JP2004312486A - Photocurrent/voltage conversion circuit - Google Patents

Photocurrent/voltage conversion circuit Download PDF

Info

Publication number
JP2004312486A
JP2004312486A JP2003104789A JP2003104789A JP2004312486A JP 2004312486 A JP2004312486 A JP 2004312486A JP 2003104789 A JP2003104789 A JP 2003104789A JP 2003104789 A JP2003104789 A JP 2003104789A JP 2004312486 A JP2004312486 A JP 2004312486A
Authority
JP
Japan
Prior art keywords
amplifier
output
voltage
photocurrent
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003104789A
Other languages
Japanese (ja)
Inventor
Yuji Fujita
裕司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2003104789A priority Critical patent/JP2004312486A/en
Publication of JP2004312486A publication Critical patent/JP2004312486A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)
  • Amplifiers (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocurrent/voltage conversion circuit in which the speed of response is improved for optical input of a light-sensitive element. <P>SOLUTION: There is provided the photocurrent/voltage conversion circuit equipped with an amplifier 4 comprising a plurality of stages for converting a photocurrent that is generated by a photodiode 3 into a voltage, a reference voltage circuit 32 for producing a reference voltage, and a comparator 16 for comparing an output voltage of the amplifier 4 with the reference voltage to output binary signals. In the photocurrent/voltage conversion circuit, an input terminal 4c of the third stage of the amplifier 4 is connected with the inverting input terminal 13a of an operational amplifier 13 of the reference voltage circuit 32 via a resister 22 and is connected with an output of the Op-Amp 13 via the resistors 21, 14. By connecting the input terminal 4a of the amplifier 4 with a noninverting input terminal 13b of the operational amplifier 13, the photocurrent/voltage conversion circuit is operated as an inverting amplifier and further the reference voltage Vref to which a constant offset voltage Vos is added is output to the comparator 16 by a constant current source 15 and the resistor 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、受光素子により発生する光電流を電圧に変換し2値信号として出力する光電流・電圧変換回路に関する。
【0002】
【従来の技術】
FA関連やホームエレクトロニクス関連等多くの分野で入出力間を電気的に絶縁することを目的として、フォトカプラが使用されている。図4に基本構成を示すように、入力側の発光素子1に電気信号を供給すると、発光素子1から出力側の受光素子2へ光で信号が伝わり、受光素子2から電気信号が出力されるものである。最近では、受光素子2の具体的構成として、受光素子により発生する光電流を電圧に変換し2値信号として出力する光電流・電圧変換回路をIC化した受光ICを設けたフォトカプラ(以下、ICカプラと記す)が使用されてきている。
【0003】
以下にICカプラに設けられる受光ICの一例について、図5を参照して説明する。図5において、3は受光素子としてのフォトダイオード、4は増幅器、12は基準電圧回路、16は比較器で、フォトダイオード3はアノードが接地され、カソードが増幅器4の入力端4aに接続されている。増幅器4は、入力端4aと出力端4bの間に帰還抵抗11が接続され、出力端4bが比較器16の2入力のうち一方の入力端に接続されている。比較器16の他方の入力端は、比較器16の閾値電圧となる基準電圧Vrefを生成する基準電圧回路12の出力端に接続されている。
増幅器4は、Nch型MOSトランジスタ5のソースが接地されドレインと電源電圧端子VDDとの間に定電流源8が接続され、ドレインと定電流源8との接続点が次段への入力端となる。以下、Nch型MOSトランジスタ6、定電流源9、Nch型MOSトランジスタ7、定電流源10により同様の構成で複数(3段)の増幅段が直流結合され、初段の入力端が増幅器4の入力端4aとなり、最終段の出力端が増幅器4の出力端4bとなっている。尚、MOSトランジスタ5、6、7および定電流源8、9、10はそれぞれ同一形状、同一サイズの素子で構成される。
基準電圧回路12は、オペアンプ13と、その非反転入力端13bが増幅器4の入力端4aに接続され、オペアンプ13の出力端に第1の抵抗14の一端が接続され、第1の抵抗14の他端は定電流源15を介して接地されるとともにオペアンプ13の反転入力端13aに接続されて構成され、反転入力端13aに入力される電圧より第1の抵抗14と定電流源15で決まるオフセット電圧Vos分高い電圧を基準電圧Vrefとして出力する。ここで、抵抗14の抵抗値をRref、定電流源15の電流値をIrefとすると、オフセット電圧Vosは、Iref×Rrefとなる。
比較器16は2つの入力信号の電圧関係によって出力がHレベル(VDD)、或いはLレベル(GND)になるように動作する。例えば、図5で増幅器4の出力端4bの電位VaがVa>Vrefの場合は出力がHレベルとなり、Va<Vref場合は出力がLレベルとなる。
【0004】
上記構成の受光ICの動作を説明する。フォトダイオード3に光入力が無い場合は、光電流Ipdは流れず、初段のMOSトランジスタ5のゲートには定電流源8から供給される電流に応じた電位が発生する。さらに次段のMOSトランジスタ6のゲートにも定電流源9から供給される電流に応じた電位が発生する。さらに次段も同様であり、それぞれのMOSトランジスタ5、6、7および定電流源8、9、10は同一形状、同一サイズの素子となっているため、各ゲートに発生する電位は同じである。すなわち、増幅器4の入力端4aと出力端4bは同一電位Vとなる。増幅器4の出力端4bの電位Va=Vが比較器16に出力されると、比較器16において、基準電圧回路12からの基準電圧Vrefと比較されるが、基準電圧VrefはVoよりオフセット電圧Vos分高いため、Va<Vrefとなり出力がLレベルとなる。
【0005】
フォトダイオード3が光入力されると、その光量に応じた光電流Ipdが発生し、この光電流Ipdが帰還抵抗11に増幅器4の出力端4bから入力端4aの方向に流れ、増幅器4の各MOSトランジスタ5、6、7の各部電位は、MOSトランジスタ5のゲート電位が電位Vより降下し、MOSトランジスタ5のドレイン電位=MOSトランジスタ6のゲート電位が電位Vより上昇し、MOSトランジスタ6のドレイン電位=MOSトランジスタ7のゲート電位が電位Vより降下し、MOSトランジスタ7のドレイン電位が電位Vより上昇する。この電位の下降および上昇は段を追うに従い順次増幅され、その結果、光電流Ipdは、帰還抵抗11の両端に発生する電圧Vr=Ipd×Rf(Rf:帰還抵抗11の抵抗値)に電圧変換され、出力端4bの電位VaはVa=V+Vrとなる。この電位Vaが増幅器4の出力端4bから比較器16へと出力されると、比較器16において、基準電圧回路12からの基準電圧Vrefと比較され、フォトダイオード3への光入力が、ある一定レベル以上であれば、Va>Vrefとなり、比較器16の出力はHレベルとなる。また、フォトダイオード3への光入力が、ある一定レベル以下であれば、Va<Vrefとなり、信号が入っていないものとみなし、比較器16の出力は前述の光入力が無い場合と同じLレベルとなる。
【0006】
上記図5の構成の受光ICの動作を図6の波形図を用いて説明する。まず、図6(a)に示すようにフォトダイオード3への光入力レベルに応じた光電流が発生する。光入力レベルが小さい時の光電流をI1、これより光入力レベルが大きい時の光電流をI2とする。一方、図6(b)に示す増幅器4の入力端4aの電位は、光電流Ipdが流れないときは電位Vであり、光電流Ipdが流れると電位Vより僅かに降下するが、光電流Ipdが大きくなっても増幅器4の出力電圧の(1/増幅度)であるため、電位Vからの降下が微小となり、厳密には光電流I1のときの入力端4aの電位よりも光電流I2のときの入力端4aの電位の方が僅かに低いが、その微小差を無視してほぼ同じ大きさとして示している。従って、図6(b)に示すように基準電圧Vref は、基準電圧回路12によって光電流Ipdが流れないときは基準電圧Vref(=Vo+Vos)であり、光電流Ipdが流れるときは、増幅器4の入力端4aの電位の下降分だけ変動し、光電流I1が流れたときの基準電圧Vref(I1)もI2が流れたときの基準電圧Vref(I2)もほぼ同じ大きさの電圧Vrefとなる。また、図6(c)のように増幅器4の出力電位Vaは、光電流の大きさに応じて光電流I1のときVa(I1)、I2のときVa(I2)となり、Va(I1)≦Va(I2)の関係にある。図6(c)は、この基準電圧Vref(I1)、Vref (I2)と増幅器4の出力電位Va(I1)、Va(I2)の関係を示したものである。この基準電圧Vrefと電位Vaとが比較器16で比較され、フォトダイオード3への光入力が、ある一定レベル以上であれば、Va>Vrefとなり、比較器16の出力はHレベルとなる。また、フォトダイオード3への光入力が、ある一定レベル以下であれば、Va<Vrefとなり、信号が入っていないものとみなし、比較器16の出力はLレベルとなる。そして、図6(d)に示すような比較器16の出力波形となる。
【0007】
図5に示す受光ICを用いてICカプラを構成した場合、例えば、IC論理素子から2値信号としてHレベルの信号が発光素子に供給されると、発光素子から受光ICへ光で信号が伝わり、受光ICから論理に応じたLレベルまたはHレベルの信号が出力される。また、Lレベルの信号が発光素子に供給されると、発光素子から光が出力されず、受光ICは光入力が無いので、受光ICからはHレベルの信号が発光素子に供給される場合と逆のレベルを出力する。このようにして、IC論理素子からの2値信号が入出力間を電気的に絶縁して伝達される。
【0008】
ところで、図5に示した受光ICは、光電流Ipdの大きさによってこの遅延時間が変動し、光電流Ipdが大きくなるほど比較器16の出力の遅延時間が大きくなるといった問題がある。これを図6を参照して説明する。
前述したように図6(a)のように光電流が異なる(I1、I2)と、増幅器4で発生した電圧は図6(c)のように電圧値がそれぞれ異なる(Va(I1)、Va(I2))と共に、立上り時間、立下り時間も異なってくる。これは、増幅器4の周波数特性やフォトダイオード(受光素子)3の静電容量などによるものであるが、光電流が大きいほど立上り時間、立下り時間も大きくなる傾向にある。一方、基準電圧Vrefも光電流が大きくなると低下する方向にあるが、増幅器4の出力電圧の(1/増幅度)であるため、ほとんど変化はない。従って、比較器16の出力としては、図6(d)のように光電流より遅れが生じ(tpLH、tpHL)、さらに、光電流の大きさの違いにより、立上りの遅れ時間(tpLH)は殆ど差はないが、立下りの遅れ時間(tpHL)は光電流が大きくなるほど大きくなる(tpHL(I1)<tpHL(I2))。
すなわち、光電流に対する遅延時間(tpLH、tpHL)の問題の他、光電流の大きさによって、出力のHレベルとLレベルの時間比(Duty比)が変わることなり、タイミングを重視する回路に使用した場合には動作不良になるなどの悪影響を及ぼす虞がある。
【0009】
これを改善する方法として、特許文献1で提案されているように、従来の基準電圧Vrefと増幅器4の出力との抵抗分割によって、新たな基準電圧Vrefを作り、比較器16に入力する方法がある。これを図7、図8を用いて説明する。
図7は受光素子3、増幅器4、基準電圧回路12、比較器16は前述の図5と同じであるが、比較器16に入力される基準電圧Vrefとして、基準電圧回路12と増幅器4の各出力電圧を抵抗17と抵抗18で分圧し、さらに一端が接地されたコンデンサ20の他端を分圧点19に接続し、この分圧点19の電圧を基準電圧Vrefとしている。この回路構成にすることにより、増幅器4出力Vaと基準電圧Vrefは図8(b)に示すように、増幅器4出力Vaの立上り時には基準電圧Vrefは基準電圧回路出力よりも分圧比に応じて低くなり、増幅器4出力Vaの立下り時には基準電圧Vrefは基準電圧回路出力よりも分圧比に応じて高くなるため、増幅器4出力Vaの立上り、立下り直後で比較器16の出力が切り替わることとなり、光電流Ipdに対する遅れ時間が改善される。
【0010】
【特許文献1】
特許第3121339号明細書(第3−6頁)
【0011】
【発明が解決しようとする課題】
しかしながら、図7の回路では抵抗17と抵抗18は通常高抵抗となるため、ノイズなどに弱く、比較器16での誤動作や比較器16の出力にジッタが発生するといった問題点がある。また、基準電圧Vrefは基準電圧回路12と増幅器4の出力電圧を抵抗17と抵抗18で分圧して生成するため、分圧後の基準電圧Vrefが低すぎると増幅器4出力のノイズにより比較器16での誤動作が発生する虞があり、基準電圧回路12の出力は従来より高めに設定する必要がある。例えば、抵抗17と抵抗18のと分圧比を9:1にして、増幅器4出力の立上り時の基準電圧を従来の図6(c)の分圧していない基準電圧Vref(=Vo+Vos)と同じ電圧にしようとすると、基準電圧回路は従来の基準電圧Vrefの10倍にする必要がある。しかし、このように基準電圧回路12の出力を従来より高めに設定すると、小さい光電流のときの増幅器4出力Vaが常に分圧後の基準電圧Vrefより小さくなり比較器16の出力が切り替わらない虞があるといった問題が出てくる。
本発明は上記問題点に鑑み、基準電圧Vrefを低インピーダンスで、かつ安定した電圧で供給し、受光素子の光入力に対する応答速度を改善した光電流・電圧変換回路を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の光電流・電圧変換回路は、受光素子により発生する光電流を電圧に変換する増幅器と、基準電圧を生成する基準電圧回路と、増幅器の出力電圧と基準電圧とを比較し2値信号を出力する比較器とを具備した光電流・電圧変換回路において、前記増幅器は複数の増幅段から構成され、増幅器の初段入力と、前記比較器に接続される出力段より前段の増幅段の出力のうち、異なる2信号を前記基準電圧回路に入力し、前記基準電圧回路の出力と前記増幅器の出力が前記比較器入力において同相になるようにしたことを特徴とする。
また本発明の光電流・電圧変換回路は、複数の増幅段が直流結合され受光素子により発生する光電流を電圧に変換する増幅器と、増幅器の出力電圧を基準電圧とで比較し2値信号を出力する比較器と、基準電圧として光電流に応じた電圧に光電流が無いときの基準電圧となるオフセット電圧を加算して生成する基準電圧回路とを具備した光電流・電圧変換回路において、前記基準電圧回路は、前記増幅段の初段から前記増幅器の出力電圧の出力段までの増幅段への入力信号のうち、異なる2つの入力信号が2入力され、前記増幅器の出力電圧と同相で出力される反転増幅器、或いは非反転増幅器であることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の第1実施例の受光ICについて図1を参照して説明する。尚、図5と同一のものについては同一符号を付している。図において、3は受光素子としてのフォトダイオード、4は増幅器、32は基準電圧回路、16は比較器で、フォトダイオード3はアノードが接地され、カソードが増幅器4の入力端4aに接続されている。増幅器4は、入力端4aと出力端4bの間に帰還抵抗11が接続され、出力端4bが比較器16の2入力のうち一方の入力端に接続されている。比較器16の他方の入力端は、比較器16の閾値電圧となる基準電圧Vrefを生成する基準電圧回路32の出力端に接続されている。
増幅器4は、Nch型MOSトランジスタ5のソースが接地されドレインと電源電圧端子VDDとの間に定電流源8が接続され、ドレインと定電流源8との接続点が次段への入力端となる。以下、Nch型MOSトランジスタ6、定電流源9、Nch型MOSトランジスタ7、定電流源10により同様の構成で複数(3段)の増幅段が直流結合され、初段の入力端が増幅器4の入力端4aとなり、最終段の出力端が増幅器4の出力端4bとなっている。尚、MOSトランジスタ5、6、7および定電流源8、9、10はそれぞれ同一形状、同一サイズの素子で構成される。
基準電圧回路32は、オペアンプ13と、その非反転入力端13bが増幅器4の入力端4aに接続され、オペアンプ13の出力端に第1の抵抗14の一端が接続され、第1の抵抗14の他端は定電流源15を介して接地されるとともに第2の抵抗21の一端が接続され、第2の抵抗の他端はオペアンプ13の反転入力端子に接続されるとともに第3の抵抗22の一端が接続されて構成されている。
図5に示す受光ICと異なる点は、オペアンプ13の反転入力端が増幅器4の3段目の入力端(=2段目の出力端)4cから第3の抵抗22を通して接続され、この反転入力端と定電流源15との間に第2の抵抗21が接続されている点である。
【0014】
上記図1の構成の受光ICの動作を図2の波形図を用いて説明する。
まず、図2(a)に示すようにフォトダイオード3への光入力レベルに応じた光電流が発生する。光入力レベルが小さい時の光電流をI1、これより光入力レベルが大きい時の光電流をI2とする。一方、図2(b)に示す増幅器4の入力端4aの電位は、光電流Ipdが流れないときは電位Vであり、光電流Ipdが流れると電位Vより僅かに降下するが、光電流Ipdが大きくなっても増幅器4の出力電圧の(1/増幅度)であるため、電位Vからの降下が微小となり、厳密には光電流I1のときの入力端4aの電位よりも光電流I2のときの入力端4aの電位の方が僅かに低いが、その微小差を無視してほぼ同じ大きさとして示している。しかし、同じく図2(b)に示す増幅器4の3段目の入力端4cの電位は入力端4aの電位が段を追うに従い順次増幅されるため、光電流I1、I2が流れたときの入力端4aでの微小な電位差は入力端4cでは無視できない差となって現れる。すなわち、光電流がゼロのときの電圧Voより低い電圧で光電流に応じた電圧となり、光電流I1のときの入力端4cの電位よりも光電流I2のときの入力端4cの電位の方が低くなる。従って、この電圧が抵抗22を通してオペアンプ13の反転入力端13aに入力され、もう一方の非反転入力端13bには増幅器4の入力端4aの電圧が入力され、後述する増幅度で反転増幅されるとともに抵抗14と定電流源15で生成されるオフセット電圧Vosだけ高い電圧が基準電圧回路32の出力となり、図2(b)のようなVref(I1)≦Vref (I2)なる基準電圧波形となる。また、図2(c)のように増幅器4の出力電位Vaは、光電流の大きさに応じて光電流I1のときVa(I1)、I2のときVa(I2)となり、Va(I1)≦Va(I2)の関係にある。図2(c)は、この基準電圧Vref(I1)、Vref (I2)と増幅器4の出力電位Va(I1)、Va(I2)の関係を示したものである。この基準電圧Vrefと電位Vaとが比較器16で比較され、フォトダイオード3への光入力が、ある一定レベル以上であれば、Va>Vrefとなり、比較器16の出力はHレベルとなる。また、フォトダイオード3への光入力が、ある一定レベル以下であれば、Va<Vrefとなり、信号が入っていないものとみなし、比較器16の出力はLレベルとなる。そして、図2(d)に示すような比較器16の出力波形となる。これによって、光電流によって発生する増幅器4の出力Vaの立上り、立下り直後で基準電圧Vrefと電位Vaとが交差するため比較器16の出力が切り替わることとなり、光電流Ipdに対する遅れ時間(tpLH、tpHL)、及び光電流の大きさ(I1、I2)によって起こる遅れ時間(tpHL(I1)、tpHL(I2))の変化が低減される。
ここで、基準電圧回路32の動作について説明を加えると、従来の図5ではオフセット電圧Vosを生成する役割を果たすだけであったが、本発明ではオフセット電圧Vosを生成する役割に加え、第1の抵抗14、第2の抵抗21、第3の抵抗22の抵抗値で決まる増幅度を持つ反転増幅器としての役割も果たしている。すなわち、第2の抵抗21の抵抗値をR21、第3の抵抗22の抵抗値をR22とすると、基準電圧回路32の増幅度は(−(R14+R21)/R22 )となる。基準電圧Vrefが増幅器4の出力電位Vaをその立下り直後に横切るには、基準電圧Vrefが増幅器4の出力電位Vaより小さい必要がある。従って、基準電圧回路32の増幅度は、増幅器4の出力端4bと入力端4cとの間のMOSトランジスタ7と定電流源10とで構成される3段目の増幅段の増幅度より小さいことが必要である。
【0015】
以上説明したように、ノイズなどに弱く、比較器16での誤動作やその出力にジッタが発生する原因となる図7の回路のような分圧抵抗17、18を用いることなく、基準電圧Vrefを低インピーダンスで、かつ安定した電圧で供給でき、受光素子の光入力に対する遅れ時間、及び光電流の大きさによる遅れ時間の変化を低減できる。
【0016】
次に、本発明の第2実施例の受光ICについて図3を参照して説明する。尚、図1と同一のものについては同一符号を付している。図において、3は受光素子としてのフォトダイオードで、アノードが接地され、カソードが増幅器4の入力端4aに接続されている。増幅器4は、入力端4aと出力端4bの間に帰還抵抗11が接続され、出力端4bが比較器16の2入力のうち一方の入力端に接続されている。比較器16の他方の入力端は、比較器16の閾値電圧となる基準電圧Vrefを生成する基準電圧回路42の出力端に接続されている。
増幅器4は、Nch型MOSトランジスタ5のソースが接地されドレインと電源電圧端子VDDとの間に定電流源8が接続され、ドレインと定電流源8との接続点が次段への入力端となる。以下、Nch型MOSトランジスタ6、定電流源9、Nch型MOSトランジスタ7、定電流源10により同様の構成で複数(3段)の増幅段が直流結合され、初段の入力端が増幅器4の入力端4aとなり、最終段の出力端が増幅器4の出力端4bとなっている。尚、MOSトランジスタ5、6、7および定電流源8、9、10はそれぞれ同一形状、同一サイズの素子で構成される。
基準電圧回路42は、オペアンプ13と、その非反転入力端13bが増幅器4の2段目の入力端(1段目の出力端)4dに接続され、オペアンプ13の出力端に第1の抵抗14の一端が接続され、第1の抵抗14の他端は定電流源15を介して接地されるとともに第2の抵抗21の一端が接続され、第2の抵抗21の他端はオペアンプ13の反転入力端13aに接続されるとともに第3の抵抗23の一端が接続されて構成されている。
図1に示す受光ICと異なる点は、オペアンプ13の反転入力端13aが増幅器4の入力端4aから抵抗23を通して接続され、もう一方の非反転入力端13bが増幅器4のMOSトランジスタ5と定電流源8とで構成される2段目の入力端(1段目の出力端)4dに接続されている点である。
この接続により、基準電圧回路42は、オフセット電圧Vosを生成する役割に加え、第1の抵抗14、第2の抵抗21、第3の抵抗23の抵抗値で決まる増幅度を持つ非反転増幅器としての役割も果たすため、基準電圧Vrefは図2(c)と同様の出力が得られる。第3の抵抗23の抵抗値をR23とすると、この場合の基準電圧回路42の増幅度は(1+(R14+R21)/R23 )となる。図1の基準電圧回路32と同様に、基準電圧Vrefが増幅器4の出力電位Vaをその立下り直後に横切るには、基準電圧Vrefが増幅器4の出力電位Vaより小さい必要がある。従って、基準電圧回路42の増幅度も、増幅器4の出力端4bと入力端4dとの間のMOSトランジスタ6と定電流源9とで構成されるの2段目増幅段の増幅度と、MOSトランジスタ7と定電流源10とで構成されるの3段目増幅段の増幅度とを乗算した増幅度より小さいことが必要である。
【0017】
動作については、図1の受光ICと同様であり、その説明を省略する。効果については、図1では増幅器4の入力端4aから直接電圧を取り出し、オペアンプ13の非反転入力端13bに接続しているため、増幅器4の入力インピーダンスが下がり、周波数特性が悪くなる傾向にあるが、図3では、増幅器4の入力端4aから抵抗23を介し取り出しているため、この抵抗23の分、増幅器4の入力インピーダンスの低下が抑えられ、周波数特性の劣化も抑えらる。
【0018】
尚、上記第1および第2実施例では、増幅器4を3段の増幅段で構成しているが、2段または4段以上の複数の増幅段でも同様に構成できる。
また、光電流・電圧変換回路としての受光ICをICカプラに用いることで説明したが、これに限定されることなく、例えば、パソコン間通信等に用いられる赤外線通信(IrDA)の受信側回路等、光信号をLレベル、Hレベルの2値信号に変換する回路に広く用いることができる。
【0019】
【発明の効果】
以上説明したように、本発明の光電流・電圧変換回路によれば、受光素子により発生する光電流を電圧に変換する増幅器が、複数の増幅段で構成される場合において、前記複数の各増幅段の初段入力信号を含む各段の出力信号のうちの前記比較器入力を除いた異なる2信号を基準電圧回路の入力に接続し、反転、或いは非反転増幅して基準電圧Vrefを生成することにより、基準電圧Vrefが増幅器出力Vaをその立上がりあるいは立下り直後に横切るため、応答速度が改善され、さらに光電流の大きさによる応答速度の変化が低減される。
【図面の簡単な説明】
【図1】本発明の第1実施例の受光ICの回路図。
【図2】図1に示す受光ICの動作を説明する波形図。
【図3】本発明の第2実施例の受光ICの回路図。
【図4】フォトカプラの基本構成を示す図。
【図5】従来の受光ICの回路図。
【図6】図5に示す受光ICの動作を説明する波形図。
【図7】従来の受光ICの他の例を示す回路図。
【図8】図7に示す受光ICの動作を説明する波形図。
【符号の説明】
3 受光素子
4 増幅器
5、6、7 Nch型MOSトランジスタ
8、9、10、15 定電流源
11 帰還抵抗
14、21、22、23 抵抗
16 比較器
32、42 基準電圧回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photocurrent / voltage conversion circuit that converts a photocurrent generated by a light receiving element into a voltage and outputs the voltage as a binary signal.
[0002]
[Prior art]
2. Description of the Related Art Photocouplers are used in many fields such as FA-related and home electronics-related fields for the purpose of electrically insulating input and output. As shown in FIG. 4, when an electric signal is supplied to the light emitting element 1 on the input side, a signal is transmitted by light from the light emitting element 1 to the light receiving element 2 on the output side, and the electric signal is output from the light receiving element 2. Things. Recently, as a specific configuration of the light receiving element 2, a photocoupler (hereinafter, referred to as a light-receiving IC) having a photocurrent-to-voltage conversion circuit that converts a photocurrent generated by the light-receiving element into a voltage and outputs it as a binary signal is provided. IC couplers) have been used.
[0003]
An example of the light receiving IC provided in the IC coupler will be described below with reference to FIG. In FIG. 5, 3 is a photodiode as a light receiving element, 4 is an amplifier, 12 is a reference voltage circuit, 16 is a comparator, and the photodiode 3 has an anode grounded and a cathode connected to the input terminal 4a of the amplifier 4. I have. In the amplifier 4, a feedback resistor 11 is connected between the input terminal 4 a and the output terminal 4 b, and the output terminal 4 b is connected to one of two inputs of the comparator 16. The other input terminal of the comparator 16 is connected to an output terminal of the reference voltage circuit 12 that generates a reference voltage Vref serving as a threshold voltage of the comparator 16.
The amplifier 4 has a source of the Nch type MOS transistor 5 grounded, a constant current source 8 connected between the drain and the power supply voltage terminal VDD , and a connection point between the drain and the constant current source 8 connected to the input terminal to the next stage. It becomes. Hereinafter, a plurality of (three) amplification stages are DC-coupled in the same configuration by the Nch-type MOS transistor 6, the constant current source 9, the Nch-type MOS transistor 7, and the constant current source 10, and the input terminal of the first stage is the input terminal of the amplifier 4. The output terminal of the last stage is the output terminal 4b of the amplifier 4. Incidentally, the MOS transistors 5, 6, 7 and the constant current sources 8, 9, 10 are constituted by elements having the same shape and the same size, respectively.
The reference voltage circuit 12 includes an operational amplifier 13, a non-inverting input terminal 13 b thereof connected to an input terminal 4 a of the amplifier 4, an output terminal of the operational amplifier 13 connected to one end of a first resistor 14, The other end is grounded via a constant current source 15 and connected to the inverting input terminal 13a of the operational amplifier 13, and is determined by the first resistor 14 and the constant current source 15 from the voltage input to the inverting input terminal 13a. A voltage higher by the offset voltage Vos is output as the reference voltage Vref. Here, assuming that the resistance value of the resistor 14 is Rref and the current value of the constant current source 15 is Iref, the offset voltage Vos is Iref × Rref.
The comparator 16 operates so that the output becomes H level (V DD ) or L level (GND) depending on the voltage relationship between the two input signals. For example, in FIG. 5, when the potential Va of the output terminal 4b of the amplifier 4 is Va> Vref, the output becomes H level, and when Va <Vref, the output becomes L level.
[0004]
The operation of the light receiving IC having the above configuration will be described. When there is no light input to the photodiode 3, the photocurrent Ipd does not flow, and a potential corresponding to the current supplied from the constant current source 8 is generated at the gate of the first-stage MOS transistor 5. Further, a potential corresponding to the current supplied from the constant current source 9 is generated at the gate of the MOS transistor 6 in the next stage. The same applies to the next stage. Since the MOS transistors 5, 6, and 7 and the constant current sources 8, 9, and 10 have the same shape and the same size, the potential generated at each gate is the same. . That is, the output terminal 4b and the input end 4a of the amplifier 4 is the same electric potential V 0. When the potential Va = V 0 at the output terminal 4 b of the amplifier 4 is output to the comparator 16, the comparator 16 compares the potential Va with the reference voltage Vref from the reference voltage circuit 12. Since it is higher by Vos, Va <Vref, and the output becomes L level.
[0005]
When light is input to the photodiode 3, a photocurrent Ipd corresponding to the amount of light is generated, and the photocurrent Ipd flows through the feedback resistor 11 from the output terminal 4b of the amplifier 4 to the input terminal 4a. The potential of each part of the MOS transistors 5, 6, 7 is such that the gate potential of the MOS transistor 5 drops below the potential V 0 , the drain potential of the MOS transistor 5 = the gate potential of the MOS transistor 6 rises above the potential V 0 , the gate potential of the drain potential = MOS transistor 7 is lowered from the potential V 0, the drain potential of the MOS transistor 7 is raised from the potential V 0. The drop and rise of this potential are sequentially amplified as the stage proceeds, and as a result, the photocurrent Ipd is converted into a voltage Vr = Ipd × Rf (Rf: resistance value of the feedback resistor 11) generated at both ends of the feedback resistor 11. is, the potential Va of the output terminal 4b becomes Va = V 0 + Vr. When the potential Va is output from the output terminal 4b of the amplifier 4 to the comparator 16, the comparator 16 compares the potential Va with the reference voltage Vref from the reference voltage circuit 12, and the light input to the photodiode 3 becomes a certain value. If it is equal to or higher than Va, Va> Vref, and the output of the comparator 16 becomes H level. If the light input to the photodiode 3 is equal to or lower than a certain level, Va <Vref, and it is assumed that no signal is input, and the output of the comparator 16 is at the same L level as when there is no light input. It becomes.
[0006]
The operation of the light receiving IC having the configuration of FIG. 5 will be described with reference to the waveform diagram of FIG. First, as shown in FIG. 6A, a photocurrent corresponding to the light input level to the photodiode 3 is generated. The photocurrent when the light input level is low is I1, and the photocurrent when the light input level is higher is I2. On the other hand, the potential of the input end 4a of the amplifier 4 shown in FIG. 6 (b), when the photocurrent Ipd does not flow is potential V 0 which, the light current Ipd is slightly drops from potential V 0 which flows, light since even when the current Ipd increases an output voltage of the amplifier 4 (1 / amplification degree), drop from potential V 0 which is a small, strictly light than the potential of the input end 4a of the case of the optical current I1 Although the potential of the input terminal 4a at the time of the current I2 is slightly lower, it is shown as having substantially the same magnitude ignoring the minute difference. Therefore, as shown in FIG. 6B, the reference voltage Vref is the reference voltage Vref (= Vo + Vos) when the photocurrent Ipd does not flow by the reference voltage circuit 12, and the reference voltage Vref of the amplifier 4 when the photocurrent Ipd flows. The reference voltage Vref (I1) when the photocurrent I1 flows and the reference voltage Vref (I2) when the I2 flows also become the voltage Vref of substantially the same magnitude. As shown in FIG. 6C, the output potential Va of the amplifier 4 becomes Va (I1) when the photocurrent is I1, Va (I2) when the photocurrent is I2, and Va (I1) ≦ in accordance with the magnitude of the photocurrent. Va (I2). FIG. 6C shows the relationship between the reference voltages Vref (I1) and Vref (I2) and the output potentials Va (I1) and Va (I2) of the amplifier 4. The reference voltage Vref and the potential Va are compared by the comparator 16, and if the light input to the photodiode 3 is equal to or higher than a certain level, Va> Vref, and the output of the comparator 16 becomes H level. If the light input to the photodiode 3 is equal to or lower than a certain level, Va <Vref, it is assumed that no signal is input, and the output of the comparator 16 becomes L level. Then, an output waveform of the comparator 16 as shown in FIG.
[0007]
When an IC coupler is configured using the light receiving IC shown in FIG. 5, for example, when an H level signal is supplied to the light emitting element as a binary signal from the IC logic element, the signal is transmitted from the light emitting element to the light receiving IC by light. , An L level or H level signal corresponding to the logic is output from the light receiving IC. When an L-level signal is supplied to the light-emitting element, no light is output from the light-emitting element, and no light is input to the light-receiving IC, so that an H-level signal is supplied from the light-receiving IC to the light-emitting element. Outputs the opposite level. In this way, the binary signal from the IC logic element is transmitted with the input and output electrically insulated.
[0008]
Incidentally, the light receiving IC shown in FIG. 5 has a problem that the delay time varies depending on the magnitude of the photocurrent Ipd, and the delay time of the output of the comparator 16 increases as the photocurrent Ipd increases. This will be described with reference to FIG.
As described above, when the photocurrents are different (I1, I2) as shown in FIG. 6A, the voltages generated by the amplifier 4 have different voltage values (Va (I1), Va) as shown in FIG. Along with (I2)), the rise time and the fall time also differ. This is due to the frequency characteristics of the amplifier 4, the capacitance of the photodiode (light receiving element) 3, and the like. The larger the photocurrent, the longer the rise time and fall time tend to be. On the other hand, the reference voltage Vref also tends to decrease as the photocurrent increases, but hardly changes because it is (1 / amplification degree) of the output voltage of the amplifier 4. Accordingly, as shown in FIG. 6D, the output of the comparator 16 is delayed more than the photocurrent (tpLH, tpHL), and furthermore, the rise delay time (tpLH) is almost reduced due to the difference in the magnitude of the photocurrent. Although there is no difference, the fall delay time (tpHL) increases as the photocurrent increases (tpHL (I1) <tpHL (I2)).
That is, in addition to the problem of the delay time (tpLH, tpHL) with respect to the photocurrent, the time ratio (Duty ratio) between the H level and the L level of the output changes depending on the magnitude of the photocurrent. In such a case, there is a possibility of adverse effects such as malfunction.
[0009]
As a method for improving this, as disclosed in Patent Document 1, there is a method in which a new reference voltage Vref is created by resistance division of the reference voltage Vref and the output of the amplifier 4 and input to the comparator 16. is there. This will be described with reference to FIGS.
In FIG. 7, the light receiving element 3, the amplifier 4, the reference voltage circuit 12, and the comparator 16 are the same as those in FIG. 5, but the reference voltage Vref input to the comparator 16 is used as the reference voltage circuit 12 and the amplifier 4. The output voltage is divided by a resistor 17 and a resistor 18, and the other end of a capacitor 20 having one end grounded is connected to a voltage dividing point 19, and the voltage at the voltage dividing point 19 is used as a reference voltage Vref. With this circuit configuration, when the output Va of the amplifier 4 rises, the reference voltage Vref is lower than the output of the reference voltage circuit according to the voltage dividing ratio, as shown in FIG. 8B. When the output Va of the amplifier 4 falls, the reference voltage Vref becomes higher than the output of the reference voltage circuit in accordance with the voltage dividing ratio. Therefore, the output of the comparator 16 switches immediately after the rising and falling of the output Va of the amplifier 4. The delay time with respect to the photocurrent Ipd is improved.
[0010]
[Patent Document 1]
Patent No. 3121339 (pages 3-6)
[0011]
[Problems to be solved by the invention]
However, in the circuit of FIG. 7, since the resistances 17 and 18 are usually high resistances, they are susceptible to noise and the like, and there is a problem that a malfunction occurs in the comparator 16 and a jitter occurs in an output of the comparator 16. Since the reference voltage Vref is generated by dividing the output voltage of the reference voltage circuit 12 and the output voltage of the amplifier 4 by the resistors 17 and 18, if the divided reference voltage Vref is too low, the noise of the output of the amplifier 4 causes the comparator 16. In such a case, a malfunction may occur, and the output of the reference voltage circuit 12 needs to be set higher than in the prior art. For example, the voltage dividing ratio between the resistor 17 and the resistor 18 is set to 9: 1, and the reference voltage at the time of rising of the output of the amplifier 4 is the same as the conventional non-divided reference voltage Vref (= Vo + Vos) in FIG. , The reference voltage circuit needs to be 10 times the conventional reference voltage Vref. However, when the output of the reference voltage circuit 12 is set to be higher than the conventional one, the output Va of the amplifier 4 when the photocurrent is small is always smaller than the reference voltage Vref after the voltage division, and the output of the comparator 16 may not be switched. There is a problem that there is.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a photocurrent / voltage conversion circuit that supplies a reference voltage Vref with a low impedance and a stable voltage and improves the response speed to light input of a light receiving element. .
[0012]
[Means for Solving the Problems]
A photocurrent / voltage conversion circuit according to the present invention includes an amplifier for converting a photocurrent generated by a light receiving element into a voltage, a reference voltage circuit for generating a reference voltage, and a binary signal comparing the output voltage of the amplifier with the reference voltage. And a comparator that outputs the output of the amplifier. The amplifier is composed of a plurality of amplifier stages, the input of the first stage of the amplifier and the output of the amplifier stage before the output stage connected to the comparator. Wherein two different signals are input to the reference voltage circuit, so that the output of the reference voltage circuit and the output of the amplifier have the same phase at the input of the comparator.
Further, the photocurrent / voltage conversion circuit of the present invention includes an amplifier in which a plurality of amplification stages are DC-coupled and converts a photocurrent generated by a light receiving element into a voltage, and compares an output voltage of the amplifier with a reference voltage to convert a binary signal. A photocurrent-to-voltage converter circuit, comprising: a comparator that outputs the reference voltage; and a reference voltage circuit that generates a voltage according to the photocurrent as a reference voltage by adding an offset voltage that is a reference voltage when there is no photocurrent. The reference voltage circuit receives two different input signals from among the input signals to the amplification stage from the first stage of the amplification stage to the output stage of the output voltage of the amplifier, and outputs the same in phase with the output voltage of the amplifier. Or an inverting amplifier or a non-inverting amplifier.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a light receiving IC according to a first embodiment of the present invention will be described with reference to FIG. Note that the same components as those in FIG. 5 are denoted by the same reference numerals. In the figure, 3 is a photodiode as a light receiving element, 4 is an amplifier, 32 is a reference voltage circuit, 16 is a comparator, and the photodiode 3 has an anode grounded and a cathode connected to the input terminal 4a of the amplifier 4. . In the amplifier 4, a feedback resistor 11 is connected between the input terminal 4 a and the output terminal 4 b, and the output terminal 4 b is connected to one of two inputs of the comparator 16. The other input terminal of the comparator 16 is connected to an output terminal of a reference voltage circuit 32 that generates a reference voltage Vref serving as a threshold voltage of the comparator 16.
The amplifier 4 has a source of the Nch type MOS transistor 5 grounded, a constant current source 8 connected between the drain and the power supply voltage terminal VDD , and a connection point between the drain and the constant current source 8 connected to the input terminal to the next stage. It becomes. Hereinafter, a plurality of (three) amplification stages are DC-coupled in the same configuration by the Nch-type MOS transistor 6, the constant current source 9, the Nch-type MOS transistor 7, and the constant current source 10, and the input terminal of the first stage is the input terminal of the amplifier 4. The output terminal of the last stage is the output terminal 4b of the amplifier 4. Incidentally, the MOS transistors 5, 6, 7 and the constant current sources 8, 9, 10 are constituted by elements having the same shape and the same size, respectively.
The reference voltage circuit 32 includes an operational amplifier 13, a non-inverting input terminal 13 b thereof connected to an input terminal 4 a of the amplifier 4, an output terminal of the operational amplifier 13 connected to one end of a first resistor 14, The other end is grounded via the constant current source 15 and one end of the second resistor 21 is connected. The other end of the second resistor is connected to the inverting input terminal of the operational amplifier 13 and the other end of the third resistor 22 is connected. One end is connected.
The difference from the light receiving IC shown in FIG. 5 is that the inverting input terminal of the operational amplifier 13 is connected from the third-stage input terminal (= second-stage output terminal) 4c of the amplifier 4 through the third resistor 22, and the inverting input terminal is connected to the inverting input terminal. The point is that the second resistor 21 is connected between the end and the constant current source 15.
[0014]
The operation of the light receiving IC having the configuration shown in FIG. 1 will be described with reference to the waveform diagram of FIG.
First, as shown in FIG. 2A, a photocurrent corresponding to the light input level to the photodiode 3 is generated. The photocurrent when the light input level is low is I1, and the photocurrent when the light input level is higher is I2. On the other hand, the potential of the input end 4a of the amplifier 4 shown in FIG. 2 (b), when the photocurrent Ipd does not flow is potential V 0 which, the light current Ipd is slightly drops from potential V 0 which flows, light since even when the current Ipd increases an output voltage of the amplifier 4 (1 / amplification degree), drop from potential V 0 which is a small, strictly light than the potential of the input end 4a of the case of the optical current I1 Although the potential of the input terminal 4a at the time of the current I2 is slightly lower, it is shown as having substantially the same magnitude ignoring the minute difference. However, since the potential of the input terminal 4c in the third stage of the amplifier 4 shown in FIG. 2B is sequentially amplified as the potential of the input terminal 4a follows the stages, the input when the photocurrents I1 and I2 flow is input. The minute potential difference at the end 4a appears as a difference that cannot be ignored at the input end 4c. That is, the voltage is lower than the voltage Vo when the photocurrent is zero, and becomes a voltage corresponding to the photocurrent. The potential at the input terminal 4c when the photocurrent is I2 is higher than the potential at the input terminal 4c when the photocurrent is I1. Lower. Therefore, this voltage is input to the inverting input terminal 13a of the operational amplifier 13 through the resistor 22, and the voltage of the input terminal 4a of the amplifier 4 is input to the other non-inverting input terminal 13b, and is inverted and amplified at an amplification degree described later. At the same time, a voltage higher by the offset voltage Vos generated by the resistor 14 and the constant current source 15 becomes an output of the reference voltage circuit 32, and has a reference voltage waveform such as Vref (I1) ≦ Vref (I2) as shown in FIG. . Also, as shown in FIG. 2C, the output potential Va of the amplifier 4 becomes Va (I1) when the photocurrent is I1, Va (I2) when the photocurrent is I2, and Va (I1) ≦ Va (I2). FIG. 2C shows the relationship between the reference voltages Vref (I1) and Vref (I2) and the output potentials Va (I1) and Va (I2) of the amplifier 4. The reference voltage Vref and the potential Va are compared by the comparator 16, and if the light input to the photodiode 3 is equal to or higher than a certain level, Va> Vref, and the output of the comparator 16 becomes H level. If the light input to the photodiode 3 is equal to or lower than a certain level, Va <Vref, it is assumed that no signal is input, and the output of the comparator 16 becomes L level. Then, an output waveform of the comparator 16 as shown in FIG. As a result, the output of the comparator 16 switches because the reference voltage Vref and the potential Va intersect immediately after the rise and fall of the output Va of the amplifier 4 generated by the photocurrent, and the delay time (tpLH, tpHL) and the delay times (tpHL (I1), tpHL (I2)) caused by the magnitudes of the photocurrents (I1, I2) are reduced.
Here, the operation of the reference voltage circuit 32 will be described in detail. In FIG. 5, in the related art, only the role of generating the offset voltage Vos is provided. , The second resistor 21 and the third resistor 22 also serve as an inverting amplifier having an amplification degree determined by the resistance values. That is, assuming that the resistance value of the second resistor 21 is R21 and the resistance value of the third resistor 22 is R22, the amplification of the reference voltage circuit 32 is (-(R14 + R21) / R22). In order for the reference voltage Vref to cross the output potential Va of the amplifier 4 immediately after its fall, the reference voltage Vref needs to be lower than the output potential Va of the amplifier 4. Therefore, the amplification of the reference voltage circuit 32 is smaller than the amplification of the third amplification stage including the MOS transistor 7 and the constant current source 10 between the output terminal 4b and the input terminal 4c of the amplifier 4. is necessary.
[0015]
As described above, the reference voltage Vref is reduced without using the voltage dividing resistors 17 and 18 as in the circuit of FIG. 7 which is susceptible to noise or the like and causes a malfunction in the comparator 16 and a jitter in its output. It can be supplied with a low impedance and a stable voltage, and the delay time with respect to the light input of the light receiving element and the change of the delay time due to the magnitude of the photocurrent can be reduced.
[0016]
Next, a light receiving IC according to a second embodiment of the present invention will be described with reference to FIG. The same components as those in FIG. 1 are denoted by the same reference numerals. In the figure, reference numeral 3 denotes a photodiode as a light receiving element, whose anode is grounded and whose cathode is connected to the input terminal 4a of the amplifier 4. In the amplifier 4, a feedback resistor 11 is connected between the input terminal 4 a and the output terminal 4 b, and the output terminal 4 b is connected to one of two inputs of the comparator 16. The other input terminal of the comparator 16 is connected to an output terminal of a reference voltage circuit 42 that generates a reference voltage Vref serving as a threshold voltage of the comparator 16.
The amplifier 4 has a source of the Nch type MOS transistor 5 grounded, a constant current source 8 connected between the drain and the power supply voltage terminal VDD , and a connection point between the drain and the constant current source 8 connected to the input terminal to the next stage. It becomes. Hereinafter, a plurality of (three) amplification stages are DC-coupled in the same configuration by the Nch-type MOS transistor 6, the constant current source 9, the Nch-type MOS transistor 7, and the constant current source 10, and the input terminal of the first stage is the input terminal of the amplifier 4. The output terminal of the last stage is the output terminal 4b of the amplifier 4. Incidentally, the MOS transistors 5, 6, 7 and the constant current sources 8, 9, 10 are constituted by elements having the same shape and the same size, respectively.
The reference voltage circuit 42 includes an operational amplifier 13, a non-inverting input terminal 13 b of which is connected to a second-stage input terminal (first-stage output terminal) 4 d of the amplifier 4, and a first resistor 14 connected to an output terminal of the operational amplifier 13. , One end of the first resistor 14 is grounded via the constant current source 15, one end of the second resistor 21 is connected, and the other end of the second resistor 21 is an inversion of the operational amplifier 13. The third resistor 23 is connected to the input terminal 13a and one end of the third resistor 23 is connected to the input terminal 13a.
1 in that the inverting input terminal 13a of the operational amplifier 13 is connected from the input terminal 4a of the amplifier 4 through the resistor 23, and the other non-inverting input terminal 13b is connected to the MOS transistor 5 of the amplifier 4 and the constant current. This is a point connected to the second-stage input terminal (first-stage output terminal) 4d formed with the source 8.
With this connection, the reference voltage circuit 42 functions as a non-inverting amplifier having an amplification degree determined by the resistance values of the first resistor 14, the second resistor 21, and the third resistor 23, in addition to the role of generating the offset voltage Vos. Therefore, the same output as that of FIG. 2C is obtained as the reference voltage Vref. Assuming that the resistance value of the third resistor 23 is R23, the amplification of the reference voltage circuit 42 in this case is (1+ (R14 + R21) / R23). As with the reference voltage circuit 32 of FIG. 1, in order for the reference voltage Vref to cross the output potential Va of the amplifier 4 immediately after its fall, the reference voltage Vref needs to be lower than the output potential Va of the amplifier 4. Accordingly, the amplification degree of the reference voltage circuit 42 is also determined by the amplification degree of the second amplification stage composed of the MOS transistor 6 and the constant current source 9 between the output terminal 4b and the input terminal 4d of the amplifier 4, It is necessary that the amplification factor is smaller than the amplification factor obtained by multiplying the amplification factor of the third amplification stage composed of the transistor 7 and the constant current source 10.
[0017]
The operation is the same as that of the light receiving IC of FIG. 1, and the description thereof is omitted. As for the effect, in FIG. 1, since a voltage is directly taken out from the input terminal 4a of the amplifier 4 and connected to the non-inverting input terminal 13b of the operational amplifier 13, the input impedance of the amplifier 4 is reduced and the frequency characteristic tends to be deteriorated. However, in FIG. 3, since the output is taken out from the input terminal 4a of the amplifier 4 via the resistor 23, the decrease in the input impedance of the amplifier 4 is suppressed by the resistance 23, and the deterioration of the frequency characteristic is also suppressed.
[0018]
In the first and second embodiments, the amplifier 4 is composed of three amplification stages. However, two or four or more amplification stages can be similarly configured.
In addition, the description has been given by using the light receiving IC as the photocurrent / voltage conversion circuit in the IC coupler. However, the present invention is not limited to this. For example, a receiving side circuit of infrared communication (IrDA) used for communication between personal computers and the like. , Can be widely used in a circuit for converting an optical signal into an L level and H level binary signal.
[0019]
【The invention's effect】
As described above, according to the photocurrent / voltage conversion circuit of the present invention, when the amplifier for converting the photocurrent generated by the light receiving element into a voltage is configured by a plurality of amplification stages, Connecting two different signals, excluding the comparator input, of the output signals of each stage including the first stage input signal to the input of the reference voltage circuit and inverting or non-inverting amplifying to generate the reference voltage Vref. As a result, the reference voltage Vref crosses the amplifier output Va immediately after its rise or fall, so that the response speed is improved and the change in the response speed due to the magnitude of the photocurrent is reduced.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a light receiving IC according to a first embodiment of the present invention.
FIG. 2 is a waveform chart for explaining the operation of the light receiving IC shown in FIG.
FIG. 3 is a circuit diagram of a light receiving IC according to a second embodiment of the present invention.
FIG. 4 is a diagram showing a basic configuration of a photocoupler.
FIG. 5 is a circuit diagram of a conventional light receiving IC.
FIG. 6 is a waveform chart for explaining the operation of the light receiving IC shown in FIG.
FIG. 7 is a circuit diagram showing another example of a conventional light receiving IC.
FIG. 8 is a waveform chart illustrating the operation of the light receiving IC shown in FIG.
[Explanation of symbols]
3 Light receiving element 4 Amplifier 5, 6, 7 Nch type MOS transistor 8, 9, 10, 15 Constant current source 11 Feedback resistance 14, 21, 22, 23 Resistance 16 Comparator 32, 42 Reference voltage circuit

Claims (9)

受光素子により発生する光電流を電圧に変換する増幅器と、基準電圧を生成する基準電圧回路と、増幅器の出力電圧と基準電圧とを比較し2値信号を出力する比較器とを具備した光電流・電圧変換回路において、前記増幅器は複数の増幅段から構成され、増幅器の初段入力と、前記比較器に接続される出力段より前段の増幅段の出力のうち、異なる2信号を前記基準電圧回路に入力し、前記基準電圧回路の出力と前記増幅器の出力が前記比較器入力において同相になるようにしたことを特徴とする光電流・電圧変換回路。A photocurrent comprising an amplifier for converting a photocurrent generated by a light receiving element into a voltage, a reference voltage circuit for generating a reference voltage, and a comparator for comparing an output voltage of the amplifier with the reference voltage and outputting a binary signal. In the voltage conversion circuit, the amplifier is composed of a plurality of amplification stages, and outputs two different signals of the input of the first stage of the amplifier and the output of the amplification stage before the output stage connected to the comparator. Wherein the output of the reference voltage circuit and the output of the amplifier are in phase at the input of the comparator. 前記増幅器を構成する複数の増幅段がソース接地したMOSトランジスタからなることを特徴とする特許請求の範囲第1項記載の光電流・電圧変換回路。2. The photocurrent-to-voltage conversion circuit according to claim 1, wherein the plurality of amplification stages constituting the amplifier include MOS transistors whose sources are grounded. 前記基準電圧回路は、オペアンプの出力端と反転入力端を直列接続した第1、第2の抵抗で接続するとともに、第1、第2の抵抗の接続点を定電流源を介して接地し、増幅器から供給される2信号のうち、一方の信号を第3の抵抗を介して反転入力端に、他方の信号を非反転入力端にそれぞれ接続し、オペアンプに接続された第1、第2、第3の各抵抗値によって決定される増幅度を、前記比較器に入力される前記増幅器の出力と前記増幅器から供給される前記2信号の出力のうち前記増幅器の出力に近い出力との間の増幅度より小さく設定したことを特徴とする特許請求の範囲第1項記載の光電流・電圧変換回路。The reference voltage circuit is connected with first and second resistors connected in series between an output terminal and an inverting input terminal of an operational amplifier, and a connection point of the first and second resistors is grounded via a constant current source; Of the two signals supplied from the amplifier, one signal is connected to an inverting input terminal via a third resistor, and the other signal is connected to a non-inverting input terminal, and the first, second, and third signals are connected to an operational amplifier. The amplification degree determined by each of the third resistance values is set between the output of the amplifier input to the comparator and the output of the two signals supplied from the amplifier, which is closer to the output of the amplifier. 2. The photocurrent / voltage conversion circuit according to claim 1, wherein the photocurrent / voltage conversion circuit is set smaller than the amplification degree. 前記基準電圧回路は、増幅器から供給される2信号のうち、一方の信号の電圧に、第1の抵抗の抵抗値と定電流源の定電流値で決定されるオフセット電圧を加算した電圧を出力することを特徴とする特許請求の範囲第3項記載の光電流・電圧変換回路。The reference voltage circuit outputs a voltage obtained by adding an offset voltage determined by the resistance value of the first resistor and the constant current value of the constant current source to the voltage of one of the two signals supplied from the amplifier. 4. The photocurrent / voltage conversion circuit according to claim 3, wherein: 複数の増幅段が直流結合され受光素子により発生する光電流を電圧に変換する増幅器と、増幅器の出力電圧を基準電圧とで比較し2値信号を出力する比較器と、基準電圧として光電流に応じた電圧に光電流が無いときの基準電圧となるオフセット電圧を加算して生成する基準電圧回路とを具備した光電流・電圧変換回路において、前記基準電圧回路は、前記増幅段の初段から前記増幅器の出力電圧の出力段までの増幅段への入力信号のうち、異なる2つの入力信号が2入力され、前記増幅器の出力電圧と同相で出力される反転増幅器、或いは非反転増幅器であることを特徴とする光電流・電圧変換回路。An amplifier that converts a photocurrent generated by the light receiving element into a voltage by a plurality of amplification stages being DC-coupled, a comparator that compares an output voltage of the amplifier with a reference voltage and outputs a binary signal, and a photocurrent as a reference voltage A reference voltage circuit that generates by adding an offset voltage that is a reference voltage when there is no photocurrent to the corresponding voltage, wherein the reference voltage circuit is configured to start from the first stage of the amplification stage. Of the input signals to the amplification stage up to the output stage of the output voltage of the amplifier, two different input signals are input as two, and it is an inverting amplifier or a non-inverting amplifier that is output in the same phase as the output voltage of the amplifier. Characteristic photocurrent / voltage conversion circuit. 前記基準電圧回路は、前記反転増幅器を構成し、オペアンプと、前記オフセット電圧を生成するオフセット手段と、前記反転増幅器の増幅度を前記入力信号が入力される後段側の増幅段と前記出力段間で規制される増幅度より低く規制する抵抗手段とを有し、前記後段側の増幅段への入力信号が前記増幅器の出力電圧と逆相であり、前記後段側の増幅段への入力信号が前記抵抗手段を介して前記オペアンプの反転入力端に入力されるとともに、前記入力信号が入力される前段側の増幅段への入力信号が前記オペアンプの非反転入力端に入力され、前記後段側の増幅段への入力信号が前記反転増幅器の増幅度で増幅され、前記オフセット電圧が加算されて出力されることを特徴とする請求項5記載の光電流・電圧変換回路。The reference voltage circuit constitutes the inverting amplifier, and includes an operational amplifier, an offset unit for generating the offset voltage, and an amplification degree of the inverting amplifier between a later-stage amplification stage to which the input signal is input and the output stage. A resistance means for regulating the amplification degree lower than the amplification degree regulated by the above, wherein the input signal to the subsequent amplification stage is in the opposite phase to the output voltage of the amplifier, and the input signal to the latter amplification stage is While being input to the inverting input terminal of the operational amplifier via the resistance means, the input signal to the preceding amplification stage to which the input signal is input is input to the non-inverting input terminal of the operational amplifier, and 6. The photocurrent / voltage conversion circuit according to claim 5, wherein an input signal to the amplification stage is amplified at an amplification degree of the inverting amplifier, and the offset voltage is added and output. 前記基準電圧回路は、前記非反転増幅器を構成し、オペアンプと、前記オフセット電圧を生成するオフセット手段と、前記非反転増幅器の増幅度を前記入力信号が入力される後段側の増幅段と前記出力段間で規制される増幅度より低く規制する抵抗手段とを有し、前記後段側の増幅段への入力信号が前記増幅器の出力電圧と同相であり、前記後段側の増幅段への入力信号が前記オペアンプの非反転入力端に入力されるとともに、前記入力信号が入力される前段側の増幅段への入力信号が前記抵抗手段を介して前記オペアンプの反転入力端に入力され、前記後段側の増幅段への入力信号が前記非反転増幅器の増幅度で増幅され、前記オフセット電圧が加算されて出力されることを特徴とする請求項5記載の光電流・電圧変換回路。The reference voltage circuit constitutes the non-inverting amplifier, and includes an operational amplifier, an offset unit for generating the offset voltage, an amplification degree of the non-inverting amplifier, a subsequent amplification stage to which the input signal is input, and the output stage. Resistance means for regulating the amplification degree lower than the amplification degree regulated between the stages, wherein the input signal to the latter amplification stage is in phase with the output voltage of the amplifier, and the input signal to the latter amplification stage is Is input to the non-inverting input terminal of the operational amplifier, and an input signal to the preceding amplification stage to which the input signal is input is input to the inverting input terminal of the operational amplifier via the resistor means, and 6. The photocurrent / voltage conversion circuit according to claim 5, wherein an input signal to the amplification stage is amplified by an amplification degree of the non-inverting amplifier, and the offset voltage is added and output. 前記オフセット手段は、オペアンプの出力端に第1の抵抗が接続され、第1の抵抗の他端と接地間に定電流源が接続され、第1の抵抗および定電流源の接続点がオペアンプの反転入力端に接続されて構成され、前記抵抗手段は、前記第1の抵抗および定電流源の接続点とオペアンプの反転入力端間に第2の抵抗が挿入接続され、前記後段側の増幅段の入力端とオペアンプの反転入力端間に第3の抵抗が接続され、前記第1抵抗とで構成されていることを特徴とする請求項6記載の光電流・電圧変換回路。The offset means includes a first resistor connected to the output terminal of the operational amplifier, a constant current source connected between the other end of the first resistor and the ground, and a connection point between the first resistor and the constant current source connected to the operational amplifier. A second resistor inserted and connected between a connection point between the first resistor and the constant current source and an inverting input terminal of the operational amplifier; 7. The photocurrent / voltage conversion circuit according to claim 6, wherein a third resistor is connected between the input terminal of the operational amplifier and the inverting input terminal of the operational amplifier, and is configured by the first resistor. 前記オフセット手段は、オペアンプの出力端に第1の抵抗が接続され、第1の抵抗の他端と接地間に定電流源が接続され、第1の抵抗および定電流源の接続点がオペアンプの反転入力端に接続されて構成され、前記抵抗手段は、前記第1の抵抗および定電流源の接続点とオペアンプの反転入力端間に第2の抵抗が挿入接続され、前記前段側の増幅段の入力端とオペアンプの反転入力端間に第3の抵抗が接続され、前記第1抵抗とで構成されていることを特徴とする請求項7記載の光電流・電圧変換回路。The offset means includes a first resistor connected to the output terminal of the operational amplifier, a constant current source connected between the other end of the first resistor and the ground, and a connection point between the first resistor and the constant current source connected to the operational amplifier. A second resistor inserted and connected between a connection point of the first resistor and the constant current source and an inverting input terminal of the operational amplifier; 8. The photocurrent / voltage conversion circuit according to claim 7, wherein a third resistor is connected between the input terminal of the operational amplifier and the inverting input terminal of the operational amplifier, and is configured by the first resistor.
JP2003104789A 2003-04-09 2003-04-09 Photocurrent/voltage conversion circuit Pending JP2004312486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104789A JP2004312486A (en) 2003-04-09 2003-04-09 Photocurrent/voltage conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104789A JP2004312486A (en) 2003-04-09 2003-04-09 Photocurrent/voltage conversion circuit

Publications (1)

Publication Number Publication Date
JP2004312486A true JP2004312486A (en) 2004-11-04

Family

ID=33467480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104789A Pending JP2004312486A (en) 2003-04-09 2003-04-09 Photocurrent/voltage conversion circuit

Country Status (1)

Country Link
JP (1) JP2004312486A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753846B2 (en) 2006-08-22 2010-07-13 Samsung Electronics Co., Ltd. Apparatus for measuring skin moisture content and it's operation method
US8273021B2 (en) 2006-08-18 2012-09-25 Samsung Electronics Co., Ltd. Apparatus, method and medium measuring skin moisture content
US8388534B2 (en) 2006-10-11 2013-03-05 Samsung Electronics Co., Ltd. Apparatus for providing skin care information by measuring skin moisture content and method and medium for the same
JP2013089999A (en) * 2011-10-13 2013-05-13 Hamamatsu Photonics Kk Optical receiving circuit
JP2021078115A (en) * 2019-11-04 2021-05-20 シェンチェン カーク テクノロジー カンパニー,リミテッド Nmos switch driving circuit and power supply device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273021B2 (en) 2006-08-18 2012-09-25 Samsung Electronics Co., Ltd. Apparatus, method and medium measuring skin moisture content
US7753846B2 (en) 2006-08-22 2010-07-13 Samsung Electronics Co., Ltd. Apparatus for measuring skin moisture content and it's operation method
US8388534B2 (en) 2006-10-11 2013-03-05 Samsung Electronics Co., Ltd. Apparatus for providing skin care information by measuring skin moisture content and method and medium for the same
JP2013089999A (en) * 2011-10-13 2013-05-13 Hamamatsu Photonics Kk Optical receiving circuit
JP2021078115A (en) * 2019-11-04 2021-05-20 シェンチェン カーク テクノロジー カンパニー,リミテッド Nmos switch driving circuit and power supply device
US11804831B2 (en) 2019-11-04 2023-10-31 Shenzhen Carku Technology Co., Limited NMOS switch driving circuit and power supply device

Similar Documents

Publication Publication Date Title
JP4324202B2 (en) A / D converter
JP2875922B2 (en) A / D converter
JP4779713B2 (en) Optical signal receiving circuit and optical signal receiving apparatus using the same
US7541844B2 (en) Current weighted voltage interpolation buffer
US20210159866A1 (en) Switched capacitor amplifier circuit, voltage amplification method, and infrared sensor device
JP2008167094A (en) Level conversion circuit
US7714264B2 (en) Semiconductor integrated circuit device
JP2004312486A (en) Photocurrent/voltage conversion circuit
JP4727187B2 (en) Photocurrent / voltage converter
JP2004194066A (en) Amplifier circuit, comparison circuit and a/d converter circuit
KR101070118B1 (en) Analog circuit with improved response speed feature
JP2007159020A (en) Current/voltage-converting circuit
JP2004260230A (en) Photoelectric current / voltage conversion circuit
ITVA20010048A1 (en) ANALOGUE INPUT CIRCUIT WITH COMMON MODE COMPATIBILITY TOWARDS BOTH POWER SUPPLIES
JP2005072925A (en) Photoelectric current and voltage converting circuit
KR100859780B1 (en) Current to voltage converter and current to voltage conversion method
JP2005072924A (en) Photoelectric current and voltage converting circuit
JP2008211808A (en) Reference voltage generation circuit and voltage amplifier using same
US20080315951A1 (en) Class ab differential amplifier with output stage common mode feedback
JP2005217468A (en) Photocurrent/voltage conversion circuit
JP2004179998A (en) Preamplifier
JP4079621B2 (en) Photocurrent / voltage converter
JP4530363B2 (en) Photocurrent / voltage converter
US6650184B2 (en) High gain amplifier circuits and their applications
CN108306642B (en) Low power compact voltage sensing circuit