JP2003139680A - Method for measuring particle size distribution - Google Patents

Method for measuring particle size distribution

Info

Publication number
JP2003139680A
JP2003139680A JP2001339065A JP2001339065A JP2003139680A JP 2003139680 A JP2003139680 A JP 2003139680A JP 2001339065 A JP2001339065 A JP 2001339065A JP 2001339065 A JP2001339065 A JP 2001339065A JP 2003139680 A JP2003139680 A JP 2003139680A
Authority
JP
Japan
Prior art keywords
particle size
spectrum
measured
size distribution
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001339065A
Other languages
Japanese (ja)
Other versions
JP3773441B2 (en
Inventor
Hisashi Hashimoto
久之 橋本
Toru Inaba
徹 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001339065A priority Critical patent/JP3773441B2/en
Publication of JP2003139680A publication Critical patent/JP2003139680A/en
Application granted granted Critical
Publication of JP3773441B2 publication Critical patent/JP3773441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring particle size in a region of 1000 nm or below. SOLUTION: Content of particles having a specified particle size contained in a matter being measured is determined by obtaining a scattering X-ray spectrum based on small-angle X-ray scattering method from the matter being measured, determining the Y-intercept a line group having an inclination corresponding to a specified particle size such that the error is minimized when the scattering X-ray spectrum is approximated by linear combination of the line group, and determining the existing quantity of particles corresponding to the specified particle size from the inclination of the Y-intercept.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被測定物より小角
X線散乱法に基づき得られた散乱X線スペクトラムか
ら、1000nm以下の粒子群の粒度分布を解析する手
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of analyzing a particle size distribution of a particle group of 1000 nm or less from a scattered X-ray spectrum obtained from an object to be measured based on a small angle X-ray scattering method.

【0002】[0002]

【従来の技術】被測定物より小角X線散乱法に基づき得
られた散乱X線スペクトラムから、Fankchen法
に基づいて被測定物に含有される粒子群を構成する代表
的な粒子径と粒子含有率を求める方法が知られている。
2. Description of the Related Art From a scattered X-ray spectrum obtained from a measured object based on a small-angle X-ray scattering method, typical particle diameters and particle contents constituting a particle group contained in the measured object based on the Fanchen method. A method for obtaining the rate is known.

【0003】以下に、散乱X線スペクトラムから上記F
ankchen法に基づいて被測定物に含有される粒子
群を構成する代表的な粒子径と粒子含有率を算出する原
理を述べる。
Below, from the scattered X-ray spectrum, the above F
The principle of calculating a typical particle diameter and a particle content rate of a particle group contained in the measured object based on the Ankchen method will be described.

【0004】被測定物に小角X線散乱法に基づきX線を
照射して得られる散乱X線スペクトルは、被測定物中に
含有される粒子群を構成する個々の粒子の大きさに依存
する。粒子群には大きさの異なる粒子が混在しているた
め、被測定物から得られる散乱X線スペクトルは異なる
粒子径を有する粒子から得られる散乱X線スペクトルの
重ね合わせとなる。Fankchen法では小角X線散
乱法に基づき得られた散乱X線スペクトルを、以下のよ
うに解析する。
The scattered X-ray spectrum obtained by irradiating an object to be measured with X-rays based on the small-angle X-ray scattering method depends on the size of individual particles constituting a particle group contained in the object to be measured. . Since particles having different sizes are mixed in the particle group, the scattered X-ray spectrum obtained from the object to be measured is a superposition of scattered X-ray spectra obtained from particles having different particle diameters. In the Fanchen method, the scattered X-ray spectrum obtained based on the small-angle X-ray scattering method is analyzed as follows.

【0005】小角X線散乱法に基づいて得られた散乱X
線スペクトラムにおいて、測定角度θを散乱ベクトルk
の二乗、 k2=(4πsinθ/λ)2 と変換し、散乱X線強度Yを、 Log10(Y) と変換した、標準スペクトラムを求める。ここで、λは
被測定物に照射したX線の波長である。
Scattering X obtained based on the small-angle X-ray scattering method
In the line spectrum, the measurement angle θ is set to the scattering vector k
Squared of k 2 = (4πsin θ / λ) 2 and the scattered X-ray intensity Y is converted to Log 10 (Y) to obtain a standard spectrum. Here, λ is the wavelength of the X-rays with which the DUT is irradiated.

【0006】上記のように変換された標準スペクトラム
において、k2値の大きい領域における標準スペクトラ
ムの減衰率と等しい傾きを持つ直線Li、 Log10(Yi)=−αDi2 i+Log10(βi) を、定義する。
In the standard spectrum converted as described above, a straight line L i , Log 10 (Y i ) = − α Di k 2 i + Log 10 having a slope equal to the attenuation rate of the standard spectrum in the region where the k 2 value is large. (Β i ) is defined.

