JP2003142153A - Non-aqueous electrolyte secondary battery and its manufacturing method - Google Patents

Non-aqueous electrolyte secondary battery and its manufacturing method

Info

Publication number
JP2003142153A
JP2003142153A JP2001337206A JP2001337206A JP2003142153A JP 2003142153 A JP2003142153 A JP 2003142153A JP 2001337206 A JP2001337206 A JP 2001337206A JP 2001337206 A JP2001337206 A JP 2001337206A JP 2003142153 A JP2003142153 A JP 2003142153A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
trioxonine
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001337206A
Other languages
Japanese (ja)
Other versions
JP2003142153A5 (en
JP4147448B2 (en
Inventor
Sumio Mori
森  澄男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001337206A priority Critical patent/JP4147448B2/en
Publication of JP2003142153A publication Critical patent/JP2003142153A/en
Publication of JP2003142153A5 publication Critical patent/JP2003142153A5/ja
Application granted granted Critical
Publication of JP4147448B2 publication Critical patent/JP4147448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a long-life non-aqueous electrolyte secondary battery free of the risk that the discharge capacity in the initial period drops and showing a less deterioration in the capacity during the charge-discharge cycle. SOLUTION: The electrolyte of this non-aqueous electrolyte secondary battery contains 1,4,7-trioxonin expressed by Formula (1) and/or its derivative....(1) This allows formation of a protection film in good workmanship on the surface of a negative electrode active material, which suppresses decomposition of the non-aqueous electrolyte on the surface of the negative electrode active material, and as a result, the intended secondary battery of long lifetime showing a less deterioration in the capacity during the chargedischarge cycle can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、民生用の携帯電話、ポータブル機
器や携帯情報端末などの急速な小型軽量化・多様化に伴
い、その電源である電池に対して、小型で軽量かつ高エ
ネルギー密度で、さらに長期間繰り返し充放電が実現で
きる二次電池の開発が強く要求されている。なかでも、
水溶液系電解液を使用する鉛電池やニッケルカドミウム
電池と比較して、これらの欲求を満たす二次電池として
リチウムイオン二次電池などの非水電解質二次電池が最
も有望であり、活発な研究がおこなわれている。
2. Description of the Related Art In recent years, with the rapid miniaturization and diversification of consumer mobile phones, portable devices, personal digital assistants, etc., a battery as a power source thereof is small, lightweight and has high energy density, Furthermore, there is a strong demand for the development of secondary batteries that can be repeatedly charged and discharged for a long period of time. Above all,
Compared to lead batteries and nickel-cadmium batteries that use aqueous electrolytes, non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are the most promising and active research sources for secondary batteries that meet these needs. It is done.

【0003】非水電解質二次電池の正極活物質には、二
硫化チタン、五酸化バナジウムおよび三酸化モリブデン
をはじめとしてリチウムコバルト複合酸化物、リチウム
ニッケル複合酸化物およびスピネル型マンガン酸化物等
の一般式LiMO(ただし、Mは一種以上の遷移金
属)で表される種々の化合物が検討されている。なかで
も、リチウムコバルト複合酸化物、リチウムニッケル複
合酸化物およびスピネル型リチウムマンガン酸化物など
は、4V(vs Li/Li)以上の極めて貴な電位
で充放電をおこなうため、正極として用いることで高い
放電電圧を有する電池を実現できる。
Positive electrode active materials for non-aqueous electrolyte secondary batteries include titanium disulfide, vanadium pentoxide and molybdenum trioxide, as well as lithium cobalt composite oxide, lithium nickel composite oxide and spinel manganese oxide. Various compounds represented by the formula Li x MO 2 (where M is one or more transition metals) have been investigated. Among them, lithium cobalt composite oxides, lithium nickel composite oxides, spinel type lithium manganese oxides, and the like charge and discharge at an extremely noble potential of 4 V (vs Li / Li + ) or more, and thus can be used as a positive electrode. It is possible to realize a battery having a high discharge voltage.

【0004】非水電解質二次電池の負極活物質には、金
属リチウム、リチウム合金、リチウムの吸蔵・放出が可
能な炭素材料などの種々のものが検討されているが、な
かでも炭素材料を使用すると、サイクル寿命の長い電池
が得られ、かつ安全性が高いという利点がある。
As the negative electrode active material of the non-aqueous electrolyte secondary battery, various materials such as metallic lithium, lithium alloys, and carbon materials capable of inserting and extracting lithium have been studied. Among them, carbon materials are used. Then, there is an advantage that a battery having a long cycle life can be obtained and the safety is high.

【0005】非水電解質二次電池の電解質には、一般に
エチレンカーボネートやプロピレンカーボネートなどの
高誘電率溶媒とジメチルカーボネートやジエチルカーボ
ネートなどの低粘度溶媒との混合系溶媒にLiPF
LiBF等の支持塩を溶解させた電解液が使用されて
いる。
As an electrolyte of a non-aqueous electrolyte secondary battery, generally, a mixed solvent of a high dielectric constant solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate or diethyl carbonate is used as a mixed solvent such as LiPF 6 or LiBF 4 . An electrolyte solution in which a supporting salt is dissolved is used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、非水電
解質二次電池は、充放電サイクルが進むに従い、負極上
で非水電解質中の支持塩や溶媒の分解が進行し、電解液
の減少がおこり、負極表面に溶媒の分解生成物が堆積し
てリチウムイオンの移動を阻害し、放電容量が減少する
という問題がある。
However, in the non-aqueous electrolyte secondary battery, as the charge / discharge cycle progresses, the decomposition of the supporting salt and the solvent in the non-aqueous electrolyte progresses on the negative electrode, and the electrolyte solution decreases. However, there is a problem that the decomposition product of the solvent is deposited on the surface of the negative electrode to hinder the movement of lithium ions, and the discharge capacity is reduced.

【0007】本発明は、上記問題を解決するためになさ
れたものであり、その目的とするところは、初期の放電
容量を低下させることなく、かつ充放電サイクル時の容
量劣化が小さく、長寿命な非水電解質二次電池を提供す
ることにある。
The present invention has been made in order to solve the above problems, and an object of the present invention is to reduce the initial discharge capacity, reduce the capacity deterioration during charge / discharge cycles, and prolong the service life. Another object is to provide a non-aqueous electrolyte secondary battery.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、非水
電解質二次電池において、非水電解質中に1,4,7−
トリオキソニンおよび/またはこの誘導体を含有するこ
とを特徴とする。上記発明によれば、充放電サイクル時
の容量劣化を抑制し、サイクル寿命を長くすることがで
きる。
According to the invention of claim 1, in a non-aqueous electrolyte secondary battery, 1,4,7- is contained in the non-aqueous electrolyte.
It is characterized by containing trioxonine and / or a derivative thereof. According to the above invention, it is possible to suppress capacity deterioration during charge / discharge cycles and prolong the cycle life.

【0009】好ましくは、前記非水電解質中の前記1,
4,7−トリオキソニンおよび/またはこの誘導体の含
有量が5.0wt%未満がよい。5.0wt%以上添加
すると初期放電容量が低下するからである。さらに好ま
しくは、2.0wt%未満がよく、より好ましくは、
0.01wt%以上1.0wt%以下がよい。寿命を長
くすることができるとともに、初期の放電容量を大きく
することができるからである。
Preferably, the above-mentioned 1, in the non-aqueous electrolyte is
The content of 4,7-trioxonine and / or its derivative is preferably less than 5.0 wt%. This is because the initial discharge capacity decreases if 5.0 wt% or more is added. More preferably, it is less than 2.0 wt%, and more preferably,
It is preferably 0.01 wt% or more and 1.0 wt% or less. This is because the life can be extended and the initial discharge capacity can be increased.

【0010】請求項3の発明は、非水電解質二次電池の
製造方法において、1,4,7−トリオキソニンおよび
/またはこの誘導体を添加する工程を有することを特徴
とする。上記発明によれば、充放電サイクル時の容量劣
化を抑制することが寿命を長くすることができる非水電
解質二次電池を製造することが可能である。
The invention of claim 3 is characterized in that, in the method for producing a non-aqueous electrolyte secondary battery, there is a step of adding 1,4,7-trioxonine and / or its derivative. According to the above invention, it is possible to manufacture a non-aqueous electrolyte secondary battery in which suppressing the capacity deterioration during charge / discharge cycles can prolong the life.

【0011】好ましくは、前記1,4,7−トリオキソ
ニンおよび/またはこの誘導体を前記非水電解質に対し
て5.0wt%未満となるように添加するのがよい。
5.0wt%以上添加すると製造された非水電解質二次
電池の初期放電容量が低下してしまうからである。さら
に好ましくは、2.0wt%未満がよく、より好ましく
は、0.01wt%以上1.0wt%以下となるよう添
加するのがよい。寿命を長くすることができるととも
に、初期放電容量の大きな非水電解質二次電池を製造す
ることができるからである。
Preferably, the 1,4,7-trioxonine and / or its derivative is added in an amount of less than 5.0 wt% with respect to the non-aqueous electrolyte.
This is because the initial discharge capacity of the manufactured non-aqueous electrolyte secondary battery decreases if 5.0 wt% or more is added. More preferably, it is less than 2.0 wt%, and more preferably 0.01 wt% or more and 1.0 wt% or less. This is because the life can be extended and a non-aqueous electrolyte secondary battery having a large initial discharge capacity can be manufactured.

【0012】[0012]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。本発明になる非水電解質二次電池の正極
活物質としては、リチウムイオンを吸蔵・放出する化合
物ならいかなる種類の化合物も使用可能であるが、特に
LiMO(ただし、Mは一種以上の遷移金属をあら
わす)およびLiを主体とする化合物を単独
で、または2種以上混合して使用することが好ましく、
さらに、放電電圧の高さからは、遷移金属MとしてはC
o、NiおよびMnよりなる群から選ばれる少なくとも
1種の遷移金属を使用することがより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. As the positive electrode active material of the non-aqueous electrolyte secondary battery according to the present invention, any kind of compound can be used as long as it is a compound that occludes / releases lithium ions. In particular, Li x MO 2 (where M is one or more). A transition metal) and a compound mainly composed of Li x M 2 O 4 are preferably used alone or in combination of two or more,
Furthermore, from the height of the discharge voltage, the transition metal M is C
It is more preferable to use at least one transition metal selected from the group consisting of o, Ni and Mn.

【0013】負極はコークス類、ガラス状炭素類、グラ
ファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊
維などの炭素材料、あるいは金属リチウム、リチウム合
金、ポリアセン等を単独でまたは2種以上を混合して使
用することができるが、特に、安全性の高さから炭素質
材料を用いるのが好ましい。
For the negative electrode, carbon materials such as cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, carbon fibers, and metallic lithium, lithium alloys, polyacene, etc. may be used alone or in combination. Although the above can be mixed and used, it is particularly preferable to use a carbonaceous material because of its high safety.

【0014】非水電解質の溶媒としては、エチレンカー
ボネート、ビニレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネート、トリフルオロプロピレン
カーボネート、γ−ブチロラクトン、スルホラン、1,
2−ジメトキシエタン、1,2−ジエトキシエタン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、3
−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エ
チル、プロピオン酸メチル、プロピオン酸エチル、ジメ
チルカーボネート、ジエチルカーボネート、エチルメチ
ルカーボネート、ジプロピルカーボネート、メチルプロ
ピルカーボネート等の非水溶媒を、単独でまたはこれら
の混合溶媒を使用することができる。
As the solvent for the non-aqueous electrolyte, ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,
2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3
A non-aqueous solvent such as methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, methylpropyl carbonate, alone or These mixed solvents can be used.

【0015】非水電解質は、これらの非水溶媒に支持塩
を溶解して使用する。支持塩としては、LiClO
LiPF、LiBF、LiAsF、LiCF
、LiCFSO、LiCFCFSO、L
iCFCFCFSO、LiN(SOCF
、LiN(SOCFCF、LiN(COC
、LiN(COCFCFおよびLiP
(CFCF などの塩もしくはこれらの混合
物を使用することができる。
The non-aqueous electrolyte is a supporting salt in these non-aqueous solvents.
Dissolve and use. As the supporting salt, LiClOFour,
LiPF6, LiBFFour, LiAsF6, LiCFThreeC
OTwo, LiCFThreeSOThree, LiCFThreeCFTwoSOThree, L
iCFThreeCFTwoCFTwoSOThree, LiN (SOTwoCFThree)
Two, LiN (SOTwoCFTwoCFThree)Two, LiN (COC
FThree)Two, LiN (COCFTwoCFThree)TwoAnd LiP
FThree(CFTwoCFThree) ThreeSuch as salt or a mixture of these
Can be used.

【0016】本発明は、非水電解質二次電池において、
非水電解質中に以下の[化1]で示される1,4,7−
トリオキソニンまたはこの誘導体を含有することを特徴
とする。あるいは、1,4,7−トリオキソニンとこの
誘導体とを含有させてもよい。
The present invention relates to a non-aqueous electrolyte secondary battery,
1,4,7- represented by the following [Chemical Formula 1] in a non-aqueous electrolyte
It is characterized by containing trioxonine or a derivative thereof. Alternatively, 1,4,7-trioxonine and its derivative may be contained.

【0017】[0017]

【化1】 [Chemical 1]

【0018】非水電解質中に1,4,7−トリオキソニ
ンを含有させることにより、負極活物質の表面に良好な
SEIが形成されるため、その後の負極活物質の表面で
の非水電解質の分解が抑制され、その結果、充放電サイ
クル時の容量劣化が小さく、長寿命な非水電解質二次電
池が得られる。
By including 1,4,7-trioxonine in the non-aqueous electrolyte, good SEI is formed on the surface of the negative electrode active material, so that the non-aqueous electrolyte is subsequently decomposed on the surface of the negative electrode active material. Is suppressed, and as a result, a long-life non-aqueous electrolyte secondary battery with little capacity deterioration during charge / discharge cycles is obtained.

【0019】ここでSEI(Solid Electr
olyte Interphase)とは、非水電解質
中で金属リチウムや炭素材料の初充電をおこなった場
合、電解質中の溶媒や、電解質中に含まれる成分が還元
されて、金属リチウムや炭素材料の表面に形成されるパ
シベーション膜をさす。そして、金属リチウムや炭素材
料の表面に形成されたSEIが、リチウムイオン伝導性
の保護膜として働き、その後の金属リチウムや炭素材料
と溶媒との反応が抑制されるものである。
Here, SEI (Solid Electric)
lyte interphase) means that when the lithium metal or carbon material is charged for the first time in a non-aqueous electrolyte, the solvent in the electrolyte and the components contained in the electrolyte are reduced to form on the surface of the lithium metal or carbon material. Refers to the passivation film. The SEI formed on the surface of the metallic lithium or carbon material acts as a lithium ion conductive protective film, and the subsequent reaction between the metallic lithium or carbon material and the solvent is suppressed.

【0020】また、非水電解質中に1,4,7−トリオ
キソニンまたはこの誘導体をトータルで5.0wt%未
満含有することが好ましい。非水電解質中に1,4,7
−トリオキソニンが適度に含まれておれば、負極活物質
の表面に良好なSEIが形成されるが、非水電解質中の
1,4,7−トリオキソニンの含有量が5.0wt%以
上の場合には、初期充放電時の不可逆容量が大きくなる
結果、初期放電容量が著しく小さくなる。
Further, it is preferable that the non-aqueous electrolyte contains less than 5.0 wt% of 1,4,7-trioxonine or its derivative in total. 1,4,7 in non-aqueous electrolyte
-If trioxonine is contained in an appropriate amount, good SEI is formed on the surface of the negative electrode active material, but when the content of 1,4,7-trioxonine in the non-aqueous electrolyte is 5.0 wt% or more. As a result, the irreversible capacity at the time of initial charge / discharge becomes large, and as a result, the initial discharge capacity becomes significantly small.

【0021】上記液状の電解質のかわりに固体のイオン
導電性ポリマー電解質を用いることもできる。ポリマー
電解質膜が、ポリエチレンオキシド、ポリアクリロニト
リル、ポリエチレングリコールおよびこれらの変性体な
どの場合には、軽量で柔軟性があり、巻回極板に使用す
る場合に有利である。さらに、イオン導電性ポリマー電
解質膜と有機電解液を組み合わせて使用することができ
る。また、電解質としては、ポリマー電解質以外にも、
有機ポリマー電解質と無機固体電解質の混合材料、もし
くは有機バインダーによって結着された無機固体粉末な
どが使用可能である。
Instead of the liquid electrolyte, a solid ion conductive polymer electrolyte can be used. When the polymer electrolyte membrane is polyethylene oxide, polyacrylonitrile, polyethylene glycol, or modified products thereof, it is lightweight and flexible, which is advantageous when used for a wound electrode plate. Furthermore, an ion conductive polymer electrolyte membrane and an organic electrolytic solution can be used in combination. Further, as the electrolyte, other than the polymer electrolyte,
A mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, or an inorganic solid powder bound by an organic binder can be used.

【0022】また、本発明になる非水電解質二次電池
は、普通その構成として正極、負極およびセパレータと
非水電解液との組み合わせからなっているが、セパレー
タとしては、多孔性ポリ塩化ビニル膜などの多孔性ポリ
マー膜やリチウムイオンまたはイオン導電性ポリマー電
解質膜を、単独または組み合わせて使用することができ
る。
The non-aqueous electrolyte secondary battery according to the present invention usually comprises a combination of a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte as its constitution. The separator is a porous polyvinyl chloride film. Porous polymer membranes such as and lithium ion or ion conductive polymer electrolyte membranes can be used alone or in combination.

【0023】本発明になる非水電解質二次電池の製造方
法においては、1,4,7−トリオキソニンまたはこの
誘導体は非水電解質に添加するのが好ましい。また、前
記1,4,7−トリオキソニンとこの誘導体とは混合し
て用いてもよい。
In the method for producing a non-aqueous electrolyte secondary battery according to the present invention, it is preferable to add 1,4,7-trioxonine or its derivative to the non-aqueous electrolyte. Further, the 1,4,7-trioxonine and its derivative may be mixed and used.

【0024】[0024]

【実施例】以下に好適な実施例を用いて本発明を説明す
るが、本発明の主旨を超えない限り、以下に限定される
ものではないことはいうまでもない。
EXAMPLES The present invention will be described below with reference to the preferred examples, but it goes without saying that the present invention is not limited to the following unless the gist of the present invention is exceeded.

【0025】[実施例1]正極活物質にコバルト酸リチ
ウム、負極活物質に炭素材料を使用した、角型非水電解
質二次電池を作製した。図1は角型非水電解質二次電池
の断面構造を示した図であり、図1において、1は角型
非水電解質二次電池、2は巻回型電極群、3は正極、4
は負極、5はセパレータ、6は電池ケース、7は電池
蓋、8は安全弁、9は正極端子、10は正極リードであ
る。巻回型電極群2は、正極3と負極4とをセパレータ
5を介して巻回したものである。そして、巻回型電極群
2は電池ケース6に収納してあり、電池ケース6には安
全弁8を設け、電池蓋7と電池ケース6はレーザー溶接
で密閉されている。正極端子9は正極リード10と接続
され、負極4は電池ケース6の内壁と接触により接続さ
れている。
Example 1 A prismatic non-aqueous electrolyte secondary battery was prepared using lithium cobalt oxide as the positive electrode active material and a carbon material as the negative electrode active material. FIG. 1 is a view showing a cross-sectional structure of a prismatic nonaqueous electrolyte secondary battery. In FIG. 1, 1 is a prismatic nonaqueous electrolyte secondary battery, 2 is a wound electrode group, 3 is a positive electrode, 4
Is a negative electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, 9 is a positive electrode terminal, and 10 is a positive electrode lead. The wound electrode group 2 is formed by winding a positive electrode 3 and a negative electrode 4 with a separator 5 in between. The wound electrode group 2 is housed in a battery case 6, a safety valve 8 is provided in the battery case 6, and the battery lid 7 and the battery case 6 are sealed by laser welding. The positive electrode terminal 9 is connected to the positive electrode lead 10, and the negative electrode 4 is connected to the inner wall of the battery case 6 by contact.

【0026】正極合剤は、活物質としてLiCoO
0重量部と、導電剤のアセチレンブラック5重量部と、
結着剤のポリフッ化ビニリデン(PVdF)5重量部と
を混合して正極合剤とし、N−メチル−2−ピロリドン
(NMP)に分散させることによりペーストを製造し
た。このペーストを厚さ20μmのアルミニウム集電体
に均一に塗布して、乾燥させた後、ロールプレスで圧縮
成型することにより正極を作製した。
The positive electrode mixture contains LiCoO 2 9 as an active material.
0 parts by weight and 5 parts by weight of conductive agent acetylene black,
A paste was prepared by mixing 5 parts by weight of polyvinylidene fluoride (PVdF) as a binder to prepare a positive electrode mixture and dispersing it in N-methyl-2-pyrrolidone (NMP). This paste was uniformly applied to an aluminum current collector having a thickness of 20 μm, dried, and then compression molded by a roll press to produce a positive electrode.

【0027】負極合剤は、リチウムイオンを吸蔵放出す
る炭素材料90重量部と、結着剤のPVdF10重量部
とを混合し、NMPを適宜加えて分散させ、スラリーを
調整した。このスラリーを厚さ15μmの銅集電体に均
一に塗布、乾燥させた後、100℃で5時間乾燥させた
後、ロールプレスで圧縮成型することにより負極を作製
した。
The negative electrode mixture was prepared by mixing 90 parts by weight of a carbon material capable of occluding and releasing lithium ions and 10 parts by weight of PVdF as a binder, and adding NMP as appropriate to disperse the mixture to prepare a slurry. The slurry was uniformly applied to a copper current collector having a thickness of 15 μm, dried, dried at 100 ° C. for 5 hours, and compression-molded with a roll press to prepare a negative electrode.

【0028】セパレータとしては、厚さ20μm程度の
微多孔性ポリエチレンフィルムを用いた。これらの正・
負極及びセパレータを巻回して巻回型電極群を作成し
た。電解質には、エチレンカーボネート(EC)とエチ
ルメチルカーボネート(EMC)の体積比3:7混合溶
媒にLiPFを1.1M溶解し、この電解液に1,
4,7−トリオキソニンを0.01wt%含有させた非
水電解液を用いて、角形非水電解質二次電池を作成し
た。
A microporous polyethylene film having a thickness of about 20 μm was used as the separator. These positive
The negative electrode and the separator were wound to form a wound electrode group. For the electrolyte, 1.1 M of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7.
A prismatic nonaqueous electrolyte secondary battery was prepared using a nonaqueous electrolytic solution containing 0.01 wt% of 4,7-trioxonine.

【0029】[実施例2]1,4,7−トリオキソニン
の含有量を0.1wt%とした以外は実施例1と同様に
して実施例2の角形非水電解質二次電池を作成した。
Example 2 A prismatic nonaqueous electrolyte secondary battery of Example 2 was prepared in the same manner as in Example 1 except that the content of 1,4,7-trioxonine was 0.1 wt%.

【0030】[実施例3]1,4,7−トリオキソニン
の含有量を0.5wt%とした以外は実施例1と同様に
して実施例3の角形非水電解質二次電池を作成した。
Example 3 A prismatic nonaqueous electrolyte secondary battery of Example 3 was prepared in the same manner as in Example 1 except that the content of 1,4,7-trioxonine was 0.5 wt%.

【0031】[実施例4]1,4,7−トリオキソニン
の含有量を1.0wt%とした以外は実施例1と同様に
して実施例4の角形非水電解質二次電池を作成した。
Example 4 A prismatic nonaqueous electrolyte secondary battery of Example 4 was prepared in the same manner as in Example 1 except that the content of 1,4,7-trioxonine was 1.0 wt%.

【0032】[実施例5]1,4,7−トリオキソニン
の含有量を2.0wt%とした以外は実施例1と同様に
して実施例5の角形非水電解質二次電池を作成した。
Example 5 A prismatic non-aqueous electrolyte secondary battery of Example 5 was prepared in the same manner as in Example 1 except that the content of 1,4,7-trioxonine was 2.0 wt%.

【0033】[実施例6]1,4,7−トリオキソニン
の含有量を5.0wt%とした以外は実施例1と同様に
して実施例6の角形非水電解質二次電池を作成した。
Example 6 A prismatic nonaqueous electrolyte secondary battery of Example 6 was prepared in the same manner as in Example 1 except that the content of 1,4,7-trioxonine was 5.0 wt%.

【0034】[比較例1]1,4,7−トリオキソニン
を含有しない以外は実施例1と同様にして比較例1の角
形非水電解質二次電池を作成した。
Comparative Example 1 A prismatic non-aqueous electrolyte secondary battery of Comparative Example 1 was prepared in the same manner as in Example 1 except that 1,4,7-trioxonine was not contained.

【0035】実施例1〜6および比較例1の電池をそれ
ぞれ10セルづつ作製した。これらの電池を、充電は1
CAの電流で4.2Vまで3時間定電流定電圧充電し、
その後1CAの電流値で3Vまで放電をおこない、初期
放電容量を確認した。その後、同様の充放電サイクルを
500サイクル繰り返し、500サイクル後の容量保持
率(%)を測定した。その結果を表1に示す。なお、こ
こで「容量保持率」とは、初期放電容量に対する500
サイクル後の放電容量の比率(%)を示すものとする。
The batteries of Examples 1 to 6 and Comparative Example 1 were produced in units of 10 cells. Charge these batteries to 1
Charge with constant current and constant voltage to 4.2V with CA current for 3 hours,
After that, discharge was performed up to 3 V at a current value of 1 CA, and the initial discharge capacity was confirmed. Thereafter, the same charge / discharge cycle was repeated 500 times, and the capacity retention rate (%) after 500 cycles was measured. The results are shown in Table 1. The “capacity retention rate” here is 500 with respect to the initial discharge capacity.
The ratio (%) of the discharge capacity after the cycle shall be shown.

【0036】[0036]

【表1】 [Table 1]

【0037】表1より、1,4,7−トリオキソニンを
含有する非水電解質を用いた場合、すなわち実施例1〜
実施例6では、500サイクル後の容量保持率が比較例
1に比べて著しく高くなることがわかる。特に、非水電
解質に対する1,4,7−トリオキソニンの含有量を
5.0wt%未満とすることにより、初期容量を大きく
低下させることなく、容量保持率を向上させることがで
きる。さらに、初期放電容量については、1,4,7−
トリオキソニンを2wt%以下の量で添加した実施例1
〜実施例5までは比較例1と同等もしくは大きいことが
わかる。さらに、0.01wt%以上1wt%以下の量
で添加した実施例1〜実施例4については、初期放電容
量を増加していることがわかる。
From Table 1, it is seen that when a non-aqueous electrolyte containing 1,4,7-trioxonine is used, that is, in Examples 1 to 1.
It can be seen that in Example 6, the capacity retention rate after 500 cycles is significantly higher than in Comparative Example 1. In particular, by setting the content of 1,4,7-trioxonine to the non-aqueous electrolyte to be less than 5.0 wt%, the capacity retention rate can be improved without significantly reducing the initial capacity. Furthermore, regarding the initial discharge capacity, 1, 4, 7-
Example 1 in which trioxonine was added in an amount of 2 wt% or less
It is understood that the examples up to the example 5 are equal to or larger than the comparative example 1. Further, it can be seen that the initial discharge capacity is increased in Examples 1 to 4 in which the addition amount is 0.01 wt% or more and 1 wt% or less.

【0038】1,4,7−トリオキソニンを5wt%と
した実施例6の場合は、充放電サイクル後の容量保持率
は95%と高いものの、初期放電容量の低下が大きい。
この理由は、非水電解質に対する添加量が多い場合、S
EI形成に必要な電気量が大きくなったことと、形成さ
れたSEIが負極へのLi挿入反応を阻害することによ
り充電電気量が減少したと考えられる。
In the case of Example 6 in which the content of 1,4,7-trioxonine was 5% by weight, the capacity retention rate after the charge / discharge cycle was as high as 95%, but the initial discharge capacity was largely reduced.
The reason for this is that when the amount added to the non-aqueous electrolyte is large, S
It is considered that the amount of electricity required for forming the EI increased and that the formed SEI hindered the Li insertion reaction into the negative electrode to reduce the amount of electricity charged.

【0039】このように、1,4,7−トリオキソニン
を非水電解質に含有させることにより、電池のサイクル
寿命特性が向上することがわかった。この原因について
は明らかになっていないが、電解質中に1,4,7−ト
リオキソニンを含有させることにより、負極活物質の表
面に良好なSEI被膜が形成され、その後の負極上での
非水電解質の分解を抑制したことが考えられる。
Thus, it was found that the inclusion of 1,4,7-trioxonine in the non-aqueous electrolyte improves the cycle life characteristics of the battery. Although the reason for this is not clear, by incorporating 1,4,7-trioxonine in the electrolyte, a good SEI film is formed on the surface of the negative electrode active material, and then the nonaqueous electrolyte on the negative electrode is formed. It is thought that the decomposition of the was suppressed.

【0040】また、初期放電容量の低下を防ぐために、
非水電解質への1,4,7−トリオキソニンの添加量
は、5wt%未満であることが好ましく、2wt%未満
とすることがより好ましい。
In order to prevent the initial discharge capacity from decreasing,
The amount of 1,4,7-trioxonine added to the non-aqueous electrolyte is preferably less than 5 wt%, more preferably less than 2 wt%.

【0041】また、実施例および比較例では電解液溶媒
がEC:EMC系について記述したが、環状カーボネー
トと鎖状カーボネートの比率を変化させた場合や、鎖状
カーボネートとして、DMCまたはEMC系を用いた場
合にも同様の傾向が見られ、また、鎖状カーボネートの
代わりにγ―BLを使用した場合にも同様の傾向が見ら
れた。電解質塩の濃度を変化させた場合においても同様
の傾向が見られた。
In the examples and comparative examples, the electrolyte solvent is described as EC: EMC system, but when the ratio of cyclic carbonate to chain carbonate is changed or as chain carbonate, DMC or EMC system is used. The same tendency was observed when the γ-BL was used instead of the chain carbonate, and the same tendency was observed. The same tendency was observed when the concentration of the electrolyte salt was changed.

【0042】[0042]

【発明の効果】本発明によれば、非水電解質中に1,
4,7−トリオキソニンおよび/またはこの誘導体を含
有させることにより、負極活物質の表面に良好なSEI
が形成されるため、その後の負極活物質の表面での非水
電解質の分解が抑制され、その結果、充放電サイクル時
の容量劣化が小さく、長寿命な非水電解質二次電池を得
ることが可能となった。また、1,4,7−トリオキソ
ニンおよび/またはこの誘導体の非水電解質中の含有量
を5.0wt%未満とすることで、初期放電容量が大き
く、かつ充放電サイクル時の容量劣化が小さく長寿命な
非水電解質二次電池を得ることが可能となった。
According to the present invention, in a non-aqueous electrolyte, 1,
By including 4,7-trioxonine and / or its derivative, good SEI can be obtained on the surface of the negative electrode active material.
Therefore, the decomposition of the non-aqueous electrolyte on the surface of the negative electrode active material after that is suppressed, and as a result, the capacity deterioration during charge / discharge cycles is small, and a long-life non-aqueous electrolyte secondary battery can be obtained. It has become possible. When the content of 1,4,7-trioxonine and / or its derivative in the non-aqueous electrolyte is less than 5.0 wt%, the initial discharge capacity is large and the capacity deterioration during charge / discharge cycle is small and long. It has become possible to obtain a non-aqueous electrolyte secondary battery with a long life.

【0043】本発明の製造方法によれば、充放電サイク
ル時の容量劣化が小さく、長寿命な非水電解質二次電池
を製造することができる。また、含有量を5.0wt%
未満とすることで、初期放電容量が大きく、かつ充放電
サイクル時の容量劣化が小さく長寿命な非水電解質二次
電池を得ることができる。
According to the manufacturing method of the present invention, it is possible to manufacture a non-aqueous electrolyte secondary battery which has a small capacity deterioration during charge / discharge cycles and has a long life. In addition, the content is 5.0 wt%
When it is less than the above range, a non-aqueous electrolyte secondary battery having a large initial discharge capacity, a small capacity deterioration during charge / discharge cycles and a long life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例の角形電池の断面構
造を示す図。
FIG. 1 is a diagram showing a cross-sectional structure of prismatic batteries of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 角型非水電解質二次電池 2 巻回型電極群 3 正極 4 負極 5 セパレータ 6 電池ケース 7 電池蓋 8 安全弁 9 正極端子 10 正極リード 1 Rectangular non-aqueous electrolyte secondary battery 2-roll type electrode group 3 positive electrode 4 Negative electrode 5 separator 6 battery case 7 Battery lid 8 safety valve 9 Positive terminal 10 Positive electrode lead

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非水電解質中に1,4,7−トリオキソニ
ンおよび/またはこの誘導体を含有することを特徴とす
る非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery containing 1,4,7-trioxonine and / or a derivative thereof in the non-aqueous electrolyte.
【請求項2】前記非水電解質中の前記1,4,7−トリ
オキソニンおよび/またはこの誘導体の含有量が5.0
wt%未満であることを特徴とする請求項1に記載の非
水電解質二次電池。
2. The content of the 1,4,7-trioxonine and / or its derivative in the non-aqueous electrolyte is 5.0.
It is less than wt%, The non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】非水電解質二次電池の製造方法において、
1,4,7−トリオキソニンおよび/またはこの誘導体
を添加する工程を有することを特徴とする非水電解質二
次電池の製造方法。
3. A method for manufacturing a non-aqueous electrolyte secondary battery,
A method for producing a non-aqueous electrolyte secondary battery, comprising the step of adding 1,4,7-trioxonine and / or its derivative.
【請求項4】前記1,4,7−トリオキソニンおよび/
またはこの誘導体を前記非水電解質に対して5.0wt
%未満となるように添加することを特徴とする請求項3
に記載の非水電解質二次電池の製造方法。
4. The 1,4,7-trioxonine and / or
Or 5.0 wt% of this derivative with respect to the non-aqueous electrolyte
% Is added so as to be less than%.
The method for producing a non-aqueous electrolyte secondary battery according to 1.
JP2001337206A 2001-11-01 2001-11-01 Non-aqueous electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP4147448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337206A JP4147448B2 (en) 2001-11-01 2001-11-01 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337206A JP4147448B2 (en) 2001-11-01 2001-11-01 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003142153A true JP2003142153A (en) 2003-05-16
JP2003142153A5 JP2003142153A5 (en) 2005-07-07
JP4147448B2 JP4147448B2 (en) 2008-09-10

Family

ID=19151892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337206A Expired - Fee Related JP4147448B2 (en) 2001-11-01 2001-11-01 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4147448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945705A (en) * 2017-07-27 2020-03-31 株式会社村田制作所 Electrolyte for secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945705A (en) * 2017-07-27 2020-03-31 株式会社村田制作所 Electrolyte for secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
CN110945705B (en) * 2017-07-27 2023-05-09 株式会社村田制作所 Electrolyte for secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device

Also Published As

Publication number Publication date
JP4147448B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US11183711B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
US11876177B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP4794172B2 (en) Non-aqueous electrolyte secondary battery and charging method thereof
JP4167012B2 (en) Nonaqueous electrolyte secondary battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2005135775A (en) Lithium ion secondary battery
JP2004022379A (en) Secondary cell, electrolyte therefor and usage thereof
JP4149042B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP2001222995A (en) Lithium ion secondary battery
KR100408085B1 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP2006156234A (en) Nonaqueous electrolyte secondary battery and its charging method
JP4147448B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP4759932B2 (en) Nonaqueous electrolyte secondary battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery
KR101340024B1 (en) Lithium rechargeable battery
KR20080087341A (en) Lithium recahrgeable battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4147448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees