JP2003138163A - Photocatalyst coating composition and method for producing the same and photocatalyst using the same - Google Patents

Photocatalyst coating composition and method for producing the same and photocatalyst using the same

Info

Publication number
JP2003138163A
JP2003138163A JP2001336243A JP2001336243A JP2003138163A JP 2003138163 A JP2003138163 A JP 2003138163A JP 2001336243 A JP2001336243 A JP 2001336243A JP 2001336243 A JP2001336243 A JP 2001336243A JP 2003138163 A JP2003138163 A JP 2003138163A
Authority
JP
Japan
Prior art keywords
silica sol
coating composition
photocatalyst
sol
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001336243A
Other languages
Japanese (ja)
Inventor
Tokumitsu Kurihara
得光 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2001336243A priority Critical patent/JP2003138163A/en
Publication of JP2003138163A publication Critical patent/JP2003138163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst coating composition comprising silica sol and titania sol, produced by a specified means, causing no corrosion of production equipment, having hydrophilicity just after film formation, having high adhesive strength to a substrate. SOLUTION: This coating composition is obtained by mixing the silica sol adjusted to pH 8-12 with an amine and the titania sol adjusted to pH 8-12 with an amine and then diluting the mixture with solvent such as isopropyl alcohol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒活性を有す
る物質を任意の基体上に直接、またはプライマーを介し
て間接的に膜状に固定するための光触媒コーティング用
組成物等に関する。
TECHNICAL FIELD The present invention relates to a photocatalyst coating composition and the like for fixing a substance having a photocatalytic activity directly on an arbitrary substrate or indirectly through a primer in a film form.

【0002】[0002]

【従来の技術】光触媒の代表的なものとして酸化チタン
があるが、その使用勝手から、粉末単体では使いにく
く、何らかの基体上に担持、固定することが必要であ
る。これを固定するバインダーとしては、シリカ、アル
ミナ等のゾル、アモルファス酸化チタンなどの無機物、
弗素、シリコーン等の高耐候性樹脂などが使用されてい
るが、最近では光触媒膜の高い親水性を利用して汚れの
付着を防ぐ用途が注目され、その親水性を維持するため
にはシリカの存在が欠かせないことから、シリカゾルを
バインダーとすることが主流となっている。
2. Description of the Related Art Titanium oxide is a typical photocatalyst. However, it is difficult to use a powder alone as a photocatalyst, and it is necessary to support and fix it on some kind of substrate. As a binder for fixing this, silica, a sol such as alumina, an inorganic substance such as amorphous titanium oxide,
Highly weather-resistant resins such as fluorine and silicone are used, but recently, the use of the photocatalyst film's high hydrophilicity to prevent the adhesion of dirt has attracted attention, and silica is used to maintain its hydrophilicity. Since the presence of silica sol is essential, the use of silica sol as a binder is the mainstream.

【0003】例えば、アルコキシシランに酸を添加して
加水分解させて得たシリカゾルをバインダーとして、こ
れにチタニアゾルと混合したコーティング用組成物が多
く提案されており、更にコーティング膜の密着性を高め
るためにシランカップリング剤等を添加したものが提案
されている。しかしながら、前記の酸性のコーティング
用組成物では使用装置が腐食する恐れがあり、また、基
体上に成膜後、膜内に残存する酸が基体やプライマーを
劣化させることもある。
For example, many coating compositions have been proposed in which a silica sol obtained by adding an acid to an alkoxysilane and hydrolyzing it is used as a binder and mixed with a titania sol to further improve the adhesion of the coating film. It has been proposed to add a silane coupling agent or the like to. However, the above acidic coating composition may corrode the equipment used, and the acid remaining in the film after forming a film on the substrate may deteriorate the substrate and the primer.

【0004】また、珪酸ソーダ、珪酸リチウムなどのア
ルカリ金属の珪酸塩を使用したシリカのバインダーの例
はあるが、光触媒の場合、粒子表面にアルカリ金属が付
着して活性を低下させるとされ、また、アルカリ分が酸
の場合と同様に使用装置を腐食させる恐れがあり好まし
くない。
Although there are examples of silica binders using alkali metal silicates such as sodium silicate and lithium silicate, in the case of photocatalysts, it is said that the alkali metal adheres to the particle surface to reduce the activity. As with the case where the alkali content is an acid, it may corrode the equipment used, which is not preferable.