【0007】上記標準スペクトラムから直線Liを引き
算して、差分スペクトラムを求める。上記差分スペクト
ラムにおいて、直線Liの傾きを決定したk2領域より小
さいk2領域にて、上記手順と同様に直線Li+1を定義
し、差分スペクトラムからさらに引き算を行ない、更な
る差分スペクトラムを求める。
The difference spectrum is obtained by subtracting the straight line L i from the standard spectrum. In the difference spectrum, a straight line L i + 1 is defined in the k 2 region smaller than the k 2 region in which the slope of the straight line L i is determined, and the difference spectrum is further subtracted to define a further difference spectrum. Ask for.

【0008】上記手順を直線Li+1の傾き(−αDi+1
の値が、直線Liの傾き(−αDi)の値より大きくなる
まで繰り返す。
The above procedure is followed by the slope (-α Di + 1 ) of the straight line L i + 1
Is repeated until the value of becomes larger than the value of the slope (−α Di ) of the straight line L i .

【0009】このようにして得られた直線群Liの傾き
(−αDi)から、被測定物に含有される粒子の形状が球
であると仮定したときの粒子径Di(単位:オングスト
ローム)は、 Di=(√((5αDi)/(Log10e)))×2 として得られ、さらに、粒子径Diに対する粒子含有率
i(単位wt%)は、 Fi=(βi/(0.61.5×(0.5Di3)/Σ((βi
(0.61.5×(0.5Di3))×100 として得ることができる。
From the gradient (-α Di ) of the straight line group L i thus obtained, the particle diameter D i (unit: angstrom) when the shape of the particles contained in the object to be measured is assumed to be a sphere ) Is obtained as D i = (√ ((5α Di ) / (Log 10 e))) × 2, and the particle content F i (unit wt%) with respect to the particle diameter D i is F i = ( β i /(0.6 1.5 × (0.5D i ) 3 ) / Σ ((β i /
It can be obtained as (0.6 1.5 × (0.5D i ) 3 )) × 100.

【0010】以上の手順にて、被測定物質から得られた
散乱X線スペクトラムより、Fankchen法に基づ
いて被測定物に含有される粒子群を構成する代表的な粒
子径及びそれらの粒子含有率を算出することができる。
By the above procedure, from the scattered X-ray spectrum obtained from the substance to be measured, typical particle diameters constituting the group of particles contained in the substance to be measured based on the Fanken method and their particle content rates. Can be calculated.

【0011】しかし、上記Fankchen法では、被
測定物から得られた散乱X線スペクトラムの任意のk2
領域における減衰率と一致する傾き(−αDi)を有する
直線群を定義することから、粒度分布解析に不可欠であ
る所定の粒子径に対する粒子含有率を解析できない。つ
まり、Fankchen法では粒度分布解析が不可能で
ある問題がある。
However, in the above Fanchen method, an arbitrary k 2 of the scattered X-ray spectrum obtained from the object to be measured is used.
Since a straight line group having a slope (−α Di ) that matches the attenuation rate in the region is defined, it is impossible to analyze the particle content rate for a predetermined particle size, which is essential for particle size distribution analysis. That is, there is a problem that the particle size distribution analysis is impossible with the Fanken method.

【0012】さらにFankchen法では直線群Li
を引くk2領域を明確に定義していないことから、この
2領域が任意に決定できるため、同一スペクトラムの
解析においてでさえ、傾き(−αDi)の解析値が異なる
問題がある。
Further, in the Fanchen method, a group of straight lines L i
Since the k 2 region that draws is not clearly defined, this k 2 region can be arbitrarily determined, so there is a problem that the analysis value of the slope (−α Di ) is different even in the analysis of the same spectrum.

【0013】[0013]

【発明が解決しようとする課題】本発明では、Fank
chen法では不可能であった、所定の粒子径Diに対
する粒子含有率Fiを得る手法、特に1000nm以下
の領域での粒度分布測定法を提供する。
In the present invention, the Fank
A method for obtaining a particle content rate F i with respect to a predetermined particle diameter D i , which is impossible by the chen method, particularly a particle size distribution measuring method in a region of 1000 nm or less is provided.

