JP2003139608A - Photocurrent/voltage conversion circuit - Google Patents

Photocurrent/voltage conversion circuit

Info

Publication number
JP2003139608A
JP2003139608A JP2001333651A JP2001333651A JP2003139608A JP 2003139608 A JP2003139608 A JP 2003139608A JP 2001333651 A JP2001333651 A JP 2001333651A JP 2001333651 A JP2001333651 A JP 2001333651A JP 2003139608 A JP2003139608 A JP 2003139608A
Authority
JP
Japan
Prior art keywords
amplifier
input
photocurrent
mos transistor
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001333651A
Other languages
Japanese (ja)
Other versions
JP4079621B2 (en
Inventor
Akifumi Shimizu
昌文 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2001333651A priority Critical patent/JP4079621B2/en
Publication of JP2003139608A publication Critical patent/JP2003139608A/en
Application granted granted Critical
Publication of JP4079621B2 publication Critical patent/JP4079621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocurrent/voltage conversion circuit improved in the light input range of a light detection element. SOLUTION: The photocurrent generated by the input of light to a photodiode 3 is converted to voltage by the feedback resistor 5 connected across the input and output of an amplifier 304 formed by the DC connection of a plurality of amplifying stages comprising Nch type MOS transistors 11, 13 and 15 of source earthing and constant current sources 12, 14 and 16, and the converted voltage is compared with reference potential Vref by a comparator 6 to output a binary signal. In this light detection IC, the amplifier 304 has a constant current source 41 provided to the input thereof and an Nch type MOS transistor 41 short-circuited between a gate and a drain is provided between the gate and source of the MOS transistor 11. When the light input of the photodiode 3 becomes excessive, a part of the photocurrent Ipd is supplied by the current from a constant current source 42 to prevent the cutting-off of the MOS transistors 11 and 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、受光素子により発
生する光電流を電圧に変換する光電流・電圧変換回路に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocurrent / voltage conversion circuit for converting a photocurrent generated by a light receiving element into a voltage.

【0002】[0002]

【従来の技術】入出力間を電気的に絶縁することを目的
として、図3に基本構成を示すように、入力側の発光素
子1に電気信号を供給すると、発光素子1から出力側の
受光素子2へ光で信号が伝わり、受光素子2から電気信
号が出力されるフォトカプラが従来から用いられてい
る。最近では、受光素子2の具体的構成として、受光素
子により発生する光電流を電圧に変換する光電流・電圧
変換回路をIC化した受光ICを設けたフォトカプラ
(以下、ICカプラと記す)がFA関連やホームエレク
トロニクス関連等多くの分野で使用されてきている。
2. Description of the Related Art For the purpose of electrically insulating input and output, as shown in the basic configuration of FIG. 3, when an electric signal is supplied to a light emitting element 1 on the input side, the light receiving element on the output side receives light from the light emitting element 1. A photocoupler in which a signal is transmitted to the element 2 by light and an electric signal is output from the light receiving element 2 has been conventionally used. Recently, as a specific configuration of the light receiving element 2, a photocoupler (hereinafter referred to as an IC coupler) provided with a light receiving IC in which a photocurrent / voltage conversion circuit for converting a photocurrent generated by the light receiving element into a voltage is provided. It has been used in many fields such as FA and home electronics.

【0003】以下にICカプラに設けられる受光ICの
一例について、図4を参照して説明する。図において、
3は受光素子としてのフォトダイオードで、フォトダイ
オード3は、アノードが接地電位GNDに接続され、カ
ソードが増幅器4の入力端に接続されている。増幅器4
は、入出力間に帰還抵抗5が接続され、出力端がコンパ
レータ6の2入力のうちの一方の入力端に接続されてい
る。コンパレータ6の他方の入力端は、コンパレータ6
の閾値電圧となる基準電圧Vrefを生成する基準電圧回
路7の出力端に接続されている。この受光ICの場合、
一般的に、フォトダイオード3のアノードがP型半導体
基板で形成され、カソードが半導体基板上にN型エピタ
キシャル層で形成されるプロセスのものに適用される。
An example of the light receiving IC provided in the IC coupler will be described below with reference to FIG. In the figure,
Reference numeral 3 denotes a photodiode as a light receiving element. The photodiode 3 has an anode connected to the ground potential GND and a cathode connected to the input end of the amplifier 4. Amplifier 4
Has a feedback resistor 5 connected between its input and output, and its output end connected to one of the two inputs of the comparator 6. The other input end of the comparator 6 is the comparator 6
It is connected to the output terminal of the reference voltage circuit 7 that generates the reference voltage Vref that is the threshold voltage of. In the case of this light receiving IC,
In general, the photodiode 3 is applied to a process in which the anode is formed of a P-type semiconductor substrate and the cathode is formed of an N-type epitaxial layer on the semiconductor substrate.

【0004】次に、増幅器4として用いられる従来の増
幅器104について図5を参照して説明する。増幅器1
04は、Nch型MOSトランジスタ11のソースが接
地電位GNDに接続されドレインと電源電圧端子VDD
との間に定電流源12が接続され、ドレインと定電流源
12との接続点が次段への出力端となり、Nch型MO
Sトランジスタ11のゲートが入力端となって初段の増
幅段が構成されている。以下、Nch型MOSトランジ
スタ13、定電流源14、Nch型MOSトランジスタ
15、定電流源16により同様の構成で複数の増幅段が
直流結合され、初段の入力端が増幅器104の入力端1
7となり、最終段の出力端が増幅器104の出力端18
となっている。フォトダイオード3は入力端17に接続
され、帰還抵抗5の一端は入力端17に、他端は出力端
18に接続されている。尚、Nch型MOSトランジス
タ11、13、15および定電流源12、14、16は
それぞれ同一形状、同一サイズの素子で構成される。
Next, a conventional amplifier 104 used as the amplifier 4 will be described with reference to FIG. Amplifier 1
In 04, the source of the Nch type MOS transistor 11 is connected to the ground potential GND and the drain and the power supply voltage terminal V DD
Is connected to the constant current source 12, and the connection point between the drain and the constant current source 12 serves as an output terminal to the next stage.
The gate of the S-transistor 11 serves as an input terminal to form an initial amplification stage. Hereinafter, a plurality of amplification stages are DC-coupled by the Nch type MOS transistor 13, the constant current source 14, the Nch type MOS transistor 15, and the constant current source 16 in the same configuration, and the input end of the first stage is the input end 1 of the amplifier 104.
7, and the output end of the final stage is the output end 18 of the amplifier 104.
Has become. The photodiode 3 is connected to the input end 17, one end of the feedback resistor 5 is connected to the input end 17, and the other end is connected to the output end 18. The Nch-type MOS transistors 11, 13, 15 and the constant current sources 12, 14, 16 are composed of elements having the same shape and the same size.