【0005】アルカリ性のシリカゾルを使用した別の例
としては、アルコキシシランを塩基性触媒存在下で加水
分解して得たシリカゾルを、光触媒に分散させた光触媒
組成物(特開平10−85599号公報)がある。しか
しながら、シリカゾルをアルカリ性で保存するために
は、多量の水を共存させることが必要で、水が不十分な
場合、ゲル化が極めて急速に進行する。従ってアルカリ
性での加水分解では、水で希釈されてアルカリイオン濃
度が下がるため、アルカリイオンを過剰に添加する必要
があって不経済な上に、加水分解速度も低く、得られる
ゾルの特性にも悪影響を及ぼす可能性が高い。
Another example of using an alkaline silica sol is a photocatalyst composition in which a silica sol obtained by hydrolyzing an alkoxysilane in the presence of a basic catalyst is dispersed in a photocatalyst (JP-A-10-85599). There is. However, in order to store the silica sol in an alkaline state, it is necessary to allow a large amount of water to coexist, and when water is insufficient, gelation proceeds extremely rapidly. Therefore, in alkaline hydrolysis, since the concentration of alkali ions is reduced by being diluted with water, it is uneconomical to add an excess of alkali ions, and the hydrolysis rate is low, and the characteristics of the obtained sol are also low. It is likely to have an adverse effect.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来問題の
あった光触媒コーティング用組成物を改良するために、
特定のシリカゾル及びチタニアゾルを含有した光触媒コ
ーティング用組成物等を提供することを目的とする。
SUMMARY OF THE INVENTION In order to improve the photocatalyst coating composition, which has been problematic in the prior art,
It is an object to provide a photocatalyst coating composition containing a specific silica sol and titania sol.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究を重ねた結果、下記の特定の方法で
製造されたシリカゾル及びチタニアゾルを含有した光触
媒コーティング用組成物は、装置を腐食せず、成膜直後
に親水性を有し、基体に対する付着強度が強く、基体の
劣化も生じないことを見出し、本発明を完成させた。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors to achieve the above object, a composition for photocatalyst coating containing a silica sol and a titania sol produced by the following specific method was used as an apparatus. The present invention has been completed by discovering that it does not corrode, has hydrophilicity immediately after film formation, has high adhesion strength to a substrate, and does not cause deterioration of the substrate.

【0008】すなわち、本発明は、シリカゾル及びチタ
ニアゾルを含む光触媒コーティング用組成物であって、
該組成物がアミンを含有してpHが8〜12であること
を特徴とする光触媒コーティング用組成物に関する。こ
のようなpH8〜12のアルカリ性光触媒コーティング
用組成物は、典型的には、アミンを用いてpH8〜12
に調整されたシリカゾルと、アミン又はアンモニアを用
いてpH8〜12に調整されたチタニアゾルとを含有す
る組成物である。
That is, the present invention provides a photocatalyst coating composition containing silica sol and titania sol,
The present invention relates to a photocatalyst coating composition, which contains an amine and has a pH of 8 to 12. Such a pH 8-12 alkaline photocatalytic coating composition typically uses an amine to provide a pH of 8-12.
And a titania sol adjusted to pH 8 to 12 with amine or ammonia.

【0009】また、本発明は、前記シリカゾルが、アル
コキシシランを酸性領域で加水分解して得られたもので
あることを特徴とする光触媒コーティング用組成物に関
する。
The present invention also relates to a photocatalyst coating composition, wherein the silica sol is obtained by hydrolyzing an alkoxysilane in an acidic region.

【0010】また、本発明は、前記チタニアゾルが解膠
メタチタン酸を原料として得られたものであることを特
徴とする光触媒コーティング用組成物に関する。
The present invention also relates to a photocatalyst coating composition, wherein the titania sol is obtained from peptized metatitanic acid as a raw material.

【0011】本発明の光触媒コーティング用組成物の製
造方法は、使用されるシリカゾルのSiO2に対する質
量比で50〜500倍の水中に、アルコキシシランを酸
性領域で加水分解して得たシリカゾル及びアミンを添加
してpH8〜12のアルカリ性シリカゾルを生成し、チ
タニアゾルにアミン又はアンモニアを添加してpH8〜
12のアルカリ性チタニアゾルを生成し、そして、前記
アルカリ性シリカゾルと前記アルカリ性チタニアゾルと
を混合することを特徴とする。
The method for producing the photocatalyst coating composition of the present invention comprises a silica sol and an amine obtained by hydrolyzing an alkoxysilane in an acidic region in water having a mass ratio of silica sol to SiO 2 of 50 to 500 times. To produce an alkaline silica sol having a pH of 8 to 12, and adding amine or ammonia to the titania sol to give a pH of 8 to 12
Twelve alkaline titania sols are produced, and the alkaline silica sol and the alkaline titania sol are mixed.

【0012】本発明の光触媒体は、上記いずれかの構成
の光触媒コーティング用組成物、上記製造方法により得
られる光触媒コーティング用組成物をその基体上に塗布
されたことを特徴とする。
The photocatalyst body of the present invention is characterized in that the photocatalyst coating composition having any one of the above-mentioned constitutions and the photocatalyst coating composition obtained by the above-mentioned production method are coated on the substrate.

【0013】[0013]

【発明の実施の形態】シリカゾルは、代表的にはアルコ
キシシランを原料としたものを使用する。アルコキシシ
ランは、メチル基、エチル基、プロピル基を持ったもの
などが使用できるが、加水分解で生成するアルコール及
びアルコキシシラン自体の有害性、及び入手のし易さを
考慮した場合、テトラエトキシシランが特に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Silica sol is typically made of alkoxysilane as a raw material. As the alkoxysilane, those having a methyl group, an ethyl group or a propyl group can be used, but considering the harmfulness of the alcohol produced by hydrolysis and the alkoxysilane itself and the availability, tetraethoxysilane is used. Is particularly preferable.

【0014】アルコキシシランの加水分解は、アルコキ
シシランをエタノール、イソプロピルアルコール等の溶
剤で希釈し、酸溶液と混合してpH3以下の酸性領域で
行い、シリカゾルを得る。
Hydrolysis of the alkoxysilane is carried out by diluting the alkoxysilane with a solvent such as ethanol or isopropyl alcohol, mixing it with an acid solution, and conducting it in an acidic region of pH 3 or less to obtain a silica sol.

【0015】加水分解に使用する酸としてはpHを3以
下にして加水分解を速やかに進行させ、生成したシリカ
ゾルの安定性を保つものであれば、任意のものが使用で
きるが、最終的な塗膜にした場合、有機酸、硫酸は膜内
に残存し、初期の親水性やプライマーを劣化させる危険
があることから、硝酸、塩酸が好ましい。
As the acid used for the hydrolysis, any acid can be used as long as the pH is set to 3 or less to allow the hydrolysis to proceed rapidly and the stability of the produced silica sol can be maintained. In the case of forming a film, nitric acid and hydrochloric acid are preferable because organic acids and sulfuric acid remain in the film and there is a risk of degrading the initial hydrophilicity and the primer.

【0016】水がシリカゾルのSiO2に対し質量比で
50〜500倍の水中にシリカゾル及びアミンを添加し
てpHを8〜12、好ましくは9〜11に調整してアル
カリ性のシリカゾルを得る。
The pH of the silica sol is adjusted to 8 to 12, preferably 9 to 11 by adding silica sol and an amine in water whose mass ratio is 50 to 500 times that of SiO 2 in the silica sol to obtain an alkaline silica sol.

【0017】水がシリカゾルに対し、質量比で50倍未
満の場合はシリカゾルがゲル化しやすくなって好ましく
なく、また、500倍を超える場合は添加するアミンの
量が多くなるため好ましくない。
When the mass ratio of water to the silica sol is less than 50 times, the silica sol tends to gel, which is not preferable, and when it exceeds 500 times, the amount of amine to be added is unfavorably large.

【0018】アミンは、加水分解のために使用された酸
の中和と同時に、個々のシリカゾルの安定化に寄与す
る。加水分解のために使用された酸を中和し、更にアル
カリ性のシリカゾルが安定である領域までpHを調整す
るだけなら、アンモニア、及び水酸化ナトリウム、水酸
化カリウムなどのアルカリ性物質の添加が考えられる。
The amine contributes to the stabilization of the individual silica sols while at the same time neutralizing the acid used for hydrolysis. Addition of ammonia and alkaline substances such as sodium hydroxide and potassium hydroxide is conceivable if the acid used for hydrolysis is neutralized and the pH is adjusted to a region where the alkaline silica sol is stable. .

【0019】しかしながら、アンモニア水溶液は常温、
常圧下ではpH10付近が上限で、気散し易いため、加
水分解のために使用された酸の中和、チタニアゾルの分
散を助けるための添加としてであれば使用は可能である
が、コーティング用組成物としてのシリカゾルに対して
は、pHの安定域を外れてしまうおそれがある。これに
対して、アミンはシリカゾルのコロイド粒子表面に付い
て、シリカゾルを安定化する働きがあるが、アンモニア
ではこの効果を期待できず、アミンをアンモニアで代用
することはできない。
However, the aqueous ammonia solution is at room temperature,
Under normal pressure, the upper limit is around pH 10, which is easily vaporized. Therefore, it can be used as an additive for neutralizing the acid used for hydrolysis and assisting the dispersion of the titania sol. For silica sol as a substance, there is a possibility that it will be out of the stable pH range. On the other hand, amine has a function of stabilizing the silica sol by adhering to the surface of colloidal particles of silica sol, but this effect cannot be expected with ammonia, and amine cannot be substituted with ammonia.

【0020】また、水酸化ナトリウムや水酸化カリウム
を添加したコーティング用組成物では、塗布後の光触媒
膜中にナトリウムイオンやカリウムイオンが残存し、こ
れが光触媒表面を被覆して活性を低下させたり、基材、
その他塗膜周辺が汚染、腐蝕されるおそれがある。特に
ナトリウムなどでは塗膜を構成するシリカの結合を破壊
して、塗膜強度を低下させる可能性が高い。これに対
し、アミンはコーティング後の乾燥工程で気散し、塗膜
中には残存しないため、アルカリ金属イオンに見られる
害は生じない。
Further, in the coating composition to which sodium hydroxide or potassium hydroxide is added, sodium ions or potassium ions remain in the photocatalyst film after coating, which coats the photocatalyst surface and lowers the activity. Base material,
Other areas around the coating film may be contaminated or corroded. Especially with sodium or the like, there is a high possibility that the bond of silica constituting the coating film is broken and the coating film strength is lowered. On the other hand, the amine diffuses in the drying step after coating and does not remain in the coating film, so that the harm seen in alkali metal ions does not occur.

【0021】使用できるアミンの種類としては、水に対
する溶解性とアルカリとしての性質を示すものであれ
ば、メチル、エチル、プロピル、ブチル、アミル基など
を有する脂肪族アミンの何れでもよく、プロピルアミ
ン、ブチルアミン、アミルアミンが特に好ましい。ま
た、これらを混合使用しても良く、更にアニリンなど芳
香族アミンとの併用も可能である。
The amine that can be used may be any of aliphatic amines having a methyl, ethyl, propyl, butyl or amyl group, as long as it exhibits solubility in water and properties as an alkali. , Butylamine and amylamine are particularly preferred. Further, these may be mixed and used, and may be used in combination with an aromatic amine such as aniline.

【0022】アミンによるpHの調整は8〜12、好ま
しくは9〜11である。pH8未満ではシリカゾルのゲ
ル化が早く、またpH12を超えると過剰のアミンを多
く添加する必要があることから好ましくない。
The pH adjustment with amine is 8-12, preferably 9-11. If the pH is less than 8, gelation of the silica sol is rapid, and if the pH exceeds 12, it is necessary to add a large amount of excess amine, which is not preferable.

【0023】チタニアゾルは、代表的には平均粒径10
〜100nmの酸化チタンの分散液を使用するが、塗膜
での高い透明性を得るためには、いったん塩酸、硝酸で
完全解膠させたメタチタン酸スラリーを使用することが
好ましい。解膠させたメタチタン酸は中和洗浄して酸を
除去し、アミン又はアンモニアの添加でアルカリ性とし
てホモジナイザーで分散させて使用する。
The titania sol typically has an average particle size of 10
A dispersion of titanium oxide having a thickness of -100 nm is used, but in order to obtain high transparency in the coating film, it is preferable to use a metatitanic acid slurry that has been completely peptized with hydrochloric acid or nitric acid. The deflocculated metatitanic acid is neutralized and washed to remove the acid, and is made alkaline by adding amine or ammonia, and is dispersed in a homogenizer before use.

【0024】チタニアゾルのスラリー濃度はTiO2
度が1〜50質量%、好ましくは10〜20質量%、p
Hが8〜12、好ましくは9〜11である。TiO2
度が1質量%未満の場合は、塗膜にしたときの十分な光
触媒活性が発現せず、50質量%を超えると、粘度が高
くなって扱いにくくなるので好ましくない。また、pH
が8未満では、チタニアゾルが凝集し粘度が高くなり、
12を超えると過剰のアミンを多く添加する必要がある
ことから好ましくない。
The titania sol has a TiO 2 concentration of 1 to 50% by mass, preferably 10 to 20% by mass, p
H is 8 to 12, preferably 9 to 11. When the TiO 2 concentration is less than 1% by mass, sufficient photocatalytic activity is not exhibited when the coating film is formed, and when it exceeds 50% by mass, the viscosity becomes high and it becomes difficult to handle, which is not preferable. Also, the pH
When the value is less than 8, the titania sol aggregates and the viscosity increases,
If it exceeds 12, it is not preferable because a large amount of excess amine needs to be added.

【0025】前記シリカゾル及び前記チタニアゾルを、
TiO2/SiO2に換算した質量比1/9〜9/1で混
合し、エタノール、イソプロピルアルコール等の溶剤で
固形分0.5〜5質量%に希釈後、組成物のpHも8〜
12である本発明の光触媒コーティング用組成物を得
る。
The silica sol and the titania sol are
The mixture is mixed at a mass ratio of TiO 2 / SiO 2 of 1/9 to 9/1 and diluted with a solvent such as ethanol or isopropyl alcohol to a solid content of 0.5 to 5 mass%, and then the pH of the composition is 8 to
A photocatalytic coating composition of the present invention which is No. 12 is obtained.

【0026】本発明の光触媒コーティング用組成物は、
アルカリ性であるため、装置を腐食せず、これを基体上
に塗布した光触媒体は成膜直後に優れた親水性、及び、
強固な付着性を有する。
The photocatalyst coating composition of the present invention comprises:
Since it is alkaline, it does not corrode the device, and the photocatalyst coated with this on the substrate has excellent hydrophilicity immediately after film formation, and
Has strong adhesion.

【0027】本発明の光触媒コーティング用組成物を基
体上に塗布する方法としては、公知の方法が使用できる
が、基体の種類に応じて、ロールコーティング法、フロ
ーコート法、吹き付け法、浸漬法、スピンコーティング
法等の適切な塗装方法を選択することができる。
As a method for applying the photocatalyst coating composition of the present invention onto a substrate, known methods can be used. Depending on the type of the substrate, a roll coating method, a flow coating method, a spraying method, a dipping method, A suitable coating method such as a spin coating method can be selected.

【0028】前記基体は、アルミニウム、鉄、チタン、
ニッケル、クロム、銅等の金属並びに前記金属の1種以
上を含む合金、ガラス、セラミックス、セメント、木
材、合成樹脂、樹脂フィルム、布、繊維、紙等の少なく
とも1種以上から形成することができる。
The base is aluminum, iron, titanium,
It can be formed from at least one or more of metals such as nickel, chrome and copper and alloys containing one or more of the above metals, glass, ceramics, cement, wood, synthetic resin, resin film, cloth, fiber, paper and the like. .

【0029】また、前記基体上にプライマー処理を施す
場合は、アクリル、ウレタン、シリコーン等の樹脂が使
用できる。
When the primer treatment is applied to the substrate, resins such as acrylic, urethane and silicone can be used.

【0030】[0030]

【実施例】本発明の実施例及び比較例を説明するが、本
発明はこれらの実施例に限定されるものではない。な
お、実施例及び比較例で作製した光触媒体の評価につい
ては、基体に対する腐食性はグロス、塗膜の透明性はヘ
ーズ値、塗膜の付着強度はテープ剥離試験、塗膜の親水
性は水蒸気に対する結露の有無、光触媒能はアセトアル
デヒドまたはNOxの分解能で判断した。
EXAMPLES Examples and comparative examples of the present invention will be described, but the present invention is not limited to these examples. In the evaluation of the photocatalysts produced in Examples and Comparative Examples, the corrosiveness to the substrate is gloss, the transparency of the coating film is a haze value, the adhesive strength of the coating film is a tape peeling test, and the hydrophilicity of the coating film is water vapor. The presence or absence of dew condensation and the photocatalytic activity were determined by the resolution of acetaldehyde or NOx.

【0031】[0031]

【実施例1】テトラエトキシシラン30gとイソプロピ
ルアルコール60gの混合液を撹拌しながら、0.1N
硝酸水溶液10gを添加した。約30分でテトラエトキ
シシランは全量加水分解して、pH2の酸性シリカゾル
を得た。純水100gを撹拌しながら、この酸性シリカ
ゾル80gを滴下し、その際、同時にアミルアミン1.
0モル/L水溶液を滴下して、pHを9.9〜10.1
の範囲に保持し、アルカリ性のシリカゾルを得た。次
に、一次粒子径15nmのメタチタン酸を硝酸解膠して
得られたチタニアゾル(TiO2濃度10.0質量%、
pH2)をブチルアミンでpH10に調整したものと、
前記アルカリ性シリカゾルとを、TiO2/SiO2質量
比で50/50となるように混合した。これをイソプロ
ピルアルコールで希釈し、固形分濃度2.5質量%の光
触媒コーティング用組成物とした。このコーティング用
組成物に、脱脂したステンレス板を浸漬し、室温で24
時間静置した後取り出して水洗後、村上カラーリサーチ
ラボ製グロスメーターGM−26で20#、フィルター
使用でのグロスを測定した。ステンレス板のグロスは、
浸漬前で71%、室温24時間浸漬後で71%と同じで
あり、腐食されていなかった。
Example 1 0.1N while stirring a mixed solution of 30 g of tetraethoxysilane and 60 g of isopropyl alcohol.
10 g of nitric acid aqueous solution was added. The total amount of tetraethoxysilane was hydrolyzed in about 30 minutes to obtain an acidic silica sol having a pH of 2. While stirring 100 g of pure water, 80 g of this acidic silica sol was dropped, and at the same time, amylamine 1.
A 0 mol / L aqueous solution was added dropwise to adjust the pH to 9.9 to 10.1.
Was maintained in the range to obtain an alkaline silica sol. Next, a titania sol obtained by peptizing nitric acid with a primary particle diameter of 15 nm of metatitanic acid (TiO 2 concentration 10.0 mass%,
pH 2) adjusted to pH 10 with butylamine,
The alkaline silica sol was mixed in a TiO 2 / SiO 2 mass ratio of 50/50. This was diluted with isopropyl alcohol to obtain a photocatalyst coating composition having a solid content concentration of 2.5% by mass. A degreased stainless steel plate is immersed in this coating composition and allowed to stand at room temperature for 24 hours.
After leaving it for a while, it was taken out and washed with water, and then 20 # was measured with a gloss meter GM-26 manufactured by Murakami Color Research Lab, and the gloss was measured using a filter. The gloss of the stainless plate is
It was 71% before immersion and the same as 71% after immersion at room temperature for 24 hours, and was not corroded.

【0032】[0032]

【実施例2】PETフィルムに、アクリルシリコーン樹
脂にシランカップリング剤を10質量%添加したもの
を、バーコーター(03)で塗布し、120℃で10分
間焼き付けてプライマーとした。このプライマー上に実
施例1のコーティング剤をイソプロピルアルコールで固
形分濃度1質量%に希釈してバーコーター(03)で塗
布し、120℃で1分間焼き付けた。この膜はヘーズ値
2%以下で、テープ剥離試験で100/100の強度を
示した。また焼き付け直後の膜をアルミ箔で覆って紫外
線照射を防ぎながら、沸騰水の液面上、5cmの位置に
塗布面を下に向けて置いたところ、結露は認められなか
った。また、塗膜5cm2を内容積120mLのガラス製
バイアル瓶に入れて、アセトアルデヒドガスを瓶内の濃
度が10ppmになる量を注入して、ブラックライトの
紫外線0.1mW/cm2で12時間照射したところ、
瓶内のアセトアルデヒド濃度は1ppm以下であった。
Example 2 A PET film prepared by adding 10% by mass of a silane coupling agent to an acrylic silicone resin was coated with a bar coater (03) and baked at 120 ° C. for 10 minutes to prepare a primer. The coating agent of Example 1 was diluted with isopropyl alcohol to a solid content concentration of 1% by mass and applied on the primer with a bar coater (03), and baked at 120 ° C. for 1 minute. This film had a haze value of 2% or less and exhibited a strength of 100/100 in a tape peeling test. When the film immediately after baking was covered with an aluminum foil to prevent irradiation of ultraviolet rays and placed on the surface of the boiling water at a position of 5 cm with the coating surface facing downward, no dew condensation was observed. Also, put the coating film 5 cm 2 in a glass vial with an internal volume of 120 mL, inject an amount of acetaldehyde gas to a concentration of 10 ppm in the bottle, and irradiate with black light of ultraviolet rays of 0.1 mW / cm 2 for 12 hours. I just did
The acetaldehyde concentration in the bottle was 1 ppm or less.

【0033】[0033]

【比較例1】テトラエトキシシラン30gとイソプロピ
ルアルコール60gの混合液を撹拌しながら、アミルア
ミン1.0モル/L水溶液40gを添加したところ、p
Hは12まで上昇し、発熱が認められると同時に粘度が
上昇し、約10分で液は完全にゲル化した。
[Comparative Example 1] A mixture of 30 g of tetraethoxysilane and 60 g of isopropyl alcohol was added to 40 g of an amylamine 1.0 mol / L aqueous solution while stirring,
H increased up to 12, heat generation was observed and viscosity increased at the same time, and the liquid completely gelled in about 10 minutes.

【0034】[0034]

【比較例2】テトラエトキシシラン30gとイソプロピ
ルアルコール60gの混合液を撹拌しながら、アミルア
ミン0.1モル/L水溶液40gを添加した。pHは
9.1であった。24時間後、混合液をマイクロシリン
ジで採取し、ガスクロマトグラフ(ヤナコ製G−380
0 検出器FID)で測定したところ、テトラエトキシ
シランの約50%が未反応のままで残存していた。
Comparative Example 2 While stirring a mixed solution of 30 g of tetraethoxysilane and 60 g of isopropyl alcohol, 40 g of an amylamine 0.1 mol / L aqueous solution was added. The pH was 9.1. After 24 hours, the mixed liquid was collected with a microsyringe, and a gas chromatograph (G-380 manufactured by Yanaco) was used.
0 detector FID), about 50% of tetraethoxysilane remained unreacted.

【0035】[0035]

【比較例3】テトラエトキシシラン30gとイソプロピ
ルアルコール60gの混合液を撹拌しながら、0.1N
硝酸水溶液10gを添加した。約30分でテトラエトキ
シシランは全量加水分解して、pH2の酸性シリカゾル
を得た。次に、一次粒子径15nmのメタチタン酸を硝
酸解膠して得られたチタニアゾル(TiO2濃度10.
0質量%、pH2)と、前記酸性シリカゾルとを、Ti
2/SiO2質量比で50/50となるように混合し
た。これをイソプロピルアルコールで希釈し、固形分濃
度2.5質量%のコーティング用組成物とした。このコ
ーティング用組成物に、脱脂したステンレス板を浸漬
し、室温で24時間静置した後取り出して水洗後、村上
カラーリサーチラボ製グロスメーターGM−26で20
#、フィルター使用でのグロスを測定した。ステンレス
板のグロスは、浸漬前で67%、室温24時間浸漬後で
30%と大きく低下し、ステレンレス板も元の金属光沢
が失われて白化した。
Comparative Example 3 While stirring a mixed solution of 30 g of tetraethoxysilane and 60 g of isopropyl alcohol, 0.1 N
10 g of nitric acid aqueous solution was added. The total amount of tetraethoxysilane was hydrolyzed in about 30 minutes to obtain an acidic silica sol having a pH of 2. Next, a titania sol obtained by peptizing nitric acid with a primary particle diameter of 15 nm of metatitanic acid (TiO 2 concentration: 10.
0% by mass, pH 2) and the acidic silica sol are mixed with Ti
They were mixed so that the mass ratio of O 2 / SiO 2 was 50/50. This was diluted with isopropyl alcohol to obtain a coating composition having a solid content concentration of 2.5% by mass. A degreased stainless steel plate was immersed in this coating composition, allowed to stand at room temperature for 24 hours, then taken out and washed with water, and then washed with a Murakami Color Research Lab gloss meter GM-26.
#, Measured gloss with filter. The gloss of the stainless steel plate was significantly reduced to 67% before immersion and 30% after immersion at room temperature for 24 hours, and the stellenless plate also lost its original metallic luster and turned white.

【0036】[0036]

【比較例4】実施例2と同様にして、PETフィルム上
にプライマーを作製し、比較例3のコーティング用組成
物をイソプロピルアルコールで固形分濃度1質量%に希
釈したものをバーコーター(03)で塗布し、120℃
で1分間焼き付けた。この膜のヘーズ値は2%以下で、
テープ剥離試験で100/100の強度を示した。実施
例2と同様に、この膜を沸騰水面上5cmに置いたとこ
ろ、全面に2〜3mm径の水滴が付着した。実施例2と
同様にして、試験片5cm2についてアセトアルデヒド
10ppmの分解性能を測定した。紫外線0.1mW/
cm2で12時間照射したところ、アセトアルデヒド濃
度は3ppmに低下した。
Comparative Example 4 A bar coater (03) was prepared by preparing a primer on a PET film in the same manner as in Example 2 and diluting the coating composition of Comparative Example 3 with isopropyl alcohol to a solid content concentration of 1% by mass. Apply at 120 ℃
Baked for 1 minute. The haze value of this film is 2% or less,
The tape peeling test showed a strength of 100/100. When this film was placed 5 cm above the boiling water surface in the same manner as in Example 2, water droplets with a diameter of 2 to 3 mm were attached to the entire surface. In the same manner as in Example 2, the decomposition performance of 10 ppm of acetaldehyde was measured for the test piece of 5 cm 2 . UV 0.1mW /
Irradiation at cm 2 for 12 hours lowered the acetaldehyde concentration to 3 ppm.

【0037】[0037]

【実施例3】市販セメントを水と混ぜ、型枠に入れて乾
燥させ、50mm×100mm×10mmのセメント板
を作製した。これに直接、実施例1のコーティング剤
0.2gを、刷毛塗りして室温で乾燥させた試験片を作
製した。試験片のNOx浄化能を以下のようにして測定
した。内径156mm、深さ32mmのガラス製シャー
レ型反応容器に試験片を2枚ずつ並べて入れたものを2
個直列に繋ぎ、NOガス1ppmを含む空気を毎分1.
5L流した。出口でのNOx濃度を、計測器サービス
(株)の化学発光検出式NOx測定装置ML9841A
で測定したところ、1.0ppmであった。反応容器の
上方から、ブラックライトを使用して紫外線0.6mW
/cm2で照射したところ、出口のNOx濃度は、1時
間後0.1ppmと変化した。12時間後の試験片は、
外観上の変化は認められなかった。
Example 3 Commercial cement was mixed with water, put in a mold and dried to prepare a cement plate of 50 mm × 100 mm × 10 mm. Directly to this, 0.2 g of the coating agent of Example 1 was applied by brush and dried at room temperature to prepare a test piece. The NOx purification capacity of the test piece was measured as follows. Two test pieces are placed side by side in a glass Petri dish type reaction vessel having an inner diameter of 156 mm and a depth of 32 mm.
Air connected in series and containing 1 ppm of NO gas at 1.
Flowed 5 L. The NOx concentration at the outlet is measured by the chemiluminescence detection type NOx measuring device ML9841A of Measuring Service Co., Ltd.
It was 1.0 ppm when measured by. From above the reaction vessel, use a black light to generate an ultraviolet ray of 0.6 mW
When the irradiation was performed at a dose of 1 / cm 2 , the NOx concentration at the outlet changed to 0.1 ppm after 1 hour. The test piece after 12 hours was
No change in appearance was observed.

【0038】[0038]

【比較例5】実施例3と同じセメント板に、比較例3の
酸性コーティング剤0.2gを塗布した試験片を作製し
た。実施例3と同様にして、紫外線照射によるNOx浄
化能を測定した。出口でのNOx濃度は紫外線照射前
1.0ppm、1時間後0.5ppmであった。12時
間後の試験片は、部分的な白ぼけが生じていた。
Comparative Example 5 A test piece was prepared by applying 0.2 g of the acidic coating agent of Comparative Example 3 to the same cement plate as in Example 3. In the same manner as in Example 3, the NOx purification ability by UV irradiation was measured. The NOx concentration at the outlet was 1.0 ppm before ultraviolet irradiation and 0.5 ppm after 1 hour. The test piece after 12 hours had partial white blur.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 AA08 BA02A BA02B BA04A BA04B BA17 BA21C BA37 BA48A BE14C CD10 FA03 FB06 FB15 FB16 FB23 FC04 FC09 4J038 AA011 HA216 HA446 JB01 JC30    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G069 AA02 AA08 BA02A BA02B                       BA04A BA04B BA17 BA21C                       BA37 BA48A BE14C CD10                       FA03 FB06 FB15 FB16 FB23                       FC04 FC09                 4J038 AA011 HA216 HA446 JB01                       JC30

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリカゾル及びチタニアゾルを含む光触
媒コーティング用組成物であって、該組成物がアミンを
含有してpHが8〜12であることを特徴とする光触媒
コーティング用組成物。
1. A photocatalyst coating composition comprising silica sol and titania sol, wherein the composition contains an amine and has a pH of 8 to 12.
【請求項2】 前記シリカゾルが、アルコキシシランを
酸性領域で加水分解して得られたものであることを特徴
とする、請求項1に記載の光触媒コーティング用組成
物。
2. The photocatalyst coating composition according to claim 1, wherein the silica sol is obtained by hydrolyzing an alkoxysilane in an acidic region.
【請求項3】 前記チタニアゾルが解膠メタチタン酸を
原料として得られたものであることを特徴とする、請求
項1又は2に記載の光触媒コーティング用組成物。
3. The photocatalyst coating composition according to claim 1, wherein the titania sol is obtained by using peptized metatitanic acid as a raw material.
【請求項4】 使用されるシリカゾルのSiO2に対す
る質量比で50〜500倍の水中にアルコキシシランを
酸性領域で加水分解して得たシリカゾル及びアミンを添
加してpH8〜12のアルカリ性シリカゾルを生成し、
チタニアゾルにアミン又はアンモニアを添加してpH8
〜12のアルカリ性チタニアゾルを生成し、そして、前
記アルカリ性シリカゾルと前記アルカリ性チタニアゾル
とを混合することを特徴とする、光触媒コーティング用
組成物の製造方法。
4. An alkaline silica sol having a pH of 8 to 12 is produced by adding silica sol obtained by hydrolyzing an alkoxysilane in an acidic region to water having a mass ratio of silica sol to SiO 2 of 50 to 500 times, and an amine. Then
PH 8 by adding amine or ammonia to titania sol
A method for producing a composition for photocatalyst coating, which comprises producing an alkaline titania sol of Nos. 1 to 12 and mixing the alkaline silica sol and the alkaline titania sol.
【請求項5】 請求項1乃至3のいずれか1項に記載の
光触媒コーティング用組成物、又は請求項4に記載の製
造方法により得られる光触媒コーティング用組成物がそ
の基体上に塗布された光触媒体。
5. A photocatalyst in which the photocatalyst coating composition according to any one of claims 1 to 3 or the photocatalyst coating composition obtained by the production method according to claim 4 is applied on a substrate thereof. body.
JP2001336243A 2001-11-01 2001-11-01 Photocatalyst coating composition and method for producing the same and photocatalyst using the same Pending JP2003138163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336243A JP2003138163A (en) 2001-11-01 2001-11-01 Photocatalyst coating composition and method for producing the same and photocatalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336243A JP2003138163A (en) 2001-11-01 2001-11-01 Photocatalyst coating composition and method for producing the same and photocatalyst using the same

Publications (1)

Publication Number Publication Date
JP2003138163A true JP2003138163A (en) 2003-05-14

Family

ID=19151101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336243A Pending JP2003138163A (en) 2001-11-01 2001-11-01 Photocatalyst coating composition and method for producing the same and photocatalyst using the same

Country Status (1)

Country Link
JP (1) JP2003138163A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097284A1 (en) * 2006-02-20 2007-08-30 Tama Chemicals Co., Ltd. Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
JP2009280723A (en) * 2008-05-23 2009-12-03 Shin-Etsu Chemical Co Ltd Method for producing hydrophilic coating agent, and article coated with the coating agent
JP2011144078A (en) * 2010-01-15 2011-07-28 Taiheiyo Cement Corp Cement additive and cement composition using the same
JP2012107202A (en) * 2010-10-26 2012-06-07 Shin-Etsu Chemical Co Ltd Room temperature-curing highly-active photocatalyst coating solution and photocatalyst thin film obtained from the same
JP2013032474A (en) * 2010-10-20 2013-02-14 Shin-Etsu Chemical Co Ltd Photocatalyst coating liquid, and photocatalyst thin film obtained therefrom
JPWO2015133316A1 (en) * 2014-03-03 2017-04-06 株式会社鯤コーポレーション Photocatalyst coating liquid and photocatalyst film using the same
CN109294292A (en) * 2018-09-14 2019-02-01 湖南凯斯利新材料有限公司 A kind of smoke-free and tasteless fire-proof and thermal-insulation moisture gel aqueous inorganic ceramic coating and preparation method thereof
JP2020525388A (en) * 2017-08-24 2020-08-27 エルジー・ケム・リミテッド Method for producing silica film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097284A1 (en) * 2006-02-20 2007-08-30 Tama Chemicals Co., Ltd. Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
EP1997860A1 (en) * 2006-02-20 2008-12-03 Tama Chemicals Co., Ltd. Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
EP1997860A4 (en) * 2006-02-20 2012-12-26 Tama Chemicals Co Ltd Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
JP2009280723A (en) * 2008-05-23 2009-12-03 Shin-Etsu Chemical Co Ltd Method for producing hydrophilic coating agent, and article coated with the coating agent
JP2011144078A (en) * 2010-01-15 2011-07-28 Taiheiyo Cement Corp Cement additive and cement composition using the same
JP2013032474A (en) * 2010-10-20 2013-02-14 Shin-Etsu Chemical Co Ltd Photocatalyst coating liquid, and photocatalyst thin film obtained therefrom
JP2012107202A (en) * 2010-10-26 2012-06-07 Shin-Etsu Chemical Co Ltd Room temperature-curing highly-active photocatalyst coating solution and photocatalyst thin film obtained from the same
JPWO2015133316A1 (en) * 2014-03-03 2017-04-06 株式会社鯤コーポレーション Photocatalyst coating liquid and photocatalyst film using the same
JP2020525388A (en) * 2017-08-24 2020-08-27 エルジー・ケム・リミテッド Method for producing silica film
US11975977B2 (en) 2017-08-24 2024-05-07 Lg Chem, Ltd. Production method of silica film
CN109294292A (en) * 2018-09-14 2019-02-01 湖南凯斯利新材料有限公司 A kind of smoke-free and tasteless fire-proof and thermal-insulation moisture gel aqueous inorganic ceramic coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3732247B2 (en) Titanium oxide coating film-forming liquid composition for photocatalyst and process for producing the same
JP3796403B2 (en) Photocatalytic oxide-containing composition, thin film and composite
WO2007097284A1 (en) Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
CN106398522A (en) An antifouling composition comprising silica nanometer particles and functionalized silane compounds and coated products thereof
JP4846088B2 (en) Titanium oxide-containing photocatalyst coating liquid, production method thereof, and titanium oxide photocatalyst structure
JP2003138163A (en) Photocatalyst coating composition and method for producing the same and photocatalyst using the same
JP4540971B2 (en) Neutral titanium oxide sol and method for producing the same
JP5552378B2 (en) Visible light responsive photocatalyst-containing interior coating composition and coating film containing the same
JP2007161770A (en) Coating fluid for forming hydrophilic film, its manufacturing method, hydrophilic film and method of forming hydrophilic film
JP3791067B2 (en) Photocatalyst composition and glass article
JP2009143754A (en) Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
JP2004204091A (en) Photocatalyst coating composition
JP2009209250A (en) Photocatalyst coating film forming composition, photocatalyst coating film, and forming method of photocatalyst coating film
JP4522082B2 (en) Photocatalyst liquid composition and photocatalyst formed using the same
JP2010043159A (en) Method for producing titanium oxide dispersion and titanium oxide film
JP3499525B2 (en) Photocatalytic coating composition
JP3980290B2 (en) Titanium oxide thin film forming coating solution and method for producing the same
JP5112016B2 (en) Bonded titania silica film manufacturing method and coating liquid
JP3270422B2 (en) Glass goods
TW460322B (en) Photo-catalytic oxide-containing composition, process for making a film, and composite of a film with a base material
JP6850348B2 (en) Photocatalyst coating liquid, photocatalyst structure and its manufacturing method
JP2011236094A (en) High concentration silica sol
JP2005163050A (en) Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same
JP2001337211A (en) Antifog mirror and method for manufacturing the same