【0014】[0014]

【課題を解決するための手段】本発明は、所定の粒子径
i(i=1〜n)に対応する傾き(−αDi)を有する直
線群Liの一次結合(ΣLi)で得られる合成スペクトラ
ムを、直線群Liのy切片(Log10βi)を最小二乗法を
用いて最適化して、前述の小角X線散乱法に基づき得ら
れた散乱X線スペクトラムを変換して得られる標準スペ
クトラムに近似させる手法である。これにより、所定の
粒子径Diに対する粒子含有率Fiを得ることができるた
め、被測定物中に含有される粒子群の粒子含有率、すな
わち粒度分布を解析することができる。
The present invention is obtained by a linear combination (ΣL i ) of linear groups L i having a slope (-α Di ) corresponding to a predetermined particle size D i (i = 1 to n). The obtained synthetic spectrum is obtained by optimizing the y-intercept (Log 10 β i ) of the line group L i by using the least square method, and converting the scattered X-ray spectrum obtained based on the above-mentioned small-angle X-ray scattering method. This is a method of approximating a standard spectrum. This makes it possible to obtain the particle content rate F i with respect to the predetermined particle diameter D i, so that the particle content rate of the particle group contained in the measured object, that is, the particle size distribution can be analyzed.

【0015】[0015]

【発明の実施の形態】本発明でいう被測定物は、連続体
中に分散された粒子群であり、前記粒子群の分散状態に
拠らない。また、ここでいう粒子群とは、金属、セラミ
ックスのような無機物粉体や有機物粉体であり、連続体
とは、含有粒子と反応しなければ、気体または液体また
は固体のいずれでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The object to be measured in the present invention is a group of particles dispersed in a continuous body, and does not depend on the dispersed state of the group of particles. The particle group mentioned here is an inorganic powder or an organic powder such as metal or ceramics, and the continuum may be a gas, a liquid or a solid as long as it does not react with the contained particles.

【0016】連続体中に存在する粒子群は、材質の異な
る粉体の混合体でもよいが、好ましくは1種類の粉体で
ある。粉体が1種類であるとき最も正確な粒度分布を得
ることができるからである。
The particle group present in the continuum may be a mixture of powders of different materials, but is preferably one kind of powder. This is because the most accurate particle size distribution can be obtained when there is only one type of powder.

【0017】本発明における粒度分布解析法は、次に示
す通りである。被測定物から小角X線散乱法に基づき得
られた散乱X線スペクトラムを、横軸を散乱ベクトルk
の二乗、 k2=(4πsinθ/λ)2 として変換し、さらに縦軸を散乱強度Yの常用対数 Log10(Y) として変換した、標準スペクトラムf(k2)を求め
る。ここでθは散乱X線強度を測定した角度、λは被測
定物に照射したX線の波長である。
The particle size distribution analysis method in the present invention is as follows. The scattered X-ray spectrum obtained from the DUT based on the small-angle X-ray scattering method is plotted along the horizontal axis as the scattering vector k.
The standard spectrum f (k 2 ) is calculated by converting the squared value of k 2 = (4πsin θ / λ) 2 and converting the vertical axis to the common logarithm Log 10 (Y) of the scattering intensity Y. Here, θ is the angle at which the scattered X-ray intensity is measured, and λ is the wavelength of the X-rays irradiated to the object to be measured.

【0018】本発明においては、被測定物に照射するX
線は単色化されていればどんな波長を用いてもよいが、
好ましくはCuKα特性X線の波長である1.54056×10
-10m(1.54056Å)より長い波長を使用することが望ま
しい。これより波長の短い特性X線を用いた場合には、
解析できる粒子径の大きさの上限が小さくなり、測定さ
れる粒度分布が制限される問題が生じるからである。
In the present invention, X irradiating the object to be measured
The line may use any wavelength as long as it is monochromatic,
The wavelength of the CuKα characteristic X-ray is preferably 1.54056 × 10
It is desirable to use wavelengths longer than -10 m (1.54056Å). When using characteristic X-rays with a shorter wavelength than this,
This is because the upper limit of the particle size that can be analyzed becomes small and the particle size distribution to be measured is limited.

【0019】さらに、形状が球であると仮定したとき
の、所定の粒子径Di(単位:オングストローム)に対
応する直線群Li Log10(Yi)=−αDi2+Log10(βi)、 (i=1
からn) ここで、 αDi=(Log10e×Di 2)/20 の一次結合で表される合成スペクトルg(k2)、 g(k2)=Σ(Li) を算出するが、このときに本発明では、前述の標準スペ
クトルf(k2)と合成スペクトルg(k2)が一致する
ように、直線群Liのy切片であるLog10(βi)の組み
合わせを算出することが本質的である。
Further, assuming that the shape is a sphere, a group of straight lines L i Log 10 (Y i ) = − α Di k 2 + Log 10 (β corresponding to a predetermined particle diameter D i (unit: angstrom). i ), (i = 1
From n) Here, a synthetic spectrum g (k 2 ), g (k 2 ) = Σ (L i ) represented by a linear combination of α Di = (Log 10 e × D i 2 ) / 20 is calculated. At this time, in the present invention, a combination of Log 10i ) which is a y-intercept of the straight line group L i is calculated so that the standard spectrum f (k 2 ) and the synthetic spectrum g (k 2 ) match. It is essential to do.

【0020】次に、f(k2)とg(k2)が一致したと
きの、所定の粒子径Diを有する直線群Liのβiから、
個々の粒子径Diに対する粒子含有率Fi(単位:質量
%)を Fi=(βi/(0.61.5×(0.5Di3)/Σ((βi
(0.61.5×(0.5Di3))×100 として算出する。
Next, from β i of the straight line group L i having a predetermined particle diameter D i when f (k 2 ) and g (k 2 ) match,
The particle content rate F i (unit: mass%) for each particle size D i is F i = (β i /(0.6 1.5 × (0.5 D i ) 3 ) / Σ ((β i /
It is calculated as (0.6 1.5 × (0.5D i ) 3 )) × 100.

【0021】得られた粒子含有率Fiは通常 ΣFi=100 となるように、規格化を行うことで、所定の粒子径Di
に対する粒子含有率Fiを得ることができる。
By standardizing the obtained particle content F i so that ΣF i = 100, a predetermined particle diameter D i is obtained.
The particle content F i can be obtained for

【0022】また、本発明の粒度分布測定法において、
直線の傾き(−αDi)の関数である所定の粒子径D
iが、D1からDi+1(i=1〜n)まで等間隔にn分割
されて規格化されていることが望ましい。このようにD
iを予め規格化することにより、粒度分布測定結果が一
般性を有するものとなり、被測定物間の粒度分布比較、
測定者間の比較等が容易にすることが可能となる。粒径
値Diを等間隔にn分割して規格化する手法は、等差数
列のような線形的手法でも、等比数列のような非線形的
手法でもよい。
In the particle size distribution measuring method of the present invention,
Predetermined particle size D as a function of the slope of the straight line (-α Di ).
It is preferable that i is divided into n at equal intervals from D 1 to D i + 1 (i = 1 to n) and standardized. Like this
By standardizing i in advance, the particle size distribution measurement results have generality, and the particle size distribution comparison between measured objects can be performed.
It becomes possible to facilitate comparison between measuring persons. The method for normalizing the particle diameter values D i by dividing them into n at equal intervals may be a linear method such as a geometric progression or a non-linear method such as a geometric progression.

【0023】また、本発明において、前記標準スペクト
ルf(k2)と合成スペクトルg(k2)を一致させるた
めに直線群Liのy切片Log10(βi)を決定する手法に
関しては、最小二乗法を用いてf(k2)とg(k2)の
統計的残差R R=Σ|f(k2)−g(k2)|/Σ|f(k2)| が最小となるようなLog10(βi)の組み合わせを求める
ことが望ましい。最小二乗法としては一般的なGaus
s−Neuton法や修正Marqurd法や共役方向
法のみならず、それらと同等の性能を有するアルゴリズ
ムを用いればよい。また、残差Rは一般な統計解析で広
く用いられるR2値などを用いてもよい。
Further, in the present invention, the method for determining the y-intercept Log 10i ) of the straight line group L i in order to match the standard spectrum f (k 2 ) and the synthetic spectrum g (k 2 ) is as follows. Statistical residual RR of f (k 2 ) and g (k 2 ) RR = Σ | f (k 2 ) −g (k 2 ) | / Σ | f (k 2 ) | It is desirable to find a combination of Log 10i ) such that Gaus, which is generally used as the least-squares method
Not only the s-Neuton method, the modified Marquard method, and the conjugate direction method, but also an algorithm having equivalent performance to those may be used. As the residual R, R 2 value widely used in general statistical analysis may be used.

【0024】本発明で測定できる最大の粒子径は、X線
小角散乱現象の顕著な1000nm以下であるが、本発明
者の実験的検討結果に基づけば、測定精度と粒度分布測
定領域が広くとれることのバランスから200nm以下
であることが好ましく、100nm以下が特に好まし
い。
The maximum particle size that can be measured by the present invention is 1000 nm or less where the X-ray small angle scattering phenomenon is remarkable, but based on the results of the experimental study by the present inventor, the measurement accuracy and the particle size distribution measurement region can be widened. From the balance of the above, it is preferably 200 nm or less, and particularly preferably 100 nm or less.

【0025】以上のようにして被測定物から得られた粒
度分布は、規格化された粒径値Diに対する粒子含有率
iが得られることから、被測定物間の粒度分布を相対
的に比較することが可能である。
Since the particle size distribution obtained from the objects to be measured as described above gives the particle content F i with respect to the standardized particle size value D i , the particle size distribution between the objects to be measured is relatively large. Can be compared to.

【0026】本発明の粒度分布測定方法は、X線を発生
し被測定物に照射するX線照射手段と、被測定物より発
生する散乱X線スペクトルを測定するためのX線検出手
段とからなる小角X線散乱装置から得られた散乱X線ス
ペクトルのすべてに適用できる。
The particle size distribution measuring method of the present invention comprises X-ray irradiating means for generating X-rays and irradiating the measured object, and X-ray detecting means for measuring the scattered X-ray spectrum generated by the measured object. It is applicable to all of the scattered X-ray spectra obtained from the small angle X-ray scattering device.