【0005】上記構成の受光ICの動作を説明する。フ
ォトダイオード3に光入力が無い場合は、光電流Ipdは
流れず、初段のNch型MOSトランジスタ11のゲー
トには定電流源12から供給される電流に応じた電位が
発生する。さらに次段のNch型MOSトランジスタ1
3のゲートにも定電流源14から供給される電流に応じ
た電位が発生する。さらに次段も同様であり、それぞれ
のNch型MOSトランジスタ11、13、15および
定電流源12、14、16は同一形状、同一サイズの素
子となっているため、各ゲートに発生する電位は同じで
ある。すなわち、増幅器104の入力端17と出力端1
8は同一電位Vとなる。この電位Vが増幅器104
の出力端18からコンパレータ6に出力されると、コン
パレータ6において、基準電圧回路7からの基準電位V
ref(>V)と比較され、基準電位Vrefより低いの
で、信号が入っていないものとみなし、論理に応じたL
owまたはhighのレベルの2値信号を出力する。
The operation of the light receiving IC having the above structure will be described. When there is no light input to the photodiode 3, the photocurrent Ipd does not flow, and a potential corresponding to the current supplied from the constant current source 12 is generated at the gate of the first-stage Nch-type MOS transistor 11. Further Nch type MOS transistor 1 in the next stage
A potential corresponding to the current supplied from the constant current source 14 is also generated in the gate of No. 3. The same applies to the next stage. Since the Nch type MOS transistors 11, 13, 15 and the constant current sources 12, 14, 16 have the same shape and the same size, the potentials generated at the respective gates are the same. Is. That is, the input end 17 and the output end 1 of the amplifier 104
8 has the same potential V 0 . This potential V 0 is the amplifier 104
When it is output from the output terminal 18 to the comparator 6, the reference potential V from the reference voltage circuit 7
It is compared with ref (> V 0 ), and is lower than the reference potential Vref, so it is considered that no signal is input, and L corresponding to the logic is applied.
It outputs a binary signal of ow or high level.

【0006】フォトダイオード3が光入力されると、そ
の光量に応じた光電流Ipdが発生し、この光電流Ipdが
帰還抵抗5に増幅器104の出力端18から入力端17
の方向に流れ、帰還抵抗5の両端にVr=Ipd×Rf
(Rf:帰還抵抗5の抵抗値)の電圧が発生することに
より電圧変換され、出力端18の電位VaはVa=V
+Vrとなる。この電位Vaが増幅器104の出力端1
8からコンパレータ6に出力されると、コンパレータ6
において、基準電圧回路7からの基準電位Vrefと比較
され、フォトダイオード3への光入力が、ある一定レベ
ル以上であれば、Va>Vrefとなり、信号が入ったも
のとみなし、前述の光入力が無い場合とは逆のレベルを
出力する。また、フォトダイオード3への光入力が、あ
る一定レベル以下であれば、Va<Vrefとなり、信号
が入っていないものとみなし、前述の光入力が無い場合
と同じレベルを出力する。
When the photodiode 3 is optically input, a photocurrent Ipd corresponding to the amount of light is generated, and this photocurrent Ipd is fed to the feedback resistor 5 from the output end 18 to the input end 17 of the amplifier 104.
Flowing in the direction of Vr = Ipd × Rf across the feedback resistor 5.
A voltage of (Rf: resistance value of the feedback resistor 5) is generated and converted into a voltage, and the potential Va of the output end 18 is Va = V 0.
It becomes + Vr. This potential Va is the output terminal 1 of the amplifier 104.
When output from 8 to the comparator 6, the comparator 6
In comparison with the reference potential Vref from the reference voltage circuit 7 and if the light input to the photodiode 3 is above a certain level, Va> Vref, and it is considered that a signal has been input, and the above-mentioned light input is Outputs the opposite level to the case without it. If the light input to the photodiode 3 is below a certain level, Va <Vref, and it is considered that no signal is input, and the same level as that when there is no light input is output.

【0007】図4に示す受光ICに増幅器104を用い
てフォトカプラを構成した場合、例えば、IC論理素子
から2値信号としてhighのレベルの信号が発光素子
に供給されると、発光素子から受光ICへ光で信号が伝
わり、受光ICから論理に応じたLowまたはhigh
のレベルの信号が出力される。また、Lowのレベルの
信号が発光素子に供給されると、発光素子から光が出力
されず、受光ICは光入力が無いので、受光ICからは
highのレベルの信号が発光素子に供給される場合と
逆のレベルを出力する。このようにして、IC論理素子
からの2値信号が入出力間を電気的に絶縁して伝達され
る。
When a photocoupler is constructed using the amplifier 104 in the light receiving IC shown in FIG. 4, for example, when a high level signal as a binary signal is supplied to the light emitting element from the IC logic element, the light receiving element receives the light. A signal is transmitted to the IC by light, and Low or high depending on the logic from the light-receiving IC
The signal of the level is output. When a low level signal is supplied to the light emitting element, no light is output from the light emitting element and the light receiving IC has no light input, so a high level signal is supplied from the light receiving IC to the light emitting element. Outputs the opposite level. In this way, the binary signal from the IC logic element is transmitted while electrically insulating between the input and the output.

【0008】受光ICの他の例について、図6を参照し
て説明する。図において、23は受光素子としてのフォ
トダイオードで、フォトダイオード23は、カソードが
電源電圧端子VDDに接続され、アノードが増幅器24
の入力端に接続されている。増幅器24は、入出力間に
帰還抵抗25が接続され、出力端がコンパレータ26の
2入力のうちの一方の入力端に接続されている。コンパ
レータ26の他方の入力端は、コンパレータ26の閾値
電圧となる基準電圧Vrefを生成する基準電圧回路27
の出力端に接続されている。この受光ICの場合、一般
的に、フォトダイオード23のカソードがN型エピタキ
シャル層で形成され、アノードがエピタキシャル層にP
型ベース層で形成されるプロセスのものに適用される。
Another example of the light receiving IC will be described with reference to FIG. In the figure, reference numeral 23 is a photodiode as a light receiving element. The photodiode 23 has a cathode connected to a power supply voltage terminal V DD and an anode connected to an amplifier 24.
Is connected to the input end of. The feedback resistor 25 is connected between the input and the output of the amplifier 24, and the output end thereof is connected to one of the two inputs of the comparator 26. The other input terminal of the comparator 26 has a reference voltage circuit 27 that generates a reference voltage Vref that is a threshold voltage of the comparator 26.
Is connected to the output end of. In the case of this light receiving IC, generally, the cathode of the photodiode 23 is formed of an N-type epitaxial layer, and the anode of the photodiode 23 is formed in the epitaxial layer.
It applies to those of the process formed by the mold base layer.

【0009】次に、増幅器24として用いられる従来の
増幅器204について図7を参照して説明する。増幅器
204は、Pch型MOSトランジスタ31のソースが
電源電圧端子VDDに接続されドレインと接地電位GN
Dとの間に定電流源32が接続され、ドレインと定電流
源32との接続点が次段への出力端となり、Pch型M
OSトランジスタ31のゲートが入力端となって初段の
増幅段が構成されている。以下、Pch型MOSトラン
ジスタ33、定電流源34、Pch型MOSトランジス
タ35、定電流源36により同様の構成で複数の増幅段
が直流結合され、初段の入力端が増幅器204の入力端
37となり、最終段の出力端が増幅器204の出力端3
8となっている。フォトダイオード23は入力端37に
接続され、帰還抵抗25の一端は入力端37に、他端は
出力端38に接続されている。尚、Pch型MOSトラ
ンジスタ31、33、35および定電流源32、34、
36はそれぞれ同一形状、同一サイズの素子で構成され
る。
Next, a conventional amplifier 204 used as the amplifier 24 will be described with reference to FIG. In the amplifier 204, the source of the Pch-type MOS transistor 31 is connected to the power supply voltage terminal V DD and the drain and the ground potential GN.
A constant current source 32 is connected between D and D, and a connection point between the drain and the constant current source 32 serves as an output end to the next stage, and a Pch type M
The gate of the OS transistor 31 serves as an input terminal to form an initial amplification stage. Hereinafter, the Pch-type MOS transistor 33, the constant current source 34, the Pch-type MOS transistor 35, and the constant current source 36 couple a plurality of amplification stages in the same configuration by direct current, and the input end of the first stage becomes the input end 37 of the amplifier 204. The output end of the final stage is the output end 3 of the amplifier 204.
It is 8. The photodiode 23 is connected to the input end 37, one end of the feedback resistor 25 is connected to the input end 37, and the other end is connected to the output end 38. The Pch type MOS transistors 31, 33, 35 and the constant current sources 32, 34,
Each of the elements 36 has the same shape and the same size.

【0010】上記構成の受光ICの動作を説明する。フ
ォトダイオード23に光入力が無い場合は、光電流Ipd
は流れず、初段のPch型MOSトランジスタ31のゲ
ートには定電流源32へ流れる電流に応じた電位が発生
する。さらに次段のPch型MOSトランジスタ33の
ゲートにも定電流源34へ流れる電流に応じた電位が発
生する。さらに次段も同様であり、それぞれのPch型
MOSトランジスタ31、33、35と定電流源32、
34、36は同一形状、同一サイズの素子となっている
ため、各ゲートに発生する電位は同じである。すなわ
ち、増幅器204の入力端子37と出力端子38は同一
電位VDD−Vとなる。この電位VDD−Vが増幅
器204の出力端38からコンパレータ26に出力され
ると、コンパレータ26において、基準電圧回路27の
基準電位Vref(<VDD−V)と比較され、基準電
位Vrefより高いので、信号が入っていないものとみな
し、論理に応じたLowまたはhighのレベルを出力
する。
The operation of the light receiving IC having the above structure will be described. If there is no light input to the photodiode 23, the photocurrent Ipd
Does not flow, and a potential corresponding to the current flowing to the constant current source 32 is generated at the gate of the first-stage Pch-type MOS transistor 31. Further, a potential corresponding to the current flowing to the constant current source 34 is also generated at the gate of the Pch-type MOS transistor 33 at the next stage. The same applies to the next stage, in which the Pch-type MOS transistors 31, 33, 35 and the constant current source 32,
Since 34 and 36 have the same shape and the same size, the potentials generated at the respective gates are the same. That is, the input terminal 37 and the output terminal 38 of the amplifier 204 have the same potential V DD −V 0 . When this potential V DD −V 0 is output from the output end 38 of the amplifier 204 to the comparator 26, it is compared with the reference potential Vref (<V DD −V 0 ) of the reference voltage circuit 27 in the comparator 26, and the reference potential Vref. Since it is higher, it is considered that no signal is input, and a Low or high level corresponding to the logic is output.

【0011】フォトダイオード23が光入力されると、
その光量に応じた光電流Ipdが発生し、この光電流が帰
還抵抗25に増幅器204の入力端37から出力端38
の方向に流れ、帰還抵抗25の両端にVr=−Ipd×R
f(Rf:帰還抵抗25の抵抗値)の電圧が発生するこ
とにより電圧変換され、出力端38の電位VaはVa=
DD−V+Vrとなる。この電位Vaが増幅器20
4の出力端38からコンパレータ26に出力されると、
コンパレータ26において、基準電圧回路27からの基
準電位Vrefと比較され、フォトダイオード23への光
入力が、ある一定レベル以上であれば、Va<Vrefと
なり、信号が入ったものとみなし、前述の光入力が無い
場合とは逆のレベルを出力する。また、フォトダイオー
ド23への光入力が、ある一定レベル以下であれば、V
a>Vrefとなり、信号が入っていないものとみなし、
前述の光入力が無い場合と同じレベルを出力する。
When the photodiode 23 is optically input,
A photocurrent Ipd corresponding to the amount of light is generated, and this photocurrent is applied to the feedback resistor 25 from the input end 37 to the output end 38 of the amplifier 204.
And Vr = −Ipd × R across the feedback resistor 25.
A voltage of f (Rf: resistance value of the feedback resistor 25) is generated and converted into a voltage, and the potential Va of the output end 38 is Va =
It becomes V DD −V 0 + Vr. This potential Va is the amplifier 20
When output from the output terminal 38 of 4 to the comparator 26,
In the comparator 26, it is compared with the reference potential Vref from the reference voltage circuit 27, and if the light input to the photodiode 23 is a certain level or more, Va <Vref, and it is considered that a signal has been input, and the above-mentioned light is input. Outputs the opposite level to when there is no input. If the light input to the photodiode 23 is below a certain level, V
Since a> Vref, it is assumed that no signal is input,
It outputs the same level as when there is no light input.

【0012】図6に示す受光ICに増幅器204を用い
てフォトカプラを構成した場合、例えば、IC論理素子
から2値信号としてhighのレベルの信号が発光素子
に供給されると、発光素子から受光ICへ光で信号が伝
わり、受光ICから論理に応じたLowまたはhigh
のレベルの信号が出力される。また、Lowのレベルの
信号が発光素子に供給されると、発光素子から光が出力
されず、受光ICは光入力が無いので、受光ICからは
highのレベルの信号が発光素子に供給される場合と
逆のレベルを出力する。このようにして、IC論理素子
からの2値信号が入出力間を電気的に絶縁して伝達され
る。
When a photocoupler is constructed by using the amplifier 204 in the light receiving IC shown in FIG. 6, for example, when a high level signal as a binary signal is supplied to the light emitting element from the IC logic element, the light receiving element receives the light. A signal is transmitted to the IC by light, and Low or high depending on the logic from the light-receiving IC
The signal of the level is output. When a low level signal is supplied to the light emitting element, no light is output from the light emitting element and the light receiving IC has no light input, so a high level signal is supplied from the light receiving IC to the light emitting element. Outputs the opposite level. In this way, the binary signal from the IC logic element is transmitted while electrically insulating between the input and the output.

【0013】[0013]

【発明が解決しようとする課題】ところで、図5および
図7に示した増幅器104、204において、フォトダ
イオード3、23への光入力が過大な場合それに応じて
発生する光電流Ipdも過大となる。図5に示す回路にお
いて、光電流Ipdが過大となれば、定電流源16からの
電流の多くが光電流Ipdとして供給されてしまい、Nc
h型MOSトランジスタ15への供給電流が減少してし
まい、Nch型MOSトランジスタ15がカットオフし
てしまう。同時に帰還抵抗5で接続されている初段のN
ch型MOSトランジスタ11のゲート・ソース間電圧
も低下し、Nch型MOSトランジスタ11もカットオ
フとなってしまう。同様に、図7に示す回路において
も、光電流Ipdが過大となれば、定電流36への電流の
多くが光電流Ipdから供給されてしまい、Pch型MO
Sトランジスタ35の動作電流が減少してしまい、Pc
h型MOSトランジスタ35がカットオフしてしまう。
同時に帰還抵抗25で接続されている初段のPch型M
OSトランジスタ31のゲート・ソース間電圧も低下
し、Pch型MOSトランジスタ31もカットオフとな
ってしまう。すなわち過大な光入力があると、増幅器内
のMOSトランジスタがカットオフし、光入力があるに
もかかわらず、光入力が無い状態と同様の動作となって
しまう。本発明は上記問題点に鑑み、過大な光入力にお
いても増幅器内のMOSトランジスタがカットオフせず
増幅器が動作できる光入力レベルの範囲を改善をするこ
とのできる光電流・電圧変換回路を提供することを目的
とする。
By the way, in the amplifiers 104 and 204 shown in FIGS. 5 and 7, when the light input to the photodiodes 3 and 23 is excessive, the photocurrent Ipd generated in response thereto is also excessive. . In the circuit shown in FIG. 5, if the photocurrent Ipd becomes excessive, most of the current from the constant current source 16 is supplied as the photocurrent Ipd, and Nc
The supply current to the h-type MOS transistor 15 is reduced, and the Nch-type MOS transistor 15 is cut off. At the same time, the first stage N connected by the feedback resistor 5
The gate-source voltage of the ch-type MOS transistor 11 also drops, and the Nch-type MOS transistor 11 is also cut off. Similarly, also in the circuit shown in FIG. 7, if the photocurrent Ipd becomes excessive, most of the current to the constant current 36 is supplied from the photocurrent Ipd, and the Pch-type MO
The operating current of the S-transistor 35 decreases and Pc
The h-type MOS transistor 35 is cut off.
At the same time, the first stage Pch type M connected by the feedback resistor 25
The gate-source voltage of the OS transistor 31 is also reduced, and the Pch-type MOS transistor 31 is also cut off. That is, when there is an excessive optical input, the MOS transistor in the amplifier is cut off, and the operation is the same as when there is no optical input despite the optical input. In view of the above problems, the present invention provides a photocurrent / voltage conversion circuit capable of improving the range of the light input level in which the MOS transistor in the amplifier is not cut off even when the light input is excessive and the amplifier can operate. The purpose is to

【0014】[0014]

【課題を解決するための手段】本発明の光電流・電圧変
換回路は、受光素子により発生する光電流を複数の増幅
段からなる増幅器により電圧変換する光電流・電圧変換
回路において、増幅器は、さらに、受光素子と初段の増
幅段との接続点に、1段分の増幅段が入出力端で接続さ
れたことを特徴とする。また、本発明の光電流・電圧変
換回路は、ソース接地のMOSトランジスタからなる増
幅段を複数段で構成した増幅器の入力端に受光素子によ
り発生する光電流を入力して、光電流を電圧変換する光
電流・電圧変換回路において、増幅器は、さらに、受光
素子と増幅器の入力端との接続点に、ソース接地のMO
Sトランジスタからなる1段分の増幅段が入出力端で接
続されたことを特徴とする。また、本発明の光電流・電
圧変換回路は、受光素子と、ソース接地のMOSトラン
ジスタと定電流源とからなる直列回路のMOSトランジ
スタのゲートを入力端とするとともに直列接続点を出力
端とする複数の増幅段が直流結合され、受光素子への光
入力により発生する光電流を電圧変換する増幅器と、増
幅器の出力を2値信号に変換するコンパレータとを具備
した光電流・電圧変換回路において、増幅器が、さら
に、その入力端に直列接続点が接続されたゲート・ドレ
イン間ショートのMOSトランジスタと定電流源とから
なる直列回路を有することを特徴とする。
The photocurrent-voltage conversion circuit of the present invention is a photocurrent-voltage conversion circuit in which a photocurrent generated by a light-receiving element is voltage-converted by an amplifier composed of a plurality of amplification stages. Further, one amplification stage is connected at an input / output terminal to a connection point between the light receiving element and the first amplification stage. Further, in the photocurrent / voltage conversion circuit of the present invention, the photocurrent generated by the light receiving element is input to the input terminal of the amplifier having a plurality of amplification stages composed of source-grounded MOS transistors to convert the photocurrent into a voltage. In the photocurrent / voltage conversion circuit, the amplifier further includes a source-grounded MO at the connection point between the light receiving element and the input end of the amplifier.
It is characterized in that one amplification stage composed of S transistors is connected at the input and output ends. Further, in the photocurrent / voltage conversion circuit of the present invention, the gate of the MOS transistor of the series circuit including the light receiving element, the source-grounded MOS transistor, and the constant current source serves as the input end, and the series connection point serves as the output end. In a photocurrent / voltage conversion circuit comprising a plurality of amplification stages, which are DC-coupled, and which includes an amplifier for converting a photocurrent generated by an optical input to a light receiving element into a voltage, and a comparator for converting an output of the amplifier into a binary signal, The amplifier is further characterized by having a series circuit including a gate-drain shorted MOS transistor having a series connection point connected to its input terminal, and a constant current source.

【0015】[0015]

【発明の実施の形態】以下、本発明の第1実施例の、図
4に示す受光ICの増幅器4として用いられる増幅器3
04を図1を参照して説明する。尚、図5に示す増幅器
104と同一のものについては同一符号を付してその説
明を省略する。図5に示す増幅器104と異なるのは、
増幅器304の入力端17にゲート・ドレイン間ショー
トのNch型MOSトランジスタ41のドレインが接続
され、そのソースが接地電位GNDに接続され、さらに
入力端17と電源電圧端子VDDとの間に定電流源42
が接続されている点である。尚、Nch型MOSトラン
ジスタ42の閾値電圧Vtを他の3つのNch型MOS
トランジスタと同一かそれより少し高く設定する以外
は、Nch型MOSトランジスタ41および定電流源4
2は他のNch型MOSトランジスタ11、13、15
および定電流源12、14、16とそれぞれ同一形状、
同一サイズの素子となっている。
BEST MODE FOR CARRYING OUT THE INVENTION An amplifier 3 used as an amplifier 4 of the light receiving IC shown in FIG. 4 according to the first embodiment of the present invention will be described below.
04 will be described with reference to FIG. The same parts as those of the amplifier 104 shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted. The difference from the amplifier 104 shown in FIG.
The drain of the gate-drain shorted Nch type MOS transistor 41 is connected to the input terminal 17 of the amplifier 304, the source thereof is connected to the ground potential GND, and a constant current is supplied between the input terminal 17 and the power supply voltage terminal V DD. Source 42
Is connected. The threshold voltage Vt of the Nch-type MOS transistor 42 is set to the other three Nch-type MOS transistors.
Nch type MOS transistor 41 and constant current source 4 except that the transistor is set to be the same as or slightly higher than the transistor.
2 is another Nch type MOS transistor 11, 13, 15
And the same shape as the constant current sources 12, 14, 16 respectively,
The elements have the same size.

【0016】上記構成の受光ICの光入力がある場合の
動作を説明する。フォトダイオード3の光入力が、図5
に示す増幅器104が動作するレベル範囲であると、増
幅器104のときとほぼ同様に、受光ICからの出力を
得る。
The operation when there is a light input to the light receiving IC having the above configuration will be described. The optical input of the photodiode 3 is as shown in FIG.
In the level range in which the amplifier 104 shown in (1) operates, the output from the light receiving IC is obtained almost in the same manner as in the case of the amplifier 104.

【0017】フォトダイオード3の光入力が、さらに増
加し、Nch型MOSトランジスタ11のゲート電位が
低下しようとすると、定電流源42からの電流のうち、
Nch型MOSトランジスタ41に必要な電流が減少
し、その分、定電流源42から光電流Ipdとして供給
される電流が増加する。その結果、帰還抵抗5に流れる
光電流Ipdが減少し、定電流源16からNch型MOS
トランジスタ15に供給される電流量は、Nch型MO
Sトランジスタ15がカットオフされないレベルに維持
され、また、Nch型MOSトランジスタ11のゲート
電位もNch型MOSトランジスタ11がカットオフさ
れないレベルに維持される。
When the light input of the photodiode 3 further increases and the gate potential of the Nch type MOS transistor 11 is about to decrease, of the current from the constant current source 42,
The current required for the Nch-type MOS transistor 41 decreases, and the current supplied from the constant current source 42 as the photocurrent Ipd increases correspondingly. As a result, the photocurrent Ipd flowing through the feedback resistor 5 decreases, and the constant current source 16 causes the Nch-type MOS
The amount of current supplied to the transistor 15 is Nch type MO.
The S transistor 15 is maintained at a level where it is not cut off, and the gate potential of the Nch type MOS transistor 11 is also maintained at a level where the Nch type MOS transistor 11 is not cut off.

【0018】尚、Nch型MOSトランジスタ41の閾
値電圧Vtが何らかのバラツキによってNch型MOS
トランジスタ11の閾値電圧Vtよりも低くなり過ぎる
と、フォトダイオード3に光入力が無く、光電流Ipdが
発生しない場合においても、Nch型MOSトランジス
タ11の閾値電圧Vtに見合う電圧をNch型MOSト
ランジスタ41に発生させるために、Nch型MOSト
ランジスタ41に定電流源42からの電流より大きい電
流を供給する必要がある。そのため、Nch型MOSト
ランジスタ41に対して帰還抵抗5を通して定電流源1
6から電流が流れてしまい、受光ICに出力を発生させ
てしまう虞がある。また、逆にNch型MOSトランジ
スタ41の閾値電圧VtがNch型MOSトランジスタ
11の閾値電圧Vtよりも高くなり過ぎると、Nch型
MOSトランジスタ11の閾値電圧Vtに見合う電圧を
Nch型MOSトランジスタ41に発生させるために、
Nch型MOSトランジスタ41に定電流源42からの
電流より小さい電流を供給する必要がある。そのため、
定電流源42からの余分の電流が光電流Ipdとして流
れ、帰還抵抗5に流れる電流は光電流Ipdより少ない電
流しか流れないため、フォトダイオード3に対する光入
力が微小で、光電流Ipdが少ない場合においては、光入
力があっても受光ICに出力を発生させない虞がある。
これを防止するため、Nch型MOSトランジスタ41
の閾値電圧Vtは、Nch型MOSトランジスタ11の
閾値電圧Vtに対して同一かそれより少しだけ高く設定
する。
The threshold voltage Vt of the Nch-type MOS transistor 41 may vary depending on the Nch-type MOS transistor 41.
When the voltage becomes lower than the threshold voltage Vt of the transistor 11, the voltage corresponding to the threshold voltage Vt of the Nch-type MOS transistor 11 is set to a voltage corresponding to the threshold voltage Vt of the Nch-type MOS transistor 11 even when there is no light input to the photodiode 3 and no photocurrent Ipd is generated. In order to generate the above, it is necessary to supply a current larger than the current from the constant current source 42 to the Nch type MOS transistor 41. Therefore, the constant current source 1 is connected to the Nch-type MOS transistor 41 through the feedback resistor 5.
There is a risk that current will flow from 6 and an output will be generated in the light receiving IC. On the contrary, when the threshold voltage Vt of the Nch-type MOS transistor 41 becomes too higher than the threshold voltage Vt of the Nch-type MOS transistor 11, a voltage matching the threshold voltage Vt of the Nch-type MOS transistor 11 is generated in the Nch-type MOS transistor 41. To let
It is necessary to supply a current smaller than the current from the constant current source 42 to the Nch type MOS transistor 41. for that reason,
When the excess current from the constant current source 42 flows as the photocurrent Ipd and the current flowing through the feedback resistor 5 is less than the photocurrent Ipd, the light input to the photodiode 3 is very small and the photocurrent Ipd is small. In the above, there is a possibility that even if there is an optical input, no output is generated in the light receiving IC.
In order to prevent this, the Nch type MOS transistor 41
The threshold voltage Vt is set to be equal to or slightly higher than the threshold voltage Vt of the Nch-type MOS transistor 11.

【0019】増幅器304を以上の構成とすることによ
り、少なくとも、定電流源42からの電流で光電流Ipd
の一部を供給して、Nch型MOSトランジスタ15が
カットオフしてしまうのを防止すると同時に、帰還抵抗
5で接続されている初段のNch型MOSトランジスタ
11のゲート・ソース間電圧が低下するのを防止するこ
とで、その過大な光入力においても増幅器304の動作
が可能である。従って、広範囲の光電流Ipdに対して動
作が可能であり、受光ICの光入力に対する動作範囲を
改善することができる。
By configuring the amplifier 304 as described above, at least the current from the constant current source 42 is used as the photocurrent Ipd.
Is supplied to prevent the Nch-type MOS transistor 15 from being cut off, and at the same time, the gate-source voltage of the first-stage Nch-type MOS transistor 11 connected by the feedback resistor 5 decreases. By preventing this, the amplifier 304 can operate even with the excessive optical input. Therefore, it is possible to operate over a wide range of photocurrent Ipd, and it is possible to improve the operation range for the light input of the light receiving IC.

【0020】次に、本発明の第2実施例の、図6に示す
受光ICの増幅器24として用いられる増幅器404を
図2を参照して説明する。尚、図7に示す増幅器204
と同一のものについては同一符号を付してその説明を省
略する。図7に示す増幅器204と異なるのは、増幅器
404の入力端37にゲート・ドレイン間ショートのP
ch型MOSトランジスタ51のドレインが接続され、
そのソースが電源電圧端子VDDに接続され、さらに入
力端37と接地電位GNDとの間に定電流源42が接続
されている点である。尚、Pch型MOSトランジスタ
52の閾値電圧Vtを他の3つのPch型MOSトラン
ジスタと同一かそれ以上に設定する以外は、Pch型M
OSトランジスタ51および定電流源52は他のPch
型MOSトランジスタ31、33、35および定電流源
32、34、36とそれぞれ同一形状、同一サイズの素
子となっている。
An amplifier 404 used as the amplifier 24 of the light receiving IC shown in FIG. 6 according to the second embodiment of the present invention will be described with reference to FIG. The amplifier 204 shown in FIG.
The same symbols are attached to the same components and the description thereof is omitted. The difference from the amplifier 204 shown in FIG. 7 is that a gate-drain short P
The drain of the ch-type MOS transistor 51 is connected,
The point is that the source is connected to the power supply voltage terminal V DD , and the constant current source 42 is connected between the input end 37 and the ground potential GND. It should be noted that, except that the threshold voltage Vt of the Pch-type MOS transistor 52 is set to be equal to or higher than that of the other three Pch-type MOS transistors, it is a Pch-type M transistor.
The OS transistor 51 and the constant current source 52 are other Pch
The MOS transistors 31, 33 and 35 and the constant current sources 32, 34 and 36 have the same shape and size, respectively.

【0021】上記構成の受光ICの光入力がある場合の
動作を説明する。フォトダイオード23の光入力が、図
7に示す増幅器204が動作するレベル範囲であると、
増幅器204のときとほぼ同様に、受光ICからの出力
を得る。
The operation when there is a light input to the light receiving IC having the above configuration will be described. When the optical input of the photodiode 23 is in the level range in which the amplifier 204 shown in FIG. 7 operates,
The output from the light receiving IC is obtained almost in the same manner as in the case of the amplifier 204.

【0022】フォトダイオード23の光入力が、さらに
増加し、Pch型MOSトランジスタ31のゲート電位
が上昇しようとすると、定電流源52に流れこむ電流の
うち、Pch型MOSトランジスタ51からの電流が減
少し、その分、定電流源52に光電流Ipdとして流れ
込む電流が増加する。その結果、帰還抵抗25に流れる
光電流Ipdが減少し、Nch型MOSトランジスタ35
から定電流源36に流れこむ電流量は、Pch型MOS
トランジスタ35がカットオフされないレベルに維持さ
れ、また、Pch型MOSトランジスタ31のゲート電
位もPch型MOSトランジスタ31がカットオフされ
ないレベルに維持される。
When the light input of the photodiode 23 further increases and the gate potential of the Pch-type MOS transistor 31 tries to rise, the current from the Pch-type MOS transistor 51 among the current flowing into the constant current source 52 decreases. However, the current flowing into the constant current source 52 as the photocurrent Ipd increases by that amount. As a result, the photocurrent Ipd flowing through the feedback resistor 25 decreases, and the Nch-type MOS transistor 35
The amount of current flowing from the constant current source 36 to the constant current source 36 is Pch type MOS.
The transistor 35 is maintained at a level where it is not cut off, and the gate potential of the Pch-type MOS transistor 31 is also maintained at a level where the Pch-type MOS transistor 31 is not cut off.

【0023】尚、Pch型MOSトランジスタ51の閾
値電圧Vtが何らかのバラツキによってPch型MOS
トランジスタ31の閾値電圧Vtよりも低くなり過ぎる
と、フォトダイオード23に光入力が無く、光電流Ipd
が発生しない場合においても、Pch型MOSトランジ
スタ31の閾値電圧Vtに見合う電圧をPch型MOS
トランジスタ51に発生させるために、Pch型MOS
トランジスタ51に定電流源52の電流より大きい電流
を供給する必要がある。そのため、Pch型MOSトラ
ンジスタ51から帰還抵抗25を通して定電流源36に
電流が流れてしまい、受光ICに出力を発生させてしま
う虞がある。また、逆にPch型MOSトランジスタ5
1の閾値電圧VtがPch型MOSトランジスタ31の
閾値電圧Vtよりも高くなり過ぎると、Pch型MOS
トランジスタ31の閾値電圧Vtに見合う電圧をPch
型MOSトランジスタ51に発生させるために、Pch
型MOSトランジスタ51に定電流源42の電流より小
さい電流を供給する必要がある。そのため、定電流源4
2に流れ込む電流は、Pch型MOSトランジスタ51
からの電流だけでは不足し、その不足分を補充するため
に光電流Ipdの一部が流れ、帰還抵抗25に流れる光電
流Ipdは減少し、フォトダイオード23に対する光入力
が微小で、光電流Ipdが少ない場合においては、光入力
があっても受光ICに出力を発生させない虞がある。こ
れを防止するため、Pch型MOSトランジスタ51の
閾値電圧Vtは、Pch型MOSトランジスタ31の閾
値電圧Vtに対して同一かそれより少しだけ高く設定す
る。
The threshold voltage Vt of the Pch-type MOS transistor 51 may change due to some variation.
If the threshold voltage Vt of the transistor 31 becomes too low, there is no light input to the photodiode 23 and the photocurrent Ipd
Even when the voltage does not occur, the voltage corresponding to the threshold voltage Vt of the Pch-type MOS transistor 31 is set to the Pch-type MOS transistor 31.
In order to generate in transistor 51, Pch type MOS
It is necessary to supply a current larger than the current of the constant current source 52 to the transistor 51. Therefore, a current may flow from the Pch-type MOS transistor 51 to the constant current source 36 through the feedback resistor 25, which may cause an output to the light receiving IC. On the contrary, the Pch type MOS transistor 5
If the threshold voltage Vt of 1 becomes higher than the threshold voltage Vt of the Pch type MOS transistor 31, the Pch type MOS transistor 31
The voltage corresponding to the threshold voltage Vt of the transistor 31 is Pch.
Type MOS transistor 51 to generate Pch
It is necessary to supply the type MOS transistor 51 with a current smaller than the current of the constant current source 42. Therefore, the constant current source 4
The current flowing into 2 is the Pch type MOS transistor 51.
Is insufficient by itself, and a part of the photocurrent Ipd flows to replenish the shortage. The photocurrent Ipd flowing through the feedback resistor 25 decreases, and the light input to the photodiode 23 is very small. When there is a small amount of light, there is a possibility that no output will be generated in the light receiving IC even if there is an optical input. In order to prevent this, the threshold voltage Vt of the Pch-type MOS transistor 51 is set equal to or slightly higher than the threshold voltage Vt of the Pch-type MOS transistor 31.

【0024】増幅器404を以上の構成とすることによ
り、少なくとも、定電流源52に光電流Ipdの一部が流
れ込んで、Pch型MOSトランジスタ35がカットオ
フしてしまうのを防止すると同時に、帰還抵抗25で接
続されている初段のPch型MOSトランジスタ31の
ゲート・ソース間電圧が低下するのを防止することで、
その過大な光入力においても増幅器404の動作が可能
である。従って、広範囲の光電流Ipdに対して動作が可
能であり、受光ICの光入力に対する動作範囲を改善す
ることができる。
By configuring the amplifier 404 as described above, at least a part of the photocurrent Ipd flows into the constant current source 52 to prevent the Pch-type MOS transistor 35 from being cut off, and at the same time, the feedback resistor is provided. By preventing the gate-source voltage of the first-stage Pch-type MOS transistor 31 connected by 25 from decreasing,
The amplifier 404 can operate even with the excessive optical input. Therefore, it is possible to operate over a wide range of photocurrent Ipd, and it is possible to improve the operation range for the light input of the light receiving IC.

【0025】尚、上記実施例では、光電流・電圧変換回
路としての受光ICをICカプラに用いることで説明し
たが、これに限定されることなく、例えば、パソコン間
通信等に用いられる赤外線通信(IrDA)の受信側回
路等、光信号をLow、Highのデジタル信号に変換
する回路に広く用いることができる。
In the above embodiment, the light receiving IC as the photocurrent / voltage conversion circuit is used for the IC coupler, but the invention is not limited to this, and for example, infrared communication used for personal computer communication or the like. It can be widely used for a circuit for converting an optical signal into a Low and High digital signal such as a (IrDA) receiving side circuit.

【0026】[0026]

【発明の効果】以上説明したように、本発明の光電流・
電圧変換回路によれば、増幅器において、さらに、受光
素子と初段の増幅段との接続点に、1段分の増幅段が入
出力端で接続されることによって、過大な光入力によっ
ても増幅器が動作でき、光電流・電圧変換回路の光入力
に対する動作範囲を改善することができる。
As described above, the photocurrent of the present invention
According to the voltage conversion circuit, in the amplifier, the amplifier stage for one stage is connected to the connection point between the light receiving element and the first stage amplifier stage at the input / output terminal, so that the amplifier can be operated even if the optical input is excessive. It can operate and can improve the operation range for the optical input of the photocurrent / voltage conversion circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例の図4の受光ICに用い
られる増幅器の回路図。
FIG. 1 is a circuit diagram of an amplifier used in the light receiving IC of FIG. 4 according to the first embodiment of the present invention.

【図2】 本発明の第2実施例の図6の受光ICに用い
られる増幅器の回路図。
FIG. 2 is a circuit diagram of an amplifier used in the light receiving IC of FIG. 6 according to the second embodiment of the present invention.

【図3】 フォトカプラの基本構成を示す図。FIG. 3 is a diagram showing a basic configuration of a photocoupler.

【図4】 受光ICの一例を示すブロック図。FIG. 4 is a block diagram showing an example of a light receiving IC.

【図5】 図4の受光ICに用いられる従来の増幅器の
回路図。
5 is a circuit diagram of a conventional amplifier used in the light receiving IC of FIG.

【図6】 受光ICの他の例を示すブロック図。FIG. 6 is a block diagram showing another example of a light receiving IC.

【図7】 図4の受光ICに用いられる従来の増幅器の
回路図。
7 is a circuit diagram of a conventional amplifier used in the light receiving IC of FIG.

【符号の説明】[Explanation of symbols]

3、23 フォトダイオード 4、24 増幅器 5、25 帰還抵抗 6、26 コンパレータ 11、13、15、41 Nch型MOSトランジスタ 31、33、35、51 Pch型MOSトランジスタ 12、14、16、42 定電流源 32、34、36、52 定電流源 3,23 Photodiode 4, 24 amplifier 5,25 Feedback resistor 6, 26 comparator 11, 13, 15, 41 Nch type MOS transistor 31, 33, 35, 51 Pch type MOS transistor 12, 14, 16, 42 Constant current source 32, 34, 36, 52 Constant current source

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G065 AA04 AB28 BA09 BC03 BC14 BE05 CA30 DA20 5J092 AA01 AA56 CA32 FA04 HA10 HA19 HA25 HA44 HA45 KA05 KA11 KA17 MA08 MA11 MA21 SA13 TA01 UL02 UL07 5J500 AA01 AA56 AC32 AF04 AH10 AH19 AH25 AH44 AH45 AK05 AK11 AK17 AM08 AM11 AM21 AS13 AT01 LU02 LU07    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G065 AA04 AB28 BA09 BC03 BC14                       BE05 CA30 DA20                 5J092 AA01 AA56 CA32 FA04 HA10                       HA19 HA25 HA44 HA45 KA05                       KA11 KA17 MA08 MA11 MA21                       SA13 TA01 UL02 UL07                 5J500 AA01 AA56 AC32 AF04 AH10                       AH19 AH25 AH44 AH45 AK05                       AK11 AK17 AM08 AM11 AM21                       AS13 AT01 LU02 LU07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】受光素子により発生する光電流を複数の増
幅段からなる増幅器により電圧変換する光電流・電圧変
換回路において、 前記増幅器は、さらに、前記受光素子と初段の増幅段と
の接続点に、1段分の増幅段が入出力端で接続されたこ
とを特徴とする光電流・電圧変換回路。
1. A photocurrent / voltage conversion circuit in which a photocurrent generated by a light receiving element is converted into a voltage by an amplifier including a plurality of amplification stages, wherein the amplifier further comprises a connection point between the light receiving element and the first amplification stage. In addition, a photocurrent-voltage conversion circuit characterized in that one amplification stage is connected at the input and output ends.
【請求項2】ソース接地のMOSトランジスタからなる
増幅段を複数段で構成した増幅器の入力端に受光素子に
より発生する光電流を入力して、光電流を電圧変換する
光電流・電圧変換回路において、 前記増幅器は、さらに、前記受光素子と増幅器の入力端
との接続点に、ソース接地のMOSトランジスタからな
る1段分の増幅段が入出力端で接続されたことを特徴と
する光電流・電圧変換回路。
2. A photocurrent / voltage conversion circuit for converting a photocurrent into a voltage by inputting a photocurrent generated by a light receiving element to an input terminal of an amplifier having a plurality of amplification stages composed of source-grounded MOS transistors. The amplifier is further characterized in that, at the connection point between the light receiving element and the input end of the amplifier, an amplification stage for one stage composed of a source-grounded MOS transistor is connected at the input / output end. Voltage conversion circuit.
【請求項3】前記各MOSトランジスタがNch型であ
り、前記受光素子のアノード端子が接地され、カソード
端子が前記増幅器の入力端に接続されたことを特徴とす
る請求項2記載の光電流・電圧変換回路。
3. The photocurrent according to claim 2, wherein each of the MOS transistors is an Nch type, an anode terminal of the light receiving element is grounded, and a cathode terminal is connected to an input terminal of the amplifier. Voltage conversion circuit.
【請求項4】前記各MOSトランジスタがPch型であ
り、前記受光素子のカソード端子が電源電圧に接続さ
れ、アノード端子が前記増幅器の入力端に接続されたこ
とを特徴とする請求項2記載の光電流・電圧変換回路。
4. Each of the MOS transistors is a Pch type, a cathode terminal of the light receiving element is connected to a power supply voltage, and an anode terminal is connected to an input terminal of the amplifier. Photocurrent / voltage conversion circuit.
【請求項5】受光素子と、 ソース接地のMOSトランジスタと定電流源とからなる
直列回路のMOSトランジスタのゲートを入力端とする
とともに直列接続点を出力端とする複数の増幅段が直流
結合され、受光素子への光入力により発生する光電流を
電圧変換する増幅器と、 増幅器の出力を2値信号に変換するコンパレータとを具
備した光電流・電圧変換回路において、 前記増幅器が、さらに、その入力端に直列接続点が接続
されたゲート・ドレイン間ショートのMOSトランジス
タと定電流源とからなる直列回路を有することを特徴と
する光電流・電圧変換回路。
5. A plurality of amplification stages, each of which has a light receiving element, a gate of a MOS transistor of a series circuit including a source-grounded MOS transistor and a constant current source as an input terminal, and a series connection point as an output terminal, are DC-coupled. A photocurrent / voltage conversion circuit comprising an amplifier for converting a photocurrent generated by light input to a light receiving element into a voltage, and a comparator for converting an output of the amplifier into a binary signal, wherein the amplifier further has an input A photocurrent / voltage conversion circuit comprising a series circuit composed of a gate-drain shorted MOS transistor having a series connection point connected to an end thereof and a constant current source.
JP2001333651A 2001-10-31 2001-10-31 Photocurrent / voltage converter Expired - Fee Related JP4079621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333651A JP4079621B2 (en) 2001-10-31 2001-10-31 Photocurrent / voltage converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333651A JP4079621B2 (en) 2001-10-31 2001-10-31 Photocurrent / voltage converter

Publications (2)

Publication Number Publication Date
JP2003139608A true JP2003139608A (en) 2003-05-14
JP4079621B2 JP4079621B2 (en) 2008-04-23

Family

ID=19148879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333651A Expired - Fee Related JP4079621B2 (en) 2001-10-31 2001-10-31 Photocurrent / voltage converter

Country Status (1)

Country Link
JP (1) JP4079621B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630952A2 (en) 2004-08-31 2006-03-01 NEC Compound Semiconductor Devices, Ltd. Signal determining apparatus including amplifier circuit with variable response speed
JP2007143162A (en) 2005-11-17 2007-06-07 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Amplifier circuit and system having built-in amplifier circuit
KR101054388B1 (en) 2009-06-24 2011-08-04 이화여자대학교 산학협력단 Transimpedance Amplifier for Optical Receiver
JP2013065941A (en) * 2011-09-15 2013-04-11 Toshiba Corp Light receiving circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630952A2 (en) 2004-08-31 2006-03-01 NEC Compound Semiconductor Devices, Ltd. Signal determining apparatus including amplifier circuit with variable response speed
JP2006074086A (en) * 2004-08-31 2006-03-16 Nec Compound Semiconductor Devices Ltd Photoelectric current/voltage conversion circuit
EP1630952A3 (en) * 2004-08-31 2007-04-04 NEC Electronics Corporation Signal determining apparatus including amplifier circuit with variable response speed
US7319365B2 (en) 2004-08-31 2008-01-15 Nec Electronics Corporation Signal determining apparatus including amplifier circuit with variable response speed
JP2007143162A (en) 2005-11-17 2007-06-07 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Amplifier circuit and system having built-in amplifier circuit
KR101054388B1 (en) 2009-06-24 2011-08-04 이화여자대학교 산학협력단 Transimpedance Amplifier for Optical Receiver
JP2013065941A (en) * 2011-09-15 2013-04-11 Toshiba Corp Light receiving circuit
US8884208B2 (en) 2011-09-15 2014-11-11 Kabushiki Kaisha Toshiba Light receiving circuit

Also Published As

Publication number Publication date
JP4079621B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US6593868B2 (en) Differential digital/analog converter
US5880582A (en) Current mirror circuit and reference voltage generating and light emitting element driving circuits using the same
US4791323A (en) Level translation circuit
JP2525346B2 (en) Differential amplifier circuit having constant current source circuit
US20160268982A1 (en) Light receiving circuit and optical coupling device
JPH07202668A (en) Optical receiver device
US20060139096A1 (en) Apparatus and method for biasing cascode devices in a differential pair using the input, output, or other nodes in the circuit
JP4303057B2 (en) Photocurrent / voltage converter
US6778569B2 (en) Optical source driver with improved input stage
JP2003139608A (en) Photocurrent/voltage conversion circuit
JP2006074086A (en) Photoelectric current/voltage conversion circuit
JP2005072924A (en) Photoelectric current and voltage converting circuit
US4268761A (en) Interface circuit for converting logic signal levels
JP2005217468A (en) Photocurrent/voltage conversion circuit
JP2003218645A (en) Optical current/voltage conversion circuit
US6359324B1 (en) Push-pull configurations for semiconductor device having a pn-junction with a photosensitive region
JP2004312486A (en) Photocurrent/voltage conversion circuit
EP0323999A1 (en) Level conversion circuit
JP2005210558A (en) Optical current/voltage conversion circuit
JPS6216021Y2 (en)
JPH04304011A (en) Interface circuit for isolator
JP2973526B2 (en) Field effect transistor logic circuit
Vilches et al. Monolithic large-signal transimpedance amplifier for use in multi-gigabit, short-range optoelectronic interconnect applications
KR930008087Y1 (en) Trans conductance amplifier
JP3198482B2 (en) Optoelectronic circuit elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees