化し、残存するイオンをイオン交換樹脂塔内のイオ
ン交換樹脂で吸着除去した後、超ろ過器でろ過すること
によって、TOC,電気伝導度,微粒子数を低減する。
On the other hand, also in the field of semiconductor manufacturing, there are problems similar to those of the above-mentioned nuclear power plant. In a semiconductor manufacturing process, ultrapure water is used in many processes such as wafer processing and etching. Therefore, an ultrapure water manufacturing apparatus is installed in a semiconductor manufacturing factory. The ultrapure water production system is a pretreatment facility (TO in water)
C is approximately 1000 ppb), reverse osmosis membrane concentrating equipment and pure water equipment centering on an ion exchange resin tower (TOC in water is 50 ppb)
b), and ultrapure water equipment (TOC in water is 1 ppb or less) mainly composed of an ultraviolet oxidation device, an ion exchange resin tower and an ultrafilter. The ultrapure water equipment uses a low-pressure mercury lamp in an ultraviolet oxidizer to oxidize the TOC component with ultraviolet light, and the remaining ions are adsorbed and removed by the ion-exchange resin in the ion-exchange resin tower, and then filtered with an ultrafilter. , TOC, electric conductivity, and the number of fine particles are reduced.

【0004】[0004]

【発明が解決しようとする課題】紫外線酸化装置の低圧
水銀ランプは、波長185nmの紫外線(相対強度は全
体の数%程度)を放出する。この波長の紫外線は、有機
物に照射することによって、直接、有機物を酸化分解さ
せることができる。しかし、水中に存在するTOCに波長
185nmの紫外線を照射してもその波長の紫外線は水
による吸収が極めて強いために、そのTOCの酸化は波
長185nmの紫外線の照射によっては起こりにくい。
しかも、紫外線を吸収した水は解離してヒドロキシルラ
ジカル(以下、OH・)を生成する。OH・は有機物に
含まれる水素原子と作用して水を生成するが、この反応
を通してTOCの大部分は例えば(1)式の反応により
最終的には二酸化炭素まで酸化される。
The low-pressure mercury lamp of the UV oxidizer emits UV light having a wavelength of 185 nm (relative intensity is about a few% of the whole). By irradiating an organic substance with ultraviolet rays having this wavelength, the organic substance can be directly oxidized and decomposed. However, even if TOC existing in water is irradiated with ultraviolet rays having a wavelength of 185 nm, since the ultraviolet rays having the wavelength are extremely strongly absorbed by water, the TOC is hardly oxidized by irradiation with the ultraviolet rays having a wavelength of 185 nm.
Moreover, the water that has absorbed the ultraviolet rays is dissociated to generate hydroxyl radicals (hereinafter referred to as OH.). OH · reacts with hydrogen atoms contained in an organic substance to generate water, and most of TOC is finally oxidized to carbon dioxide by the reaction of the formula (1) through this reaction.

【0005】 Cn2n + 2nOH・ + nO2 → nCO2 + 2nH2O …(1) ただし、TOCの分解生成物の一部である酢酸等の低分
子はOH・では分解されないことが知られている。低圧
水銀ランプの紫外線を用いたTOCの酸化は(1)式の
作用により進行する。しかしながら、その一方でOH・
は過酸化水素(H22を生成することが知られている
(2OH・→H22)。H22を含む水がイオン交換樹
脂塔に供給されると、H22の酸化作用によりイオン交
換樹脂の一部が劣化し、原子力発電所の場合と同様に、
芳香族系の高分子化合物がTOC成分として新たに溶出
する。このTOCはやはりイオン交換樹脂塔で吸着除去
されないため、半導体の製造工程においてシリコン基盤
を汚染し、ボイラー内壁の腐食を引き起こす。
C n H 2n + 2nOH · + nO 2 → nCO 2 + 2nH 2 O (1) However, it is known that low molecules such as acetic acid, which is a part of decomposition products of TOC, are not decomposed by OH. Has been. Oxidation of TOC using ultraviolet rays of a low-pressure mercury lamp proceeds by the action of formula (1). However, on the other hand, OH
Is known to produce hydrogen peroxide (H 2 O 2 (2OH · → H 2 O 2 ). When water containing H 2 O 2 is supplied to the ion exchange resin tower, H 2 O 2 Part of the ion-exchange resin deteriorates due to the oxidation effect of
The aromatic polymer compound is newly eluted as the TOC component. Since this TOC is still not adsorbed and removed by the ion exchange resin tower, it contaminates the silicon substrate in the semiconductor manufacturing process and causes corrosion of the inner wall of the boiler.

【0006】このため、現状では、水中に水素ガス
(H2)を注入してH22を水に還元する方法,パラジウ
ム等の触媒によりH22を分解する方法(特開平9−19
2658号公報)、及びイオン交換樹脂塔を通した水を、再
度、紫外線により酸化する方法(特開2000−614
59号公報)等の対策がとられている。しかし、水素を
注入する場合は、その水に対する水素の溶解度が極めて
小さく、効率が悪い。触媒使用の場合、これを担持・固
定しておく樹脂から有機物が溶出する問題がある。紫外
線酸化の場合、芳香族系の高分子化合物は極めて安定
で、低圧水銀ランプの紫外線だけで発生するOH・程度
では分解効率が極めて悪い。以上のようにその効果は不
十分な状態であり、新たな対策が求められている。
Therefore, at present, hydrogen gas in water is used.
A method of injecting (H 2 ) to reduce H 2 O 2 to water, and a method of decomposing H 2 O 2 with a catalyst such as palladium (JP-A-9-19
2658) and water that has passed through the ion exchange resin tower is again oxidized by ultraviolet rays (Japanese Patent Laid-Open No. 2000-614).
59) and other measures are taken. However, in the case of injecting hydrogen, the solubility of hydrogen in the water is extremely small and the efficiency is poor. In the case of using a catalyst, there is a problem that organic substances are eluted from the resin carrying and fixing it. In the case of UV oxidation, aromatic polymer compounds are extremely stable, and the decomposition efficiency is extremely poor with OH. As mentioned above, the effect is insufficient, and new measures are required.

【0007】有機物の酸化分解をより強力に進める方法
として、低圧水銀ランプの紫外線とオゾンO3 ,過酸化
水素といった酸化剤を併用する、TOC成分の分解によ
り適した波長の紫外線を探してそれを発することのでき
る光源を適用する、といったことがある。低圧水銀ラン
プの紫外線と酸化剤を併用する方法は、これによりOH
・の生成量を増大することでTOC成分の分解を早める
ものである。この場合、難分解性の芳香族系の高分子化
合物であっても、酸化分解は十分可能である。しかしな
がら、この場合には酸化分解処理後の水にはより多くの
22が残存するため、後段におけるイオン交換樹脂の
劣化が激しくなる。その上、紫外線照射設備の他に、オ
ゾン発生装置またはH22の管理・供給設備が必要とな
り超純水製造装置の大型化を引き起こす。
As a more powerful method for oxidative decomposition of organic substances, ultraviolet rays of a low pressure mercury lamp and an oxidizing agent such as ozone O 3 and hydrogen peroxide are used in combination, and ultraviolet rays having a wavelength suitable for decomposition of TOC components are searched for. Applying a light source that can emit light. The method of using ultraviolet rays of a low-pressure mercury lamp and an oxidizing agent together is
・ The decomposition of TOC components is accelerated by increasing the production amount of. In this case, even a hardly decomposable aromatic polymer compound can sufficiently undergo oxidative decomposition. However, in this case, since more H 2 O 2 remains in the water after the oxidative decomposition treatment, deterioration of the ion exchange resin in the subsequent stage becomes severe. In addition to the ultraviolet irradiation equipment, an ozone generator or H 2 O 2 management / supply equipment is required, which causes an increase in the size of the ultrapure water production apparatus.

【0008】本発明の目的は、装置の大型化を防止でき
かつ有機物の分解効率を向上できる超純水の製造方法及
びその製造装置を提供することにある。
It is an object of the present invention to provide a method for producing ultrapure water and an apparatus for producing the same, which can prevent the apparatus from becoming large and improve the decomposition efficiency of organic substances.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成する本
発明の特徴は、190nm〜210nmの範囲内の波長
を有する紫外線を、有機物を含む水に照射して前記有機
物を分解することにある。190nm〜210nmの範
囲内の波長を少なくとも有する紫外線を、水中の有機物
に照射することにより、水による紫外線の吸収を著しく
低減でき、有機物の分解効率を向上できる。これによ
り、水中のTOCを著しく低減できる。また、紫外線照
射装置を変えればよいため、超純水製造装置の大型化を
回避できる。特に、ベンゼン環を有する有機物に、19
0nm〜210nmの範囲内の波長を有する紫外線を照
射することによってベンゼン環を有する有機物を容易に
分解することができる。
A feature of the present invention for achieving the above object is to irradiate water containing an organic substance with ultraviolet rays having a wavelength in the range of 190 nm to 210 nm to decompose the organic substance. . By irradiating organic matter in water with ultraviolet rays having at least a wavelength in the range of 190 nm to 210 nm, absorption of ultraviolet rays by water can be significantly reduced, and decomposition efficiency of organic matter can be improved. As a result, TOC in water can be significantly reduced. Further, since it is only necessary to change the ultraviolet irradiation device, it is possible to avoid an increase in the size of the ultrapure water production device. In particular, the organic compound having a benzene ring is
By irradiating with an ultraviolet ray having a wavelength within the range of 0 nm to 210 nm, the organic substance having a benzene ring can be easily decomposed.

【0010】[0010]

【発明の実施の形態】発明者等は、水の中に存在する有
機物の分解効率を向上させる方策を種々検討した。その
結果、発明者等は、紫外線酸化装置の低圧水銀ランプか
ら放出される紫外線の波長を変更することによって水の
中に存在する有機物の分解効率を向上できることを発見
した。本発明はこの発見に基づいてなされたものであ
る。以下に、発明者等による検討結果を詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors have studied various measures for improving the decomposition efficiency of organic substances existing in water. As a result, the inventors have discovered that the decomposition efficiency of organic substances existing in water can be improved by changing the wavelength of ultraviolet rays emitted from a low-pressure mercury lamp of an ultraviolet oxidation device. The present invention is based on this finding. The examination results by the inventors will be described in detail below.

【0011】分解しずらい有機物はベンゼン環を有する
有機物である。このため、ベンゼン環の水溶液に波長の
異なる紫外線を照射して、水の吸光係数、及びベンゼン
環の直接分解吸光係数を調べた。水の吸光係数は、図2
に示すように、紫外線の波長が190nmよりも短くな
ると急激に増大し、170nm程度で一度ピークとな
る。一方、ベンゼン環の直接分解吸光係数は、図2に示
すように、紫外線の波長が210nm以下で急激に増大
する。210nmを超える波長を有する紫外線をベンゼ
ン環を有する有機物に照射しても、ベンゼン環を有する
有機物は分解しない。このため、波長が190nm〜2
10nmの範囲内にある紫外線(好ましくは波長が19
0nm〜207nmの範囲内にある紫外線)をベンゼン
環を有する有機物を含む水に照射することによって、水
による紫外線の吸収を回避しつつ水に含まれる、ベンゼ
ン環を有する有機物を直接分解することができる。その
範囲内の波長を有する紫外線の上記有機物の分解への適
用は、OH・を経由したH2O2の生成量の低減、及び直接
有機物を分解することによる分解効率の向上が可能とな
る。
Organic substances that are difficult to decompose are those having a benzene ring. Therefore, the aqueous solution of the benzene ring was irradiated with ultraviolet rays having different wavelengths, and the extinction coefficient of water and the direct decomposition extinction coefficient of the benzene ring were examined. Figure 2 shows the absorption coefficient of water.
As shown in (1), when the wavelength of the ultraviolet light becomes shorter than 190 nm, it rapidly increases and once reaches a peak of about 170 nm. On the other hand, the direct decomposition extinction coefficient of the benzene ring rapidly increases when the wavelength of ultraviolet rays is 210 nm or less, as shown in FIG. Irradiation of an organic substance having a benzene ring with ultraviolet rays having a wavelength of more than 210 nm does not decompose the organic substance having a benzene ring. Therefore, the wavelength is 190 nm to 2
Ultraviolet rays in the range of 10 nm (preferably having a wavelength of 19
By irradiating water containing an organic substance having a benzene ring with (UV light in the range of 0 nm to 207 nm), the organic substance having a benzene ring contained in water can be directly decomposed while avoiding the absorption of ultraviolet light by water. it can. Application of ultraviolet rays having a wavelength within the range to the decomposition of the above-mentioned organic matter makes it possible to reduce the amount of H 2 O 2 produced via OH. And to improve the decomposition efficiency by directly decomposing the organic matter.

【0012】OH・を経由したH22の生成量の低減
は、イオン交換樹脂の劣化、及びこれに伴うイオン交換
樹脂からの有機物の溶出を著しく低減できる。また、O
H・を介した間接的な作用の場合、H22の生成,ラジ
カルスカベンジャー(ラジカルを捕獲・消滅する作用を
持つ物質)の作用によるOH・の消滅により、有機物の
酸化効率が著しく低下する。しかし、紫外線による直接
酸化の場合はそのような影響がないため、酸化効率が向
上する。
The reduction in the amount of H 2 O 2 produced via OH · can significantly reduce the deterioration of the ion exchange resin and the accompanying elution of organic substances from the ion exchange resin. Also, O
In the case of indirect action via H ・, the oxidation efficiency of organic substances is significantly reduced by the generation of H 2 O 2 and the disappearance of OH ・ by the action of radical scavenger (a substance that has the action of trapping and eliminating radicals). . However, in the case of direct oxidation by ultraviolet rays, there is no such influence, and the oxidation efficiency is improved.

【0013】190nm〜210nmの範囲内の波長を
有する紫外線の効果を確認した、具体的なTOC分解試
験の例を説明する。TOC分解試験は、様々な波長の紫
外線光源及びイオン交換樹脂浸漬水を用いて行った。イ
オン交換樹脂浸漬水は、イオン交換樹脂を水に浸漬させ
ることによってイオン交換樹脂の成分(ベンゼン環を有
する有機物)の一部が水に溶け出すが、その後に、イオ
ン交換樹脂を水から取り除いて得られたものであり、T
OC成分としてイオン交換樹脂の成分(ベンゼン環を有
する有機物)を含んでいる水である。ビーカー内の、イ
オン交換樹脂の成分(ベンゼン環を有する有機物)を含
んでいる水、すなわちTOC成分を含有する水溶液に上
から紫外線を照射し、その際におけるTOCの経時変化
を測定した。表1にTOC分解の試験条件を示した。実
験結果である、各紫外線光源を用
An example of a specific TOC decomposition test which confirms the effect of ultraviolet rays having a wavelength in the range of 190 nm to 210 nm will be described. The TOC decomposition test was performed using an ultraviolet light source of various wavelengths and ion exchange resin immersion water. The ion exchange resin soaked water is a part of the ion exchange resin component (organic substance having a benzene ring) that dissolves in the water when the ion exchange resin is soaked in water. After that, the ion exchange resin is removed from the water. Obtained, T
Water containing an ion exchange resin component (organic substance having a benzene ring) as an OC component. The water containing the component of the ion exchange resin (organic substance having a benzene ring) in the beaker, that is, the aqueous solution containing the TOC component was irradiated with ultraviolet rays from above, and the change with time of TOC at that time was measured. Table 1 shows the test conditions for TOC decomposition. Experimental results, using each UV light source

【0014】[0014]

【表1】 [Table 1]

【0015】いた場合におけるTOCの経時変化を図3
に示す。波長308nmの紫外線を放出する紫外線光源
(Xe−Clエキシマー光源)、及び低圧水銀ランプ(大
部分が波長254nmの紫外線、1%が185nmの紫
外線を放出)の場合、TOCはほとんど低下しない。波
長222nmの紫外線を放出する紫外線光源(Kr−C
lエキシマー光源)及び172nmの紫外線を放出する
紫外線光源(Xe2 エキシマー光源)ではある程度TO
Cは低下する。前者は紫外線による直接酸化によるが、
その吸光係数があまり大きくない領域のものである。後
者は紫外線の吸収に伴い生成したOH・によりある程度
酸化が進んだものである。これに対して、波長193n
mの紫外線を放出するアルゴン−フッ素(Ar−F)エ
キシマー光源の場合は、Kr−Clエキシマー光源及び
Xe2 エキシマー光源に比べて著しく酸化反応が進行す
ることがわかる。Ar−Fエキシマー光源から放出され
る波長193nmの紫外線は、水による吸収を回避しつ
つ、ベンゼン環を含む有機物を直接分解する。図4は同
様の試験をAr−Fエキシマー光源と酢酸水溶液を用い
て実施した際の、TOCの経時変化を示す。OH・では
分解できない酢酸等の低分子についても、その波長の紫
外線による直接酸化の場合にはベンゼン環を含む有機物
が分解可能である。したがって、従来と比べて低濃度ま
でTOC成分を低減できる。
FIG. 3 shows changes in TOC with time in the case of being present.
Shown in. Ultraviolet light source that emits ultraviolet light with a wavelength of 308 nm
In the case of (Xe-Cl excimer light source), and low-pressure mercury lamp (most of which emits ultraviolet light having a wavelength of 254 nm, 1% emits ultraviolet light of 185 nm), TOC is hardly reduced. Ultraviolet light source (Kr-C) that emits ultraviolet light with a wavelength of 222 nm
(excimer light source) and an ultraviolet light source (Xe 2 excimer light source) that emits ultraviolet light of 172 nm to some extent.
C decreases. The former is due to direct oxidation by ultraviolet rays,
It is in the region where the extinction coefficient is not so large. In the latter, the OH is generated due to the absorption of ultraviolet rays and is oxidized to some extent. On the other hand, the wavelength is 193n
It can be seen that in the case of an argon-fluorine (Ar-F) excimer light source that emits ultraviolet rays of m, the oxidation reaction proceeds significantly as compared with the Kr-Cl excimer light source and the Xe 2 excimer light source. Ultraviolet rays having a wavelength of 193 nm emitted from the Ar—F excimer light source directly decompose organic matter containing a benzene ring while avoiding absorption by water. FIG. 4 shows a change with time in TOC when the same test was performed using an Ar-F excimer light source and an aqueous acetic acid solution. Even for small molecules such as acetic acid that cannot be decomposed with OH., Organic matter containing a benzene ring can be decomposed in the case of direct oxidation by ultraviolet rays of that wavelength. Therefore, the TOC component can be reduced to a lower concentration than the conventional one.

【0016】この結果、190nm〜210nmの範囲
内の波長を少なくとも有する紫外線を有機物に照射する
ことによって、従来の低圧水銀ランプ使用の場合と比べ
て、設備規模を低減できるとともに、処理水の純度の向
上が可能となる。
As a result, by irradiating the organic material with ultraviolet rays having at least a wavelength in the range of 190 nm to 210 nm, the equipment scale can be reduced and the purity of the treated water can be reduced as compared with the case of using a conventional low pressure mercury lamp. It is possible to improve.

【0017】上記の検討結果に基づいてなされた本発明
の好適な一実施例である超純水の製造方法を、図1を用
いて以下に説明する。本実施例の超純水の製造方法を適
用する超純水製造装置は、原料水タンク1,紫外線照射
槽2,紫外線光源3,イオン交換樹脂塔6,ろ過器7及
び超純水タンク8を備える。ポンプ10が設置された原
料水供給管16が原料水タンク1に接続される。原料水
タンク1はポンプ11が設置された配管17によって紫
外線照射槽2に接続される。攪拌器5が紫外線照射槽2
内に設けられる。攪拌器5の設置は必要に応じて省略し
てもよい。紫外線光源用電源4に接続された紫外線光源
3は紫外線照射槽2の上方に設置される。イオン交換樹
脂塔6は、イオン交換樹脂層を内蔵し、ポンプ12が設
置された配管18によって紫外線照射槽2に接続され
る。配管18はイオン交換樹脂塔6とろ過器7とを接続
する。ポンプ13が配管19に設けられる。三方弁9及
びポンプ14が配管20に設けられる。配管20はろ過
器7と超純水タンク8とを接続する。戻り配管22は三
方弁9と原料水タンク1を連絡する。ポンプ15を有す
る超純水供給管21が超純水タンク8に接続される。
A method for producing ultrapure water, which is a preferred embodiment of the present invention, based on the above-described examination results, will be described below with reference to FIG. An ultrapure water producing apparatus to which the method for producing ultrapure water according to this embodiment is applied includes a raw water tank 1, an ultraviolet irradiation tank 2, an ultraviolet light source 3, an ion exchange resin tower 6, a filter 7, and an ultrapure water tank 8. Prepare The raw water supply pipe 16 in which the pump 10 is installed is connected to the raw water tank 1. The raw water tank 1 is connected to the ultraviolet irradiation tank 2 by a pipe 17 in which a pump 11 is installed. Stirrer 5 is UV irradiation tank 2
It is provided inside. The stirrer 5 may be omitted if necessary. The ultraviolet light source 3 connected to the ultraviolet light source power source 4 is installed above the ultraviolet irradiation tank 2. The ion exchange resin tower 6 contains an ion exchange resin layer and is connected to the ultraviolet irradiation tank 2 by a pipe 18 in which a pump 12 is installed. The pipe 18 connects the ion exchange resin tower 6 and the filter 7. The pump 13 is provided in the pipe 19. A three-way valve 9 and a pump 14 are provided in the pipe 20. The pipe 20 connects the filter 7 and the ultrapure water tank 8. The return pipe 22 connects the three-way valve 9 and the raw water tank 1. An ultrapure water supply pipe 21 having a pump 15 is connected to the ultrapure water tank 8.

【0018】紫外線光源3は、本実施例のように紫外線
照射槽2内の原料水から離して設置するのではなく、少
なくともその一部を紫外線照射槽2内の原料水内に浸漬
して設置してもよい。紫外線光源3を紫外線照射槽2内
の原料水から離して設置する場合は、紫外線光源3の窓
部が水垢等で汚れないこと、窓部材料にフッ化マグネシ
ウム等の、水との接触により劣化する可能性はあるが紫
外線の透過性はよい物質を用いることができる利点があ
る。紫外線照射槽2内の原料水内に紫外線光源3の少な
くとも一部を浸漬して設置する場合は、原料水から離し
て設置する場合と比べて紫外線照射槽2の外部への紫外
線の漏洩、空気による紫外線の吸収を低減し、利用効率
を向上できる。しかし、この場合には、紫外線光源3の
窓部材料に紫外線の透過率を改善した特殊な石英ガラス
等の物質を用いる必要がある。紫外線光源3の形状は、
図1に示すような平板上の窓から紫外線を照射する構造
(紫外線を水面の上から照射する場合に比較的適してい
る)である。紫外線光源3の形状は、そのような構造以
外に、円筒状形状でその側面を中心として紫外線を照射
する構造(水中に浸漬して用いる場合に比較的適してい
る)にしてもよい。紫外線光源3から発する紫外線がレ
ーザー光のように直進性が高い場合には、鏡を用いて紫
外線の進行方向を変えて水に照射することも可能であ
る。この場合は、紫外線光源3を紫外線照射槽2から離
れた位置に設置することが可能となり、紫外線光源3の
メンテナンスが容易になる。特に、原子力発電プラント
に適用する場合には、紫外線光源3は、放射性物質を含
む水中に浸漬しないで用いることができ、放射性物質で
汚染されない。更に、紫外線光源3のメンテナンスにお
いて紫外線光源3から発生する廃棄物は、放射性物質に
汚染されていないため、放射性廃棄物の発生量を低減す
ることができる。
The ultraviolet light source 3 is not installed separately from the raw water in the ultraviolet irradiation tank 2 as in the present embodiment, but at least a part thereof is immersed in the raw water in the ultraviolet irradiation tank 2 for installation. You may. When the UV light source 3 is installed away from the raw water in the UV irradiation tank 2, the window of the UV light source 3 should not be stained with water stains, etc., and the window material should be deteriorated by contact with water such as magnesium fluoride. However, there is an advantage that it is possible to use a substance that has a good transparency to ultraviolet rays. When at least a part of the ultraviolet light source 3 is immersed in the raw material water in the ultraviolet irradiation tank 2 for installation, leakage of ultraviolet rays to the outside of the ultraviolet irradiation tank 2 and air compared to the case where the ultraviolet light source 3 is installed away from the raw material water. It is possible to reduce the absorption of ultraviolet rays due to and improve the utilization efficiency. However, in this case, it is necessary to use a special substance such as quartz glass having an improved ultraviolet transmittance for the window material of the ultraviolet light source 3. The shape of the ultraviolet light source 3 is
This is a structure in which ultraviolet rays are emitted from a window on a flat plate as shown in FIG. 1 (relatively suitable when ultraviolet rays are emitted from above the water surface). In addition to such a structure, the shape of the ultraviolet light source 3 may be a cylindrical shape that irradiates ultraviolet rays with its side surface as the center (relatively suitable when used by being immersed in water). When the ultraviolet rays emitted from the ultraviolet light source 3 have high linearity like a laser beam, it is possible to change the traveling direction of the ultraviolet rays by using a mirror and irradiate the water. In this case, the ultraviolet light source 3 can be installed at a position apart from the ultraviolet irradiation tank 2, and the maintenance of the ultraviolet light source 3 becomes easy. Particularly when applied to a nuclear power plant, the ultraviolet light source 3 can be used without being immersed in water containing a radioactive substance, and is not contaminated with the radioactive substance. Furthermore, since the waste generated from the ultraviolet light source 3 during the maintenance of the ultraviolet light source 3 is not contaminated with radioactive substances, the amount of radioactive waste generated can be reduced.

【0019】超純水の原料水が、ポンプ10を駆動する
ことによって原料水供給管16から原料水タンク1に供
給される。原料水は、例えば、あらかじめ純水設備で処
理された水、使用済みの超純水、一度超純水製造過程を
通ったがもう一度処理を必要とする水等、様々である。
原料水タンク1内の原料水は、ポンプ11の駆動により
配管17を通って紫外線照射槽2に送られる。紫外線照
射槽2内で、原料水は、攪拌器5によって攪拌されなが
ら紫外線光源3から放出される紫外線を照射される。紫
外線光源3は紫外線光源用電源4から電力の供給を受け
て紫外線を放出する。紫外線光源3としては、光源内に
封入したアルゴンとフッ素の混合ガスへの放電等により
アルゴンとフッ素のエキシマーを発生させ、このエキシ
マーから発せられる波長193nmの紫外線を利用する
Ar−Fエキシマー光源を用いる。エキシマーとは、基
底状態では結合をもたない原子同士が、放電等により励
起状態になると原子間に負のポテンシャルが発生して結
合してできた分子である。Ar−Fエキシマー光源以外
でも、波長190〜210nmの範囲内の紫外線を少な
くとも1種類以上発することのできるものであれば使用
が可能である。
Raw water of ultrapure water is supplied to the raw water tank 1 from the raw water supply pipe 16 by driving the pump 10. The raw material water is various, for example, water that has been previously treated in a pure water facility, used ultrapure water, water that has undergone the ultrapure water production process once, but needs to be treated again.
The raw material water in the raw material water tank 1 is sent to the ultraviolet irradiation tank 2 through the pipe 17 by the drive of the pump 11. In the ultraviolet irradiation tank 2, the raw material water is irradiated with the ultraviolet light emitted from the ultraviolet light source 3 while being stirred by the stirrer 5. The ultraviolet light source 3 receives power from the ultraviolet light source power source 4 and emits ultraviolet light. As the ultraviolet light source 3, an Ar-F excimer light source is used that generates an excimer of argon and fluorine by discharging into a mixed gas of argon and fluorine enclosed in the light source and uses ultraviolet light of a wavelength of 193 nm emitted from this excimer. . An excimer is a molecule formed by bonding atoms that do not have a bond in the ground state with each other by generating a negative potential between the atoms when they become excited by discharge or the like. Other than the Ar-F excimer light source, any one can be used as long as it can emit at least one kind of ultraviolet rays in the wavelength range of 190 to 210 nm.

【0020】紫外線照射槽2内で原料水に上述のように
波長193nmの紫外線を含む紫外線を照射することに
よって、原料水に含まれた、ベンゼン環を含んでいる有
機物(例えば、芳香族系の高分子化合物)は、分解され
る。原料水に含まれた他の有機物も紫外線の照射によっ
て分解される。TOCが著しく減少した水が、ポンプ1
2の駆動によって紫外線照射槽2から配管18内を通っ
てイオン交換樹脂塔6に送られる。イオン交換樹脂塔6
内のイオン交換樹脂は、送られてきた水に含まれるイオ
ンを吸着除去する。このため、その水の電気伝導率が低
減される。イオン交換樹脂塔6から排出された水は配管
19によりろ過器7に送られる。ポンプ13が駆動され
ている。ろ過器7は水に含まれた粒子成分を除去する。
ろ過器7から排出された水のTOCを測定し、そのTO
Cが設定濃度以下になっている場合には、三方弁9がろ
過器7と超純水タンク8を接続するように回転される。
このため、ろ過器7から排出された水は、超純水とし
て、三方弁9を介して超純水タンク8に供給される。超
純水タンク8内の超純水は、ポンプ15を駆動すること
によって超純水供給管21により超純水使用施設(例え
ば、半導体製造施設または原子力発電プラント)に送ら
れる。
By irradiating the raw material water with the ultraviolet ray having the wavelength of 193 nm as described above in the ultraviolet ray irradiation tank 2, an organic substance (for example, an aromatic group) contained in the raw material water and containing a benzene ring is contained. The polymer compound) is decomposed. Other organic substances contained in the raw material water are also decomposed by irradiation with ultraviolet rays. Water with significantly reduced TOC is pump 1
By driving 2, the ultraviolet irradiation tank 2 is sent to the ion exchange resin tower 6 through the inside of the pipe 18. Ion exchange resin tower 6
The ion exchange resin therein absorbs and removes the ions contained in the sent water. Therefore, the electric conductivity of the water is reduced. The water discharged from the ion exchange resin tower 6 is sent to the filter 7 through the pipe 19. The pump 13 is driven. The filter 7 removes the particle component contained in water.
The TOC of the water discharged from the filter 7 is measured, and the TO
When C is below the set concentration, the three-way valve 9 is rotated so as to connect the filter 7 and the ultrapure water tank 8.
Therefore, the water discharged from the filter 7 is supplied as ultrapure water to the ultrapure water tank 8 via the three-way valve 9. The ultrapure water in the ultrapure water tank 8 is sent to an ultrapure water using facility (for example, a semiconductor manufacturing facility or a nuclear power plant) by driving the pump 15 through the ultrapure water supply pipe 21.

【0021】測定されたそのTOCが設定濃度を超える
場合には、三方弁9はろ過器7と戻り配管22とを接続
するように回転される。ろ過器7から排出された、TO
Cが設定濃度を超える水は、超純水として使用できない
ため、戻り配管21より原料水タンク1に戻され、紫外
線照射槽2内で、再度、上記の紫外線の照射を受ける。
再度の紫外線照射によりTOCは設定濃度以下になる。
If the measured TOC exceeds the set concentration, the three-way valve 9 is rotated to connect the filter 7 and the return line 22. TO discharged from the filter 7
Since water having a concentration of C exceeding the set concentration cannot be used as ultrapure water, it is returned to the raw water tank 1 through the return pipe 21 and is again irradiated with the ultraviolet rays in the ultraviolet irradiation tank 2.
The TOC becomes less than the set concentration by the irradiation of ultraviolet rays again.

【0022】本実施例では、Ar−Fエキシマー光源の
ように、発せられる紫外線の少なくとも1つ以上の波長
が190nm〜200nmの範囲内に存在する光源を用
いている。上記の範囲内の波長を有する紫外線は、水に
よる吸収を回避しつつ、ベンゼン環を含む有機物を直接
分解することができる。その結果、H22の生成量低
減、及び直接有機物を分解することに起因してTOCの
分解効率が向上する。H22の生成量の低減は、後段の
イオン交換樹脂塔6内のイオン交換樹脂の劣化及びこの
劣化に伴うイオン交換樹脂からの有機物の溶出の低減を
もたらす。これらによっても水中のTOC濃度は低下す
る。また、紫外線による有機物の直接分解は水の紫外線
分解に伴い生成するOH・を通しての有機物の酸化反応
ではないため、OH・では分解できない低分子の分解生
成物(酢酸等)についても分解が可能となり、低分子の
分解生成物の濃度も著しく低減する。以上のことから、
本実施例は、従来に比べて、水中のTOCを著しく低減
できる。この結果、本実施例は、従来の低圧水銀ランプ
使用の場合と比べて、設備規模を低減できるとともに、
超純水の純度の向上が可能となる。
In this embodiment, a light source such as an Ar-F excimer light source in which at least one or more wavelengths of emitted ultraviolet rays are within the range of 190 nm to 200 nm is used. Ultraviolet rays having a wavelength within the above range can directly decompose organic substances containing a benzene ring while avoiding absorption by water. As a result, the amount of H 2 O 2 produced is reduced, and the decomposition efficiency of TOC is improved due to the direct decomposition of organic substances. The reduction in the amount of H 2 O 2 produced results in deterioration of the ion exchange resin in the ion exchange resin tower 6 at the subsequent stage and reduction of elution of organic substances from the ion exchange resin due to this deterioration. These also reduce the TOC concentration in water. In addition, since the direct decomposition of organic matter by ultraviolet rays is not an oxidation reaction of organic matter through OH, which is generated along with the decomposition of water by ultraviolet rays, it is possible to decompose low-molecular decomposition products (acetic acid etc.) that cannot be decomposed by OH. Also, the concentration of low-molecular decomposition products is significantly reduced. From the above,
The present embodiment can significantly reduce TOC in water as compared with the conventional case. As a result, the present embodiment can reduce the equipment scale as compared with the case of using the conventional low pressure mercury lamp,
It is possible to improve the purity of ultrapure water.

【0023】前述の実施例において、紫外線照射後にお
いて紫外線照射槽2内の水をサンプリングしてサンプリ
ング水のTOCを測定し、このTOCが設定濃度以下に
なったときに、紫外線照射槽2内の水をイオン交換樹脂
塔6に供給するようにしてもよい。また、ろ過器7とポ
ンプ14との間で配管20に、またはイオン交換樹脂塔
6とポンプ13との間で配管19に、緩衝タンクを接続
し、この緩衝タンクに水をいったんためて水のTOCを
測定してもよい。TOC濃度の測定後に、緩衝タンク内
の水が、三方弁9またはイオン交換樹脂塔6に導かれ
る。
In the above-mentioned embodiment, the TOC of the sampling water is measured by sampling the water in the ultraviolet irradiation tank 2 after the irradiation of the ultraviolet rays, and when the TOC becomes less than the set concentration, the inside of the ultraviolet irradiation tank 2 is Water may be supplied to the ion exchange resin tower 6. Further, a buffer tank is connected to the pipe 20 between the filter 7 and the pump 14 or to the pipe 19 between the ion exchange resin tower 6 and the pump 13, and water is temporarily accumulated in the buffer tank to store water. You may measure TOC. After measuring the TOC concentration, the water in the buffer tank is introduced to the three-way valve 9 or the ion exchange resin tower 6.

【0024】[0024]

【発明の効果】本発明によれば、装置の大型化を防止で
きかつ有機物の分解効率を向上できる。
According to the present invention, it is possible to prevent the apparatus from becoming large and to improve the decomposition efficiency of organic substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である超純水の製造方法に用
いられる超純水製造装置の構成図である。
FIG. 1 is a configuration diagram of an ultrapure water production apparatus used in an ultrapure water production method according to an embodiment of the present invention.

【図2】水の吸光係数及びベンゼン環の直接分解吸光係
数の紫外線の波長に対する依存性を示す特性図である。
FIG. 2 is a characteristic diagram showing the dependence of the extinction coefficient of water and the direct decomposition extinction coefficient of a benzene ring on the wavelength of ultraviolet rays.

【図3】各種波長の紫外線をイオン交換樹脂浸漬水に照
射した際における、TOCの経時変化を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing changes with time of TOC when the ion-exchange resin-immersed water is irradiated with ultraviolet rays of various wavelengths.

【図4】アルゴン−フッ素エキシマー光源からの紫外線
を酢酸水溶液に照射した際における、TOCの経時変化
(初期濃度に対する相対値)を示す特性図である。
FIG. 4 is a characteristic diagram showing a change with time of TOC (relative value with respect to an initial concentration) when an acetic acid aqueous solution is irradiated with ultraviolet rays from an argon-fluorine excimer light source.

【符号の説明】[Explanation of symbols]

1…原料水タンク、2…紫外線照射槽、3…紫外線光
源、4…紫外線光源用電源、5…攪拌器、6…イオン交
換樹脂塔、7…ろ過器、8…超純水タンク、9…三方
弁、10,11,12,13,14,15…ポンプ。
1 ... Raw material water tank, 2 ... Ultraviolet irradiation tank, 3 ... Ultraviolet light source, 4 ... Ultraviolet light source power source, 5 ... Stirrer, 6 ... Ion exchange resin tower, 7 ... Filter, 8 ... Ultrapure water tank, 9 ... Three-way valve, 10, 11, 12, 13, 14, 15 ... Pump.

フロントページの続き (72)発明者 西 高志 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 藤間 正博 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 森 利克 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 4D025 AA04 AB02 BA07 DA04 DA10 4D037 AA03 AB11 AB16 BA18 CA02 CA15 Continued front page    (72) Inventor Takashi Nishi             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. (72) Inventor Masahiro Fujima             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. (72) Inventor Toshikatsu Mori             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. F-term (reference) 4D025 AA04 AB02 BA07 DA04 DA10                 4D037 AA03 AB11 AB16 BA18 CA02                       CA15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】190nm〜210nmの範囲内の波長を
有する紫外線を、有機物を含む水に照射して前記有機物
を分解することを特徴とする超純水の製造方法。
1. A method for producing ultrapure water, which comprises irradiating water containing an organic substance with ultraviolet rays having a wavelength in the range of 190 nm to 210 nm to decompose the organic substance.
【請求項2】前記紫外線として、アルゴン−フッ素エキ
シマー光源から放出される紫外線を用いる請求項1記載
の超純水の製造方法。
2. The method for producing ultrapure water according to claim 1, wherein ultraviolet rays emitted from an argon-fluorine excimer light source are used as the ultraviolet rays.
【請求項3】前記紫外線の照射後に、前記水をイオン交
換樹脂が充填されたイオン交換樹脂層を通過させる請求
項1または請求項2記載の超純水の製造方法。
3. The method for producing ultrapure water according to claim 1, wherein after the irradiation with the ultraviolet rays, the water is passed through an ion exchange resin layer filled with an ion exchange resin.
【請求項4】前記有機物は、ベンゼン環を有する有機物
を少なくとも含んでいる請求項1ないし請求項3のいず
れかに記載の超純水の製造方法。
4. The method for producing ultrapure water according to claim 1, wherein the organic matter contains at least an organic matter having a benzene ring.
【請求項5】有機物を含む水に、190nm〜210n
mの範囲内の波長を有する紫外線を照射する紫外線照射
装置と、前記紫外線が照射された水が供給されるイオン
交換樹脂塔とを備えたことを特徴とする超純水製造装
置。
5. 190 nm to 210 n in water containing organic matter
An ultrapure water production apparatus comprising: an ultraviolet irradiation device that irradiates ultraviolet rays having a wavelength within the range of m; and an ion exchange resin tower to which water irradiated with the ultraviolet rays is supplied.
【請求項6】前記紫外線照射装置がアルゴン−フッ素エ
キシマー光源を備えている請求項5記載の超純水製造装
置。
6. The ultrapure water production system according to claim 5, wherein the ultraviolet irradiation device comprises an argon-fluorine excimer light source.
JP2001345510A 2001-11-12 2001-11-12 Method for producing ultrapure water and apparatus therefor Pending JP2003145146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345510A JP2003145146A (en) 2001-11-12 2001-11-12 Method for producing ultrapure water and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345510A JP2003145146A (en) 2001-11-12 2001-11-12 Method for producing ultrapure water and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2003145146A true JP2003145146A (en) 2003-05-20

Family

ID=19158830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345510A Pending JP2003145146A (en) 2001-11-12 2001-11-12 Method for producing ultrapure water and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2003145146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135769A (en) * 2003-08-29 2008-06-12 Asml Netherlands Bv Lithographic apparatus and device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135769A (en) * 2003-08-29 2008-06-12 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009055061A (en) * 2003-08-29 2009-03-12 Asml Netherlands Bv Lithographic equipment, and device manufacturing method
US8629971B2 (en) 2003-08-29 2014-01-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8953144B2 (en) 2003-08-29 2015-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025127B2 (en) 2003-08-29 2015-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9581914B2 (en) 2003-08-29 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
KR100797027B1 (en) Apparatus for wastewater treatment by using ultraviolet light and oxidative species produced in dielectric barrier discharge tube, and method of wastewater treatment using this
JPH1199395A (en) Treatment of organic matter containing water
KR101476864B1 (en) Method and apparatus for removing organic matters
JPWO2019088015A1 (en) Washing water treatment method
JP5512357B2 (en) Pure water production method and apparatus
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
JPH08229577A (en) Method for treating waste liquid from nonelectrolytic plating process
JPH1199394A (en) Method for removing organic matter in water
JPS60153982A (en) Surface washing method
JP2003145146A (en) Method for producing ultrapure water and apparatus therefor
JPH1157753A (en) Removing method of toc component and device therefor
JP2001179252A (en) Method and apparatus for making pure water reduced in content of oxidizing substance
JP5512358B2 (en) Pure water production method and apparatus
JPH07241598A (en) Water treatment apparatus
JP2582550B2 (en) Treatment of water containing organic matter
JP2008173617A (en) Water treatment apparatus and water treating method
CN114890605A (en) Ultraviolet irradiation device and method for removing urea in solution
JP2666340B2 (en) UV oxidation decomposition equipment
JP7454303B1 (en) Water purification system, water purification method, and fulvic acid decomposition treatment method
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment
RU94562U1 (en) DEVICE FOR TREATMENT OF LIQUIDS BY UV RADIATION
JP3325921B2 (en) Printed board cleaning water reclamation equipment
JP2537586B2 (en) Advanced treatment method of organic matter and its equipment
JP5037748B2 (en) Ozone water concentration adjustment method and ozone water supply system
JP2546757B2 (en) Advanced organic matter processing method and apparatus