【0027】図1は、本発明の測定方法を行うための装
置の構成を示した図である。前記の小角X線散乱装置を
用いて、被測定物から散乱X線スペクトルを取得し、粒
度分布を解析するための装置構成を示す模式図である。
FIG. 1 is a diagram showing the construction of an apparatus for carrying out the measuring method of the present invention. It is a schematic diagram which shows the apparatus structure for acquiring a scattering X-ray spectrum from a to-be-measured object, and analyzing a particle size distribution using the said small angle X-ray scattering apparatus.

【0028】X線照射源1よりX線が照射され、スリッ
ト2により絞られたX線が、試料ホルダー3に取り付け
られた被測定試料により散乱される。スリット2はX線
照射源1からの直接光を除去するため、3スリット型も
しくはクラツキ型もしくは分光結晶型のいずれかを用い
ればよい。
X-rays are emitted from the X-ray irradiation source 1, and the X-rays focused by the slits 2 are scattered by the sample to be measured mounted on the sample holder 3. In order to remove the direct light from the X-ray irradiation source 1, the slit 2 may be of a three-slit type, a crack type or a dispersive crystal type.

【0029】また、試料ホルダー3は被測定試料をその
まま取り付ける形態のものだけでなく、被測定試料を流
体中に分散させ、環流させる機能を有するものでもよ
い。被測定試料により散乱された散乱X線は真空パス4
を通り、検出器5にて検出される。検出器5はシンチレ
ーションカウンターもしくはPSPC(位置敏感型比例
計数管)もしくはIP(イメージングプレート)もしく
はCCDを用いればよい。
Further, the sample holder 3 is not limited to the one in which the sample to be measured is mounted as it is, but may be one having a function of dispersing the sample to be measured in a fluid and circulating it. The scattered X-ray scattered by the sample to be measured is vacuum path 4
And is detected by the detector 5. The detector 5 may be a scintillation counter, PSPC (position sensitive proportional counter), IP (imaging plate) or CCD.

【0030】検出器5にて取得した散乱X線強度データ
は、データ記憶部6に記憶される。散乱X線強度の測定
は、入力端末7にて指定された測定条件または条件記憶
部8に記憶済みの測定条件を参照し、装置制御部9にて
実行される。
The scattered X-ray intensity data obtained by the detector 5 is stored in the data storage unit 6. The measurement of the scattered X-ray intensity is performed by the device control unit 9 with reference to the measurement condition designated by the input terminal 7 or the measurement condition stored in the condition storage unit 8.

【0031】データ記憶部6に記憶された散乱X線強度
データと、条件記憶部8に格納されている本発明に基づ
く粒度分布解析に必要な所定の粒子径に対する直線群L
iから、粒度分布演算部10にて粒度分布を解析し、結
果を表示部11に表示する。
The scattered X-ray intensity data stored in the data storage unit 6 and the straight line group L for the predetermined particle size stored in the condition storage unit 8 for the particle size distribution analysis according to the present invention.
From i, the particle size distribution calculation unit 10 analyzes the particle size distribution and displays the result on the display unit 11.

【0032】[0032]

【実施例】以下に、実施例、比較例をあげて更に具体的
に本発明を説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0033】試料として次の2種の粉末を準備した。 試料1:日本アエロジル(株)製「AEROSIL13
0(SiO2)」;平均一次粒子径16nm 試料2:日本アエロジル(株)製「AEROSIL38
0(SiO2)」;平均一次粒子径7nm ここで、平均一次粒子径はTEM(透過型電子顕微鏡)
を用いた画像解析より求めた数値である。
The following two powders were prepared as samples. Sample 1: “AEROSIL13” manufactured by Nippon Aerosil Co., Ltd.
0 (SiO 2 ) ”; average primary particle size 16 nm Sample 2:“ AEROSIL38 ”manufactured by Nippon Aerosil Co., Ltd.
0 (SiO 2 ) ”; average primary particle size 7 nm, where average primary particle size is TEM (transmission electron microscope)
It is a numerical value obtained by image analysis using.

【0034】上記2種類の試料粉末について小角X線散
乱法に基づく散乱X線スペクトルの測定を行った。小角
X線散乱法に基づく散乱X線の測定は小角X線散乱装置
ユニットCN2230F型(理学電機製)を使用した。
測定条件はCuKα特性X線を使用し、管電圧40k
V、管電流30mAの条件にて実施した。
The scattering X-ray spectra of the above two kinds of sample powders were measured by the small angle X-ray scattering method. For the measurement of scattered X-rays based on the small-angle X-ray scattering method, a small-angle X-ray scattering device unit CN2230F type (manufactured by Rigaku Denki Co., Ltd.) was used.
The measurement conditions are CuKα characteristic X-rays, and the tube voltage is 40k.
It was carried out under the conditions of V and a tube current of 30 mA.

【0035】前記試料粉末0.3gに水とエタノールを
1:1(質量割合)でまぜた水溶液20mlを加えて、
1分間分散したあと5分間静置し、キャピラリーガラス
の中に充填したものを被測定試料とした。
20 ml of an aqueous solution prepared by mixing water and ethanol at a ratio of 1: 1 (mass ratio) to 0.3 g of the sample powder,
After dispersing for 1 minute, the mixture was allowed to stand for 5 minutes and filled in a capillary glass to be used as a sample to be measured.

【0036】本発明により得られた結果(実施例)を図
2に示した。実施例においては、7.5nmから47.
5nmまで5nm間隔で9分割するように、粒子径Di
に対応する直線群Liを用いて解析した。なお、従来技
術であるFankchen法により得られた結果は、試
料1にて粒子径11.3nmの粒子が15質量%、2
0.4nmの粒子が85質量%含有されており、また、
試料2では粒子径9.6nmの粒子が52質量%、1
9.4nmの粒子が48質量%含有されていた。
The results (examples) obtained by the present invention are shown in FIG. In the example, from 7.5 nm to 47.
The particle diameter D i is divided into 9 parts at intervals of 5 nm up to 5 nm.
The line group L i corresponding to is analyzed. The results obtained by the Fanken method, which is a conventional technique, show that in Sample 1, the particles having a particle diameter of 11.3 nm are 15% by mass and 2% by mass.
85% by mass of 0.4 nm particles are contained, and
In Sample 2, 52% by mass of particles having a particle size of 9.6 nm were used,
It contained 48 mass% of 9.4 nm particles.

【0037】実施例では、規格化された粒子径に対する
粒子含有率、すなわち粒度分布が得られる。それに対し
て、従来技術であるFankchen法では、比較例に
示した通りに、代表的な粒子径に対する粒子含有率しか
得られない。また、実施例の2つの試料についての測定
結果から、本発明によれば複数の被測定物から得られた
粒度分布の対比を簡単かつ明瞭に行うことが可能であ
り、粒度分布測定方法として優れるものであることが、
明らかである。
In the examples, the particle content with respect to the standardized particle diameter, that is, the particle size distribution is obtained. On the other hand, according to the Fanchen method which is a conventional technique, as shown in the comparative example, only a particle content ratio with respect to a typical particle diameter can be obtained. Further, from the measurement results of the two samples of the examples, according to the present invention, it is possible to easily and clearly compare the particle size distributions obtained from a plurality of objects to be measured, which is excellent as a particle size distribution measuring method. To be
it is obvious.

【0038】[0038]

【発明の効果】本発明によれば、小角X線散乱法に基づ
き得られた散乱X線スペクトラムから、被測定物中に含
有される1000nm以下の粒子群の、規格化された粒
子径に対する粒子含有率、つまり粒度分布を容易に求め
ることができる。
According to the present invention, from the scattered X-ray spectrum obtained based on the small-angle X-ray scattering method, the particles of 1000 nm or less contained in the object to be measured have a standardized particle diameter. The content rate, that is, the particle size distribution can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る粒度分布測定装置の構成図。FIG. 1 is a configuration diagram of a particle size distribution measuring device according to the present invention.

【図2】本発明の実施例に係る測定結果を示す図。FIG. 2 is a diagram showing measurement results according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 X線照射源 2 スリット 3 試料ホルダー 4 真空パス 5 検出器 6 データ記憶部 7 入力端末 8 条件記憶部 9 装置制御部 10 粒度分布演算部 11 表示部 1 X-ray irradiation source 2 slits 3 sample holder 4 vacuum path 5 detectors 6 Data storage 7 Input terminal 8 Condition storage 9 Device control section 10 Particle size distribution calculator 11 Display

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被測定物より、小角X線散乱法に基づき散
乱X線スペクトルを得て、前記スペクトルより前記被測
定物中に含有される所定の粒子径に対する粒子含有率を
定めることを特徴とする粒度分布測定方法。
1. A scattered X-ray spectrum is obtained from an object to be measured based on a small-angle X-ray scattering method, and a particle content rate for a predetermined particle diameter contained in the object to be measured is determined from the spectrum. Measuring method of particle size distribution.
【請求項2】小角X線散乱法に基づいて得られる散乱X
線スペクトラムより、横軸を散乱ベクトルkの二乗(k
2=(4πsinθ/λ)2)、縦軸を強度Yの常用対数(L
og10Y)とする標準スペクトラムf(k2)を求め、更
に、粒子径Di(ここでi=1〜nの自然数)に対応する
傾き(−αDi)を有する直線群Li(Log10i=−αDi
2 i+Log10βiで表す。)の一次結合(ΣLi)で表さ
れる合成スペクトラムg(k2)により、前記標準スペ
クトラムf(k2)を近似したときの直線群Liのy切片
(Log10βi)と傾き(−αDi)より、所定の粒子径Di
に対する粒子含有率を求めることを特徴とする請求項1
記載の粒度分布測定方法。
2. A scattering X obtained based on the small-angle X-ray scattering method.
From the line spectrum, the horizontal axis is the square of the scattering vector k (k
2 = (4πsinθ / λ) 2 ), the vertical axis is the common logarithm of intensity Y (L
A standard spectrum f (k 2 ) that is set to og 10 Y) is obtained, and a straight line group L i (Log having a slope (−α Di ) corresponding to the particle diameter D i (where i = 1 to n is a natural number) is further obtained. 10 Y i = -α Di
It is represented by k 2 i + Log 10 β i . ), The y-intercept (Log 10 β i ) and the slope (Log 10 β i ) of the straight line group L i when the standard spectrum f (k 2 ) is approximated by the synthetic spectrum g (k 2 ) represented by the linear combination (ΣL i ). -Α Di ), the predetermined particle diameter D i
The particle content rate for
The particle size distribution measuring method described.
【請求項3】前記所定の粒子径Diが等間隔にn分割さ
れていることを特徴とする請求項2記載の粒度分布測定
方法。
3. The particle size distribution measuring method according to claim 2, wherein the predetermined particle diameter D i is divided into n at equal intervals.
【請求項4】所定の粒子径Diに対応する傾きを有する
直線群Liの1次結合で表される合成スペクトラムg
(k2)と前記標準スペクトラムf(k2)との残差が最
小となるように、最小二乗法で直線群Liのβiを定める
ことを特徴とする請求項2又は請求項3記載の粒度分布
測定方法。
4. A synthetic spectrum g represented by a linear combination of straight line groups L i having an inclination corresponding to a predetermined particle diameter D i.
(K 2) and the standard residual of the spectrum f (k 2) so as to minimize claim 2 or claim 3, wherein the determining the beta i of straight lines L i by the least squares method Particle size distribution measurement method.
【請求項5】測定粒度範囲が1000nm以下であるこ
とを特徴とする請求項1、請求項2、請求項3又は請求
項4記載の粒度分布測定方法。
5. The particle size distribution measuring method according to claim 1, wherein the measured particle size range is 1000 nm or less.
【請求項6】X線を発生し被測定物に照射するX線照射
手段と、被測定物より散乱するX線を測定するためのX
線検出手段と、前記検出したX線の強さを前記散乱角と
関連付けてスペクトルデータとして記憶する手段と、所
定の粒度に応じた複数の直線群の数式を記憶する手段
と、前記スペクトルデータより標準スペクトルを計算
し、更に前記直線群の一次結合が前記標準スペクトルを
近似するように、前記直線群のy切片(Log10βi)を最
小二乗法で調整、計算する手段と、前記計算の結果とし
て、前記直線群のy切片(Log10βi)と傾き(−αDi
より被測定物中の所定粒度の粒子含有率を算出し、前記
所定粒度と共に前記所定粒度に対する粒子含有率を表示
する手段とからなる粒度分布測定装置。
6. X-ray irradiating means for generating X-rays and irradiating the object to be measured, and X for measuring X-rays scattered from the object to be measured.
Line detecting means, means for storing the detected X-ray intensity as spectral data in association with the scattering angle, means for storing a mathematical expression of a plurality of straight line groups corresponding to a predetermined grain size, and the spectrum data. A means for calculating a standard spectrum and adjusting and calculating the y-intercept (Log 10 β i ) of the straight line group by the least squares method so that the linear combination of the straight line group approximates the standard spectrum; As a result, y intercept (Log 10 β i ) and slope (−α Di ) of the straight line group
A particle size distribution measuring device comprising means for calculating a particle content rate of a predetermined particle size in an object to be measured and displaying the particle content rate for the predetermined particle size together with the predetermined particle size.
JP2001339065A 2001-11-05 2001-11-05 Particle size distribution measurement method Expired - Fee Related JP3773441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339065A JP3773441B2 (en) 2001-11-05 2001-11-05 Particle size distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339065A JP3773441B2 (en) 2001-11-05 2001-11-05 Particle size distribution measurement method

Publications (2)

Publication Number Publication Date
JP2003139680A true JP2003139680A (en) 2003-05-14
JP3773441B2 JP3773441B2 (en) 2006-05-10

Family

ID=19153471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339065A Expired - Fee Related JP3773441B2 (en) 2001-11-05 2001-11-05 Particle size distribution measurement method

Country Status (1)

Country Link
JP (1) JP3773441B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098209A (en) * 2018-12-14 2020-06-25 株式会社堀場製作所 X-ray analyzer, analysis method, and program
JPWO2020230815A1 (en) * 2019-05-16 2020-11-19
CN112304918A (en) * 2019-07-30 2021-02-02 同方威视技术股份有限公司 Method and device for identifying mixture based on Raman spectrum and Raman spectrum detection equipment
CN113795752A (en) * 2019-04-26 2021-12-14 株式会社日立制作所 Particle beam experimental data analysis device
CN113748340B (en) * 2019-05-16 2024-05-14 株式会社力森诺科 Method for inspecting lubricating oil composition and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330340A (en) * 2014-11-05 2015-02-04 中国科学院生态环境研究中心 Method and device for testing sample by virtue of small angle scattering of X-ray diffractometer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098209A (en) * 2018-12-14 2020-06-25 株式会社堀場製作所 X-ray analyzer, analysis method, and program
JP7328135B2 (en) 2018-12-14 2023-08-16 株式会社堀場製作所 X-ray analysis device, analysis method, and program
CN113795752A (en) * 2019-04-26 2021-12-14 株式会社日立制作所 Particle beam experimental data analysis device
CN113795752B (en) * 2019-04-26 2024-04-19 株式会社日立制作所 Particle beam measurement result analysis device and method
JPWO2020230815A1 (en) * 2019-05-16 2020-11-19
WO2020230815A1 (en) * 2019-05-16 2020-11-19 昭和電工株式会社 Testing method for lubricating oil composition and production method for said lubricating oil composition
CN113748340A (en) * 2019-05-16 2021-12-03 昭和电工株式会社 Method for inspecting lubricating oil composition and method for producing lubricating oil composition
JP7027676B2 (en) 2019-05-16 2022-03-02 昭和電工株式会社 A method for inspecting a lubricating oil composition and a method for manufacturing the lubricating oil composition.
CN113748340B (en) * 2019-05-16 2024-05-14 株式会社力森诺科 Method for inspecting lubricating oil composition and method for producing the same
CN112304918A (en) * 2019-07-30 2021-02-02 同方威视技术股份有限公司 Method and device for identifying mixture based on Raman spectrum and Raman spectrum detection equipment
CN112304918B (en) * 2019-07-30 2022-04-01 同方威视技术股份有限公司 Method and device for identifying mixture based on Raman spectrum and Raman spectrum detection equipment

Also Published As

Publication number Publication date
JP3773441B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US9746433B2 (en) X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
Hodoroaba Energy-dispersive X-ray spectroscopy (EDS)
Mushotzky X-ray emission from clusters of galaxies
EP0102726B1 (en) Method and apparatus for characterizing microparticles or measuring their response to their environment
Cooke et al. Properties of metal powders for additive manufacturing: A review of the state of the art of metal powder property testing
US7680243B2 (en) X-ray measurement of properties of nano-particles
US5365563A (en) Fluorescent X-ray quantitative analysis apparatus
Szaloki et al. Fundamental parameter model for quantification of total reflection X-ray fluorescence analysis
JP2003139680A (en) Method for measuring particle size distribution
Marshall et al. Electron-probe X-ray microanalysis of thin films
RU2657333C1 (en) Integrated scintillation method of investigation of a substance with its introduction into plasma
Berkowicz et al. Nanofocused x-ray photon correlation spectroscopy
Schumann et al. Electron pair emission from surfaces: Intensity relations
Castaing et al. Point-by-point chemical analysis by X-ray spectroscopy
JP3773465B2 (en) Pore size distribution measurement method
Bumsted Determination of Alpha-Quartz in the Respirable Portion of Airborne Participates by X-ray Diffraction
Bennun et al. A Procedure for the Improvement in the Determination of a TXRF Spectrometer Sensitivity Curve
De Francesco et al. Onset of interfacial waves in the terahertz spectrum of a nanoparticle suspension
Claes et al. Progress in laboratory grazing emission x‐ray fluorescence spectrometry
El Ouahabi et al. Inter-technique comparison of PIXE and XRF for lake sediments
Ro et al. Assessment of homogeneity of candidate reference material at the nanogram level and investigation on representativeness of single particle analysis using electron probe X-ray microanalysis
JP2000283933A (en) Fluorescent x-ray analyzer
Rackwitz et al. A routine procedure for the characterisation of polycapillary X-ray semi-lenses in parallelising mode with SEM/EDS
Essani et al. A method for the correction of size effects in microparticles using a peak-to-background approach in electron-probe microanalysis
Zeitz et al. Zinc analysis in biological specimens by x-ray fluorescence

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees