JP2005163050A - Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same - Google Patents

Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same Download PDF

Info

Publication number
JP2005163050A
JP2005163050A JP2004368564A JP2004368564A JP2005163050A JP 2005163050 A JP2005163050 A JP 2005163050A JP 2004368564 A JP2004368564 A JP 2004368564A JP 2004368564 A JP2004368564 A JP 2004368564A JP 2005163050 A JP2005163050 A JP 2005163050A
Authority
JP
Japan
Prior art keywords
titanium
titanium oxide
composition
liquid composition
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004368564A
Other languages
Japanese (ja)
Inventor
Hiroshi Kumai
浩 熊井
Hidejiro Kudo
秀二郎 工藤
Masanori Tomonari
雅則 友成
Takeshi Zedo
猛 是洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Colcoat Co Ltd
Ishihara Sangyo Kaisha Ltd
Original Assignee
Toto Ltd
Colcoat Co Ltd
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, Colcoat Co Ltd, Ishihara Sangyo Kaisha Ltd filed Critical Toto Ltd
Priority to JP2004368564A priority Critical patent/JP2005163050A/en
Publication of JP2005163050A publication Critical patent/JP2005163050A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a liquid composition for forming a titanium dioxide coated coating film, and which composition can firmly cover and adhere the titanium oxide powder on the surface of a substrate, wherein the titanium dioxide has catalytic function of oxidizing and reducing organic matters by photoirradiation. <P>SOLUTION: The liquid composition comprises titanium dioxide having 0.001-0.5 μm average particle diameter, a hydrolysate of a hydrolyzable silicon compound represented by the formula (1): Si-X<SB>4</SB>(1) (wherein, X's are each a halogen or a 1-8C alkoxy and may be same or different) and of 50-1,500% hydrolysis rate, and a solvent, wherein the weight ratio of titanium to silicon is, when expressed in terms of TiO<SB>2</SB>and SiO<SB>2</SB>, (30-96):(70-4) (100 in total) and the solid content in the whole composition is less than 30 wt.%. The substrate applied with the liquid composition to impart its photocatalytic function to the surface thereof is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光酸化触媒として使用される酸化チタン含有塗膜を形成できる液状組成物および該組成物の製法に関し、これをガラス、金属、セメント、壁紙、石膏ボード、石材、セラミックスもしくはプラスチック等の表面に適用した基材に関する。   The present invention relates to a liquid composition capable of forming a titanium oxide-containing coating film used as a photo-oxidation catalyst, and a method for producing the composition, such as glass, metal, cement, wallpaper, gypsum board, stone material, ceramics or plastic. It relates to a substrate applied to the surface.

酸化チタンは、それ自体が光半導体であり、そのバンドギャップ以上のエネルギーを持つ光例えば紫外線で照射されると伝導帯には電子が集積し、価電子帯には正孔(ホール)が生じる。この集積電子及び正孔によって生じる電子移動に基づく酸化還元作用により大気中の有機物を分解し、殺菌効果を示すという光触媒活性が知られており、この活性作用を工業的に利用する試みが種々行われている。   Titanium oxide itself is an optical semiconductor, and when irradiated with light having energy greater than its band gap, such as ultraviolet rays, electrons accumulate in the conduction band and holes are generated in the valence band. The photocatalytic activity of decomposing organic substances in the atmosphere by the redox action based on the electron transfer generated by these accumulated electrons and holes and showing a bactericidal effect is known, and various attempts to use this active action industrially have been made. It has been broken.

光触媒活性の高い二酸化チタン層を基材の表面に形成させる事はなかなか困難である。従来行われている方法は一つには純チタン板状体の表面を空気酸化または陽極酸化して酸化チタン膜を形成するものであるが、酸化方法が難しい割に良好な機能が得られにくい。別の方法として基材表面に酸化チタンをCVD法で蒸着させたり、プラズマ溶射を行う方法(特開平6−210170号公報)も知られているがいずれも高価であり、基材の種類によって適用する事が出来ない。また、二酸化チタン粉末をバインダーと呼ばれる接着剤を介して基材に付着させる試みもなされたが二酸化チタンの光触媒作用によりバインダーが酸化分解され、数カ月の後には基材から脱落してしまい工業用途の使用に耐える事が出来ない。   It is quite difficult to form a titanium dioxide layer with high photocatalytic activity on the surface of the substrate. One of the conventional methods is to form a titanium oxide film by subjecting the surface of a pure titanium plate to air oxidation or anodization, but it is difficult to obtain a good function even though the oxidation method is difficult. . As another method, titanium oxide is vapor-deposited on the surface of the substrate by the CVD method or plasma spraying (Japanese Patent Laid-Open No. 6-210170) is known, but all are expensive and applied depending on the type of the substrate. I can't do it. In addition, attempts have been made to attach titanium dioxide powder to a substrate through an adhesive called a binder, but the binder is oxidized and decomposed by the photocatalytic action of titanium dioxide, and after a few months it falls off the substrate and is used for industrial purposes. It cannot withstand use.

近年になってチタンのアルコキシドからゾルゲル法によってガラス管表面に二酸化チタン薄膜を形成させる方法が発表されている。この方法はアルコキシドのアルコール溶液にある種の有機ポリマーを添加した溶液を基材に塗布し、加熱処理によって有機ポリマーを熱分解除去し、且つ、酸化チタンの結晶化を行うというもので、出発原料が高価なものであることと、高温での加熱処理が必須となっていることが問題点として残る。   In recent years, a method for forming a titanium dioxide thin film on the surface of a glass tube by a sol-gel method from an alkoxide of titanium has been announced. In this method, a solution obtained by adding a certain organic polymer to an alcohol solution of alkoxide is applied to a substrate, the organic polymer is thermally decomposed and removed by heat treatment, and titanium oxide is crystallized. However, it is expensive and heat treatment at a high temperature is essential.

酸化チタンの光触媒作用を利用して大気汚染や廃水の浄化を行う試みが種々なされているがいずれも問題点を抱えており、いまだに決定的な方法は見いだされていないのが現状である。本発明は、経済的に、各種用途に広く適用可能な光触媒用酸化チタン塗膜形成性液状組成物を提供しようとするものである。   Various attempts have been made to purify air pollution and wastewater using the photocatalytic action of titanium oxide, but all have problems, and no definitive method has yet been found. The present invention is intended to provide a titanium oxide coating film-forming liquid composition for photocatalysts that is economically applicable to various applications.

本発明は、0.001〜0.5μmの平均粒径を持つチタン酸化物、下記一般式(1)
Si−X4 (1)
(ただし、X=ハロゲン、C1 8 のアルコキシ基で同一又は異なっていてもよい。)
The present invention relates to a titanium oxide having an average particle diameter of 0.001 to 0.5 μm, the following general formula (1)
Si-X 4 (1)
(However, X = halogen, it may be the same or different alkoxy group of C 1 ~ 8.)

で表わされる加水分解性珪素化合物の加水分解率50〜1500%の加水分解物及び溶媒からなり、チタン及び珪素の重量比が各々TiO2 およびSiO2 への換算値で30〜96:70〜4(合計100)であり、全組成物中の固形分濃度が30重量%以下であることを特徴とする光触媒用酸化チタン塗膜成形性液状組成物及びその製法並びに該液状組成物を基材に施し、基材表面に光触媒機能を有する基材にある。 The hydrolyzable silicon compound represented by the above formula is composed of a hydrolyzate having a hydrolysis rate of 50 to 1500% and a solvent, and the weight ratio of titanium and silicon is 30 to 96:70 to 4 in terms of conversion to TiO 2 and SiO 2 , respectively. (Total 100), and the solid content concentration in the total composition is 30% by weight or less, and the titanium oxide coating film-forming liquid composition for photocatalyst, its production method, and the liquid composition as a base material Applied to a substrate having a photocatalytic function on the surface of the substrate.

本発明の組成物は、光の照射によって有機物の酸化還元をする触媒機能を有する二酸化チタン微粉末を基材表面に強固に被覆接着する事が出来、有機物バインダーで接着させたときのように有機物の分解で経時的に接着力の低下する事の無い、光活性の大きい塗膜を形成する事が出来る。膜厚とシリカバインダーの比率を選ぶ事により透明の被膜を形成でき、広い用途に応用できる。   The composition of the present invention is capable of firmly coating and adhering fine titanium dioxide powder having a catalytic function for oxidation / reduction of organic substances by irradiation of light to the surface of the base material. It is possible to form a coating film having a high photoactivity that does not cause a decrease in adhesive strength over time due to the decomposition of. By selecting the ratio of film thickness and silica binder, a transparent film can be formed and applied to a wide range of applications.

以下、本発明について詳しく説明する。
本発明に用いられる酸化チタンとは、特定エネルギーを持つ光の照射で有機物の酸化還元に対して触媒作用を示すものであり、純粋な酸化チタンの他、含水酸化チタン、水和酸化チタン、メタチタン酸、オルトチタン酸、水酸化チタンと呼ばれているものを含む。二酸化チタンまたはこれより低次酸化状態にあるものが特に好ましく用いられる。二酸化チタンの結晶型はアナターゼ型、ルチル型、フルッカイト型のいずれでもよくまたこれらの混合体でも良い。
The present invention will be described in detail below.
The titanium oxide used in the present invention exhibits a catalytic action for redox of organic matter by irradiation with light having a specific energy. In addition to pure titanium oxide, hydrous titanium oxide, hydrated titanium oxide, metatitanium. Includes what are called acids, orthotitanic acid, and titanium hydroxide. Titanium dioxide or a material in a lower oxidation state is particularly preferably used. The crystal form of titanium dioxide may be any of anatase type, rutile type, flukeite type, or a mixture thereof.

これらの二酸化チタンは微粉末状であり、その粒径は光触媒活性の強さから見て0.001〜0.05μm程度の微細なものが好ましいが、これより大きい0.5μm程度までの粒径のものが使用できる。この微粉末は乾燥状態の粉末として用いても良いが、後述の加水分解性珪素化合物から誘導されるシリカバインダーと均一分散させるために予め分散体としておく事が望ましい。本発明の組成物中において二酸化チタンが良好に分散されているか否かは塗膜を形成したときの光触媒機能に大きく影響してくる。   These titanium dioxides are in the form of fine powder, and the particle size is preferably as fine as about 0.001 to 0.05 μm in view of the strength of the photocatalytic activity, but the particle size up to about 0.5 μm is larger than this. Can be used. This fine powder may be used as a dry powder, but it is desirable to prepare a dispersion in advance for uniform dispersion with a silica binder derived from a hydrolyzable silicon compound described below. Whether or not titanium dioxide is well dispersed in the composition of the present invention greatly affects the photocatalytic function when a coating film is formed.

酸化チタンは種々の公知の方法で製造される。例えば1.硫酸チタニル、塩化チタン、有機チタン化合物などのチタン化合物を必要に応じて核形成種の存在下に加水分解する方法、2.硫酸チタニル、塩化チタン、有機チタン化合物などのチタン化合物に、必要に応じて核成形種の存在下にアルカリを添加し、中和する方法、3.塩化チタン、有機チタン化合物などを気相酸化する方法、4.上記1,2の方法で得られた酸化チタンを焼成する方法などが挙げられる。特に、前記1,2の方法で得られた酸化チタンは光触媒機能が高いため好ましい。光触媒機能を更に向上させるために酸化チタン表面に白金、金、銀、銅、パラジウム、ロジウム、ルテニウムなどの金属、酸化ルテニウム、酸化ニッケル等の金属酸化物を被覆しても良い。   Titanium oxide is produced by various known methods. For example: 1. a method of hydrolyzing a titanium compound such as titanyl sulfate, titanium chloride, or an organic titanium compound in the presence of a nucleating species, if necessary; 2. A method of neutralizing a titanium compound such as titanyl sulfate, titanium chloride, or an organic titanium compound by adding an alkali in the presence of a nuclear forming species as necessary. 3. A method for vapor phase oxidation of titanium chloride, organic titanium compounds, etc. Examples thereof include a method of firing the titanium oxide obtained by the above methods 1 and 2. In particular, titanium oxide obtained by the methods 1 and 2 is preferable because of its high photocatalytic function. In order to further improve the photocatalytic function, the titanium oxide surface may be coated with a metal such as platinum, gold, silver, copper, palladium, rhodium or ruthenium, or a metal oxide such as ruthenium oxide or nickel oxide.

これらの酸化チタンは水などの溶媒に高度に分散させて使用される。超微粒子となっている酸化チタンを二次凝集させずに水などの溶媒と均一分散させて置くためには、酸性またはアルカリ性として保存して置くことが好ましい。酸性下に置くときはpH0.5〜4、特に1〜3.5とするのが好ましい。分散媒体としては水の他、水とアルコールの混合物を用いても良い。   These titanium oxides are used by being highly dispersed in a solvent such as water. In order to disperse the titanium oxide in ultrafine particles uniformly with a solvent such as water without secondary agglomeration, it is preferably stored as acidic or alkaline. When placed under acidic conditions, the pH is preferably 0.5 to 4, particularly 1 to 3.5. As a dispersion medium, a mixture of water and alcohol may be used in addition to water.

本発明で用いられる前記一般式(1)で表わされる加水分解性珪素化合物としては、アルキルシリケート、ハロゲン化珪素及びこれらの部分加水分解物である。アルキルシリケートとしてはメチル、エチル、イソプロピルシリケートなどが用いられる。これらのシリケートはいずれも単量体もしくは部分加水分解によって生成するオリゴマーの形で用いられ、オリゴマーとしては一般式Sinn-1(OR)2n+2(ただしnは2〜6、RはC1〜4のアルキル基)で表わされるアルキルシリケート縮合物が特に好ましい。これらオリゴマーは混合物でも用いられる。 Examples of the hydrolyzable silicon compound represented by the general formula (1) used in the present invention include alkyl silicates, silicon halides, and partial hydrolysates thereof. As the alkyl silicate, methyl, ethyl, isopropyl silicate or the like is used. All of these silicates are used in the form of monomers or oligomers formed by partial hydrolysis, and the oligomers have the general formula Si n O n-1 (OR) 2n + 2 (where n is 2-6, R is Alkyl silicate condensates represented by (C1-4 alkyl groups) are particularly preferred. These oligomers are also used in a mixture.

部分加水分解するときの触媒としては酸、アルカリのいずれもが使用できる。酸化チタン分散体が酸性のときは酸で加水分解したアルキルシリケートが好ましい。加水分解液の分散溶媒は水または炭素数が1〜4のアルコールが用いられる。酢酸エチルなどのエステル類は、組成物液を不安定にするので好ましくない。本発明において用いられる珪素化合物及びその部分加水分解物は、酸化チタンを結合させる目的で用いられるものであるので以下においてシリカバインダーと呼ぶ。   Either acid or alkali can be used as the catalyst for partial hydrolysis. When the titanium oxide dispersion is acidic, an alkyl silicate hydrolyzed with an acid is preferred. Water or alcohol having 1 to 4 carbon atoms is used as a dispersion solvent for the hydrolyzed liquid. Esters such as ethyl acetate are not preferred because they make the composition liquid unstable. Since the silicon compound and its partial hydrolyzate used in the present invention are used for the purpose of binding titanium oxide, they are hereinafter referred to as a silica binder.

酸化チタンとシリカバインダーとの混合は、適宜に出来るが、一例を示すと酸性下にある所定量の二酸化チタン水性分散液を10〜50℃の液温に保持し、これに秤量したアルキルシリケートもしくは部分加水分解物を一定時間かけて滴下添加する。滴下終了後、1〜5時間撹拌下に反応させて組成物液を調製する。アルキルシリケートもしくは部分加水分解物添加の際にこれの加水分解触媒を同時に加えても良いし、二酸化チタン分散液中に存在する酸分を利用して加水分解を進めても良い。分散媒体としてアルコール系の媒体を用いる場合は、二酸化チタンの水/アルコール混合媒体分散液と、アルコール媒体中でアルキルシリケートもしくは部分加水分解物を50〜1500%加水分解した液とを撹拌下に混合して本組成物を得ることもできる。   Mixing of the titanium oxide and the silica binder can be performed as appropriate, but as an example, a predetermined amount of aqueous titanium dioxide dispersion under acidity is maintained at a liquid temperature of 10 to 50 ° C., and an alkyl silicate or The partial hydrolyzate is added dropwise over a period of time. After completion of the dropwise addition, a composition liquid is prepared by reacting with stirring for 1 to 5 hours. When adding an alkyl silicate or a partial hydrolyzate, the hydrolysis catalyst may be added at the same time, or the hydrolysis may be carried out using the acid present in the titanium dioxide dispersion. When an alcohol-based medium is used as the dispersion medium, a water / alcohol mixed medium dispersion of titanium dioxide and a liquid obtained by hydrolyzing 50 to 1500% of an alkyl silicate or a partial hydrolyzate in an alcohol medium are mixed with stirring. Thus, the present composition can also be obtained.

本明細書において加水分解率とは、アルキルシリケート1モルに対し水2モルの割合で使用した場合を加水分解率100%として水の使用量によって算出したものである。一般式Sinn-1(OR)2n+2の形の部分加水分解物を用いた場合は、この縮合体1モルに対し水n+1モルの割合で使用した場合を加水分解率100%として算出した。 In the present specification, the hydrolysis rate is calculated based on the amount of water used, assuming that the hydrolysis rate is 100% when used at a ratio of 2 mol of water to 1 mol of alkyl silicate. When a partial hydrolyzate of the general formula Si n O n-1 (OR) 2n + 2 is used, the case where it is used in a ratio of n + 1 mol of water to 1 mol of this condensate is regarded as a hydrolysis rate of 100%. Calculated.

本発明の組成物中のチタンとシリカとの割合は、各々二酸化チタンと二酸化珪素に換算した重量比(TiO2 /SiO2 )で96/4〜30/70とすることが必要である。シリカの割合が70%を超えると酸化チタンの光触媒機能が小さくなってしまい、実用性が乏しくなる。これは酸化チタン粒子表面を覆うシリカの割合が大きくなり、酸化チタンと酸化分解されるべき物質との接触を妨害することになるからと思われる。一方、シリカの混合割合が4%以下であると基材及び酸化チタン同士の接着強度が充分でなく指触や振動で容易に脱落してしまい、塗膜として工業的に使用しにくいものになる。シリカの好ましい割合は10〜50%である。 The ratio of titanium and silica in the composition of the present invention needs to be 96/4 to 30/70 in terms of weight ratio (TiO 2 / SiO 2 ) converted to titanium dioxide and silicon dioxide, respectively. When the proportion of silica exceeds 70%, the photocatalytic function of titanium oxide becomes small and the practicality becomes poor. This is presumably because the proportion of silica covering the surface of the titanium oxide particles increases, preventing contact between the titanium oxide and the substance to be oxidatively decomposed. On the other hand, when the mixing ratio of silica is 4% or less, the adhesive strength between the base material and titanium oxide is not sufficient, and it easily falls off by finger touch or vibration, making it difficult to use industrially as a coating film. . A desirable ratio of silica is 10 to 50%.

本発明の組成物中の固形分濃度は重量で30%以下である。ここで固形分とは全組成物中における酸化チタンとシリカの合計量を言い、酸化チタンは二酸化チタンに、シリカは組成物中のアルキルシリケートもしくはそのオリゴマー中の珪素(Si)分をSiO2 に換算した値を用いている。その他の成分は水分及び/または有機溶媒が主体であり、組成物を基材面上へ塗布後、乾燥により実質的に除去されるべきものである。好ましい固形分濃度は5〜20%であり、5%以下になると基材との接着性は強固になるが塗膜の厚さ、つまり二酸化チタン量が不十分で光触媒機能を充分発揮できる塗膜を形成できない。二層塗り、三層塗りで塗膜厚さを厚くする事は可能であるが、通常は固形分濃度をわざわざ低くして手間の掛かる二層塗りをするメリットは出てこない。しかし、光触媒機能を犠牲にしても強固な薄い塗膜を必要とする場合など特殊な用途には用いることができる。 The solid content concentration in the composition of the present invention is 30% or less by weight. Here, the solid content refers to the total amount of titanium oxide and silica in the entire composition, titanium oxide is titanium dioxide, silica is silicon (Si) content in the alkyl silicate or oligomer in the composition in SiO 2 . The converted value is used. The other components are mainly water and / or an organic solvent, and should be substantially removed by drying after the composition is applied onto the substrate surface. The preferred solid content concentration is 5 to 20%, and if it is 5% or less, the adhesion to the substrate becomes strong, but the coating thickness is sufficient, that is, the amount of titanium dioxide is insufficient, so that the photocatalytic function can be sufficiently exerted. Can not form. Although it is possible to increase the thickness of the coating film by two-layer coating or three-layer coating, there is usually no merit of performing two-layer coating that takes a lot of time by reducing the solid content concentration. However, it can be used for special applications such as when a strong thin coating is required even at the expense of the photocatalytic function.

一方、固形分濃度が30%を超えると組成物中の固形物の分散性が悪くなり、組成物の保存安定性が著しく低下し、僅かな日数でゲル化が生じ易くなる。また、このような高濃度になると成膜性も悪く、形成された被膜の基材との接着性が大きく低下し、指で擦ると剥離してしまうようになるので好ましくない。   On the other hand, when the solid content concentration exceeds 30%, the dispersibility of the solid matter in the composition is deteriorated, the storage stability of the composition is remarkably lowered, and gelation easily occurs in a few days. Further, such a high concentration is not preferable because the film formability is poor and the adhesion of the formed film to the base material is greatly reduced and the film peels off when rubbed with a finger.

本発明組成物には少量のチタンアルコキシド、四塩化チタンを加えても良い。又チタン、或いはシランカップリング剤などを加えても良い。更に、組成物の安定性確保及び濡れ特性を改善するために各種界面活性剤を加えても良い。また、アルコキシ基を2個以上含むアルキシランもしくはハイドロシランを少量添加してもよいがこれらチタン、シランの化合物は固形分算出の際のシリカ換算に加えるものとする。   A small amount of titanium alkoxide or titanium tetrachloride may be added to the composition of the present invention. Further, titanium or a silane coupling agent may be added. Furthermore, various surfactants may be added to ensure the stability of the composition and improve the wetting characteristics. Further, a small amount of alkoxysilane or hydrosilane containing two or more alkoxy groups may be added, but these titanium and silane compounds are added in terms of silica when calculating the solid content.

本発明組成物は、基材表面に塗布され、乾燥、場合によって低温焼成されて塗膜化される。塗布方法は塗布すべき基材の形状によってスピンコーティング、スプレーコーティング、バーコート、ディップ法などが適宜に使用される。塗膜の厚さは0.1〜3μm、特に0.3〜2μmが適当である。二酸化チタンの光触媒活性は、表面に露光し酸化分解されるべき化合物と接触可能な二酸化チタンの量に関係するので本来は塗膜の厚さは関係ないが、現実には塗膜厚さに不均一があり、又粒子の分散は必ずしも理想とする均一性が得られず、余り薄くすると塗膜表面上の二酸化チタン量が少なく光触媒活性が充分でないので前記程度の厚さにすることが好ましい。このような厚さであると塗膜を透明にすることも可能であり、基材の持つ種々の構成、デザインを損なうことなく、その表面に光活性を持つ被膜を形成することが出来る。   The composition of the present invention is applied to a substrate surface, dried, and optionally fired at a low temperature to form a coating film. As the coating method, spin coating, spray coating, bar coating, dip method or the like is appropriately used depending on the shape of the substrate to be coated. The thickness of the coating film is suitably 0.1 to 3 μm, particularly 0.3 to 2 μm. The photocatalytic activity of titanium dioxide is related to the amount of titanium dioxide that can be exposed to the surface and contacted with the compound to be oxidatively decomposed. It is uniform, and the dispersion of particles is not necessarily ideal, and if it is too thin, the amount of titanium dioxide on the surface of the coating film is small and the photocatalytic activity is not sufficient. With such a thickness, the coating film can be made transparent, and a coating film having photoactivity can be formed on the surface without impairing various structures and designs of the substrate.

本発明の塗膜成形性液状組成物を塗布する基材としては、ガラス、金属、セメントコンクリート、スレート、石膏ボード、石材、木材、セラミックス、プラスッチックスなどの管状、板状、格子状、球状、ハニカム状部材あるいはこれら部材からの成形品などがあるが、塗布後に溶剤、水分などを除去するために充分乾燥することが好ましい。   Examples of the substrate on which the film-forming liquid composition of the present invention is applied include glass, metal, cement concrete, slate, gypsum board, stone, wood, ceramics, plastics, and other tubular, plate-like, lattice-like, and spherical shapes. In addition, there are honeycomb-shaped members or molded products from these members, but it is preferable to dry sufficiently in order to remove the solvent, moisture and the like after application.

本発明の組成物からの塗膜は、100℃の乾燥によって爪で擦っても容易に剥離しないかなり強固な被膜を形成できるが、シリカバインダーは100℃以上の温度で乾燥することによって、より強固な塗膜を形成することができるので必要に応じ100〜300℃で乾燥もしくは低温焼成しても良い。但し、超微粒子状二酸化チタンの触媒活性は150℃以上の乾燥で徐々に低下を始め、400℃を超えると急速に低下することがあるので、塗膜強度の必要性に応じて適宜に乾燥温度を選択する必要があるが、いずれにしても480℃以下の乾燥もしくは低温焼成が好ましい。   The coating film from the composition of the present invention can form a fairly strong film that does not easily peel off when rubbed with a nail by drying at 100 ° C., but the silica binder is stronger by drying at a temperature of 100 ° C. or higher. A thin coating film can be formed, and may be dried or calcined at a low temperature of 100 to 300 ° C. as necessary. However, the catalytic activity of ultrafine titanium dioxide begins to gradually decrease after drying at 150 ° C. or higher, and may rapidly decrease when the temperature exceeds 400 ° C. In any case, drying at 480 ° C. or lower or low-temperature firing is preferable.

本発明の塗膜が形成された基材もしくは部材は、極めて広い種々の用途に利用される。例えば高速道路の遮音部材として金属またはプラスチックス製の板状または格子状のものが使用されているが、これに付着する有機物、微生物を分解除去するのに使われる。或いはセラミックのハニカムに被覆したものは硫化水素など有害物質を含む気体、又は液体を接触させることにより有害物質の分解用触媒として利用される。また、塩ビなどからなっているプラスチック化粧板に塗布するとこれを壁材に使用したとき壁面を自動浄化する機能を発揮し、病院などでは殺菌効果を持つものとして使用できる。球状のガラス、軽石、セラミックスなどに付着させたものは廃水の浄化材として利用できる。会議室などにおいては本発明の組成物を塗布乾燥させた基材からなる部材例えば灰皿や衝立などを置いておくだけでタバコの煙の分解に使うこともできる。更に、水槽の内側に塗布して防藻に使用することができる。   The base material or member on which the coating film of the present invention is formed is used for a wide variety of applications. For example, a metal or plastic plate or grid is used as a sound insulation member for an expressway, and it is used for decomposing and removing organic substances and microorganisms adhering thereto. Or what coated the ceramic honeycomb is utilized as a catalyst for decomposition | disassembly of a toxic substance by making the gas or liquid containing a toxic substance, such as hydrogen sulfide, contact. In addition, when applied to a plastic decorative plate made of polyvinyl chloride, etc., when used as a wall material, it exhibits a function of automatically purifying the wall surface and can be used as having a sterilizing effect in hospitals. Those adhered to spherical glass, pumice, ceramics, etc. can be used as a purification material for waste water. In a conference room or the like, it can be used for decomposition of cigarette smoke simply by placing a member made of a base material coated and dried with the composition of the present invention, such as an ashtray or a screen. Furthermore, it can apply | coat to the inner side of a water tank and can be used for anti-algae.

実施例において光触媒活性分解率は、本発明の組成物を以下の方法でガラス板に塗布し、被膜を形成した試験片を用い、これをアセトアルデヒドと気相接触させつつ光照射したときのアセトアルデヒドの分解割合によって測定したものである。   In the examples, the photocatalytic activity decomposition rate was determined by applying the composition of the present invention to a glass plate by the following method, using a test piece formed with a film, and subjecting the acetaldehyde to light irradiation while being in vapor phase contact with acetaldehyde. It is measured by the decomposition ratio.

1.試験片の調製(組成物液の塗布条件)
被塗布片:ガラス板100×50×2t(mm)
塗布方法:マイヤーバー#3、#5
乾燥条件:100℃、1時間
1. Preparation of test piece (application condition of composition liquid)
Application piece: Glass plate 100 × 50 × 2t (mm)
Application method: Meyer bar # 3, # 5
Drying conditions: 100 ° C., 1 hour

2.光触媒活性分解率測定法
(1)気相分解反応装置
三ツ口のセパラブルフラスコを組んで横向きにセットし、内部に試験片が置けるようにする。
(2)光源
(株)東芝製のブラックライト4W2本を試験片の被膜面から約8cmのところに設置して、光量(光強度)が1mW/cm2 となるようにする。
(3)循環装置
エアーポンプを用いてフラスコ内部とサンプリング用三方コックとをタイゴンチューブで循環するように接続し、1リットル/minで循環する。
(4)アセトアルデヒドの導入と濃度測定用検知管
試験片が置かれ、通常の空気で満たされているフラスコの三ツ口の一つにシリコーンWキャップを付けてマイクロシリンジでアセトアルデヒドを導入する。導入量は40〜200ppmとなるようにする。サンプリング用の三方コックの1つにはアセトアルデヒド濃度測定用のガス検知管を設けて濃度測定が出来るようにしておく。
(5)試験片の前処理とアセトアルデヒド分解率の測定
試験片についての光触媒活性を測定する前にアセトアルデヒドによって前処理を行った。試験片の前処理は、試験片塗膜に残存有機物が存在したときアセトアルデヒドの分解が始まる前または一緒に該有機物が分解され、導入したアセトアルデヒドの正しい分解率を測定するのが困難となるのでこの影響を最少にするために行うものである。前処理は100ppm前後のアセトアルデヒドをフラスコ内に導入し、光を照射せずに循環装置を作動させ、10分間循環後、濃度をガス検知管で測定する。その後、光源スイッチを入れて光照射開始後30分毎に最大3時間迄のアセトアルデヒド濃度を測定する。減少したアセトアルヒデヒドが分解されたものとして分解率を求め、分解率が85%以上に達した時点または3時間光照射した時点で試験片の前処理を完了とした。
前処理を完了した試験片について前処理と同様の方法で光照射前後のアセトアルデヒド濃度の変化から下記の計算式で分解率を測定し、塗布膜の光触媒活性の評価に用いた。
2. Photocatalytic activity decomposition rate measurement method (1) Gas phase decomposition reaction apparatus A three-necked separable flask is assembled and set sideways so that a test piece can be placed inside.
(2) Light source Two black lights 4W manufactured by Toshiba Corporation are installed at a position about 8 cm from the coating surface of the test piece so that the amount of light (light intensity) is 1 mW / cm 2 .
(3) Circulation device Using an air pump, the inside of the flask and the sampling three-way cock are connected to circulate through a Tygon tube, and circulate at 1 liter / min.
(4) Introduction of acetaldehyde and detector tube for concentration measurement A test piece is placed, and a silicone W cap is attached to one of the three necks of a flask filled with normal air, and acetaldehyde is introduced with a microsyringe. The amount introduced is 40 to 200 ppm. One of the sampling three-way cocks is provided with a gas detector tube for measuring the acetaldehyde concentration so that the concentration can be measured.
(5) Pretreatment of test piece and measurement of acetaldehyde decomposition rate Before measuring the photocatalytic activity of the test piece, it was pretreated with acetaldehyde. Pretreatment of the test piece is difficult because it is difficult to measure the correct decomposition rate of the introduced acetaldehyde because the organic substance is decomposed before or together with the start of the decomposition of acetaldehyde when residual organic substances are present in the test piece coating. This is done to minimize the impact. In the pretreatment, about 100 ppm of acetaldehyde is introduced into the flask, the circulation device is operated without irradiating light, and after circulating for 10 minutes, the concentration is measured with a gas detector tube. Thereafter, the light source switch is turned on and the acetaldehyde concentration is measured every 30 minutes after the start of light irradiation for a maximum of 3 hours. The decomposition rate was determined on the assumption that the reduced acetaldehyde was decomposed, and the pretreatment of the test piece was completed when the decomposition rate reached 85% or more or when light irradiation was performed for 3 hours.
About the test piece which completed pre-processing, the decomposition rate was measured with the following formula from the change of the acetaldehyde density | concentration before and behind light irradiation by the method similar to pre-processing, and it used for evaluation of the photocatalytic activity of a coating film.

Figure 2005163050
Figure 2005163050

各実施例で得た塗膜形成性組成面の評価を夫々表に示したが、表中の硬度は、下記に基準に従って表示した塗膜の強度に関する測定値である。
(1)指触により塗膜が破壊される程度
(2)爪で擦ると塗膜が剥離する程度
(3)爪で擦ると傷がつく程度
(4)上記(3)と下記(5)の中間程度
(5)爪による傷はつかないが爪痕が残る程度
(6)上記(5)と下記(7)の中間程度
(7)爪痕も残らない程度
また、表中の反応速度定数は、アセトアルデヒドの分解が時間に1次比例していると仮定して算出したもので、単位はmin-1である。
なお実施例中「部」とあるのは重量部を意味する。
The evaluation of the film-forming composition surface obtained in each example is shown in the table, and the hardness in the table is a measurement value relating to the strength of the coating film displayed in accordance with the standard below.
(1) Degree of destruction of paint film by finger touch (2) Degree of exfoliation when rubbed with nails (3) Degree of damage when rubbed with nails (4) (3) and (5) below Intermediate level (5) Nail scratches but nail mark remains (6) Intermediate level between (5) and (7) below (7) Nail mark level does not remain The reaction rate constants in the table are acetaldehyde Is calculated assuming that the decomposition of is linearly proportional to time, and its unit is min −1 .
In the examples, “parts” means parts by weight.

[実施例1]
平均粒径0.006μmの二酸化チタンの水性分散液をpH1.5に調製し、これを30℃に維持しながら撹拌下に所定量のエチルシリケートを滴下添加した。チタンとシリカの割合は表1に記載のように調節し、固形分濃度が10%となるようにした。濃度調製には水(イオン交換水)を用いた。加水分解触媒としては特に何にも添加しなかった。滴下終了後3時間30℃で撹拌反応させ、得られた液をマイヤーバー#5を用いて試験片のガラス板に0.75μmの膜厚になるように被膜を形成した。100℃で1時間乾燥した後、塗膜の外観及び硬度及び前述の方法に従って光触媒活性を測定した。結果を表1に示す。この結果から、SiO2 の割合が50%を超えてもなおアセトアルデヒドの分解能を有していることが判る。
[Example 1]
An aqueous dispersion of titanium dioxide having an average particle size of 0.006 μm was adjusted to pH 1.5, and a predetermined amount of ethyl silicate was added dropwise with stirring while maintaining this at 30 ° C. The ratio of titanium and silica was adjusted as shown in Table 1 so that the solid concentration was 10%. Water (ion exchange water) was used for concentration adjustment. No particular addition was made as a hydrolysis catalyst. After completion of the dropwise addition, the mixture was reacted at 30 ° C. for 3 hours, and a film was formed on the glass plate of the test piece using the Mayer bar # 5 so that the film thickness was 0.75 μm. After drying at 100 ° C. for 1 hour, the appearance and hardness of the coating film and the photocatalytic activity were measured according to the method described above. The results are shown in Table 1. From this result, it can be seen that even if the proportion of SiO 2 exceeds 50%, it still has acetaldehyde resolution.

Figure 2005163050
Figure 2005163050

[実施例2]
(1)珪素化合物の加水分解液の調製
撹拌機、温度計、還流冷却器を取り付けたセパラブルフラスコにメチルアルコール223.5部、エチルシリケート40(エチルシリケート5量体相当品、コルコート(株)製、商品名)30部を仕込み、均一に撹拌して30℃に維持する。これに加水分解率が約1000%となるようにイオン交換水45部と60%硝酸1.5部の混合液を一括添加し、30℃のままで5時間加水分解した。この様にして調製した加水分解液の固形分濃度はSiO2 として4%であった。
[Example 2]
(1) Preparation of hydrolyzed liquid of silicon compound In a separable flask equipped with a stirrer, thermometer and reflux condenser, 223.5 parts of methyl alcohol, ethyl silicate 40 (ethyl silicate pentamer equivalent, Colcoat Co., Ltd.) (Product name, product name) 30 parts are charged, and uniformly stirred and maintained at 30 ° C. A mixed solution of 45 parts of ion-exchanged water and 1.5 parts of 60% nitric acid was added all at once so that the hydrolysis rate was about 1000%, and the mixture was hydrolyzed at 30 ° C. for 5 hours. The hydrolyzed solution thus prepared had a solid content concentration of 4% as SiO 2 .

(2)TiO2 分散体との混合法
撹拌機、温度計、還流冷却器を取り付けたセパラブルフラスコに上記の加水分解液12.5部、イソプロピルアルコール55.8部を仕込み、均一に撹拌して30℃に維持する。これに粒径0.006μmのTiO2 分散体を所定量加えて、30℃、1時間撹拌した。得られた液のTiO2 /SiO2 比は表2に記載した通りであり、固形分濃度は10%に調節した。
(2) Mixing method with TiO 2 dispersion Into a separable flask equipped with a stirrer, thermometer and reflux condenser, 12.5 parts of the above hydrolyzed solution and 55.8 parts of isopropyl alcohol were charged and stirred uniformly. And maintain at 30 ° C. A predetermined amount of TiO 2 dispersion having a particle size of 0.006 μm was added thereto, and the mixture was stirred at 30 ° C. for 1 hour. The TiO 2 / SiO 2 ratio of the obtained liquid was as described in Table 2, and the solid content concentration was adjusted to 10%.

(3)被膜形成と光活性測定
前記の混合で得られた組成物液をマイヤーバー#3を用いて試験片に塗布し、実施例1と同様に100℃で乾燥し、計算上の膜厚0.45μmの塗膜を形成した。得られた試験片について光触媒活性を測定した。結果を表2に示す。ここで使用した試験片上の膜厚は実際面からみると極めて薄い膜であり、この様な薄膜でありながら光触媒活性を示すことは実用の際にはもっと膜厚が厚くなるため実用に耐えられるものとなる。
(3) Film formation and photoactivity measurement The composition liquid obtained by the above mixing was applied to a test piece using a Mayer bar # 3, dried at 100 ° C. in the same manner as in Example 1, and the calculated film thickness. A 0.45 μm coating film was formed. The photocatalytic activity of the obtained test piece was measured. The results are shown in Table 2. The film thickness on the test piece used here is an extremely thin film from the viewpoint of actual use, and it is possible to withstand practical use because it shows a photocatalytic activity even though it is such a thin film. It will be a thing.

Figure 2005163050
Figure 2005163050

[実施例3]
実施例2で得られた総固形分濃度10%の組成物をマイヤーバー#5を用いて試験片に塗布し、塗膜の乾燥条件を150℃、30分として、計算上の膜厚0.75μmの塗膜を形成した。得られた試験片について光触媒活性を測定した。結果を表3に示す。塗膜の乾燥を高温にすると塗膜硬度が若干向上するが、アセトアルデヒド分解に対する触媒効果の低下はみられず、膜厚が厚くなった分だけ分解速度が向上している事が認められる。
[Example 3]
The composition having a total solid content concentration of 10% obtained in Example 2 was applied to a test piece using a Mayer bar # 5, the coating film was dried at 150 ° C. for 30 minutes, and the calculated film thickness was 0. A 75 μm coating film was formed. The photocatalytic activity of the obtained test piece was measured. The results are shown in Table 3. When the coating film is dried at a high temperature, the coating film hardness is slightly improved, but the catalytic effect on acetaldehyde decomposition is not lowered, and it is recognized that the decomposition rate is improved by the increase in the film thickness.

Figure 2005163050
Figure 2005163050

[実施例4]
実施例2に於いて用いた珪素化合物の加水分解液の代わりに下記の方法で作成したシリカバインダーを用いて本発明の組成物を調製した。
撹拌機、温度計、還流冷却器を取り付けたセパラブルフラスコにメチルアルコール230.4部、メチルシリケート51(メチルシリケート4量体相当品、コルコート(株)製、商品名)23.4部を仕込み、均一に撹拌して30℃に維持する。これに加水分解率が約1000%となるようにイオン交換水44.7部と60%硝酸1.5部の混合液を一括添加し、30℃のままで5時間加水分解した。この様にして調製した加水分解液の固形分濃度はSiO2 として4%であった。
[Example 4]
A composition of the present invention was prepared using a silica binder prepared by the following method in place of the silicon compound hydrolyzate used in Example 2.
A separable flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 230.4 parts of methyl alcohol and methyl silicate 51 (methyl silicate tetramer equivalent, manufactured by Colcoat Co., Ltd., trade name) 23.4 parts. Stir uniformly and maintain at 30 ° C. A mixed solution of 44.7 parts of ion exchange water and 1.5 parts of 60% nitric acid was added all at once so that the hydrolysis rate was about 1000%, and the mixture was hydrolyzed at 30 ° C. for 5 hours. The hydrolyzed solution thus prepared had a solid content concentration of 4% as SiO 2 .

上記のシリカバインダーを用いて得られた各種組成物液をマイヤーバー#5を用いて試験片に塗布し、実施例3と同様に150℃で30分乾燥し(但し、サンプルNo.14は200℃30分乾燥)、計算上の膜厚0.75μmの塗膜を形成した。得られた試験片について光触媒活性を測定した。結果を表4に示す。メチルシリケート51を用いた塗膜は全体的に硬度が高い傾向が認められる。   Various composition liquids obtained using the above silica binder were applied to a test piece using a Mayer bar # 5 and dried at 150 ° C. for 30 minutes in the same manner as in Example 3 (however, sample No. 14 was 200 And dried at 30 ° C. for 30 minutes to form a coating film having a calculated film thickness of 0.75 μm. The photocatalytic activity of the obtained test piece was measured. The results are shown in Table 4. It is recognized that the coating film using methyl silicate 51 tends to have high hardness as a whole.

Figure 2005163050
Figure 2005163050

Claims (4)

0.001〜0.5μmの平均粒径を持つチタン酸化物、下記一般式(1)
[化1]
Si−X4 (1)
(ただし、X=ハロゲン、C1 8 のアルコキシ基で同一又は異なっていてもよい。)
で表わされる加水分解性珪素化合物の加水分解率50〜1500%の加水分解物及び溶媒からなり、チタン及び珪素の重量比が各々TiO2 およびSiO2 への換算値で30〜96:70〜4(合計100)であり、全組成物中の固形分濃度が30重量%以下であることを特徴とする光触媒用酸化チタン塗膜形成性液状組成物。
Titanium oxide having an average particle diameter of 0.001 to 0.5 μm, the following general formula (1)
[Chemical 1]
Si-X 4 (1)
(However, X = halogen, it may be the same or different alkoxy group of C 1 ~ 8.)
The hydrolyzable silicon compound represented by the above formula is composed of a hydrolyzate having a hydrolysis rate of 50 to 1500% and a solvent, and the weight ratio of titanium and silicon is 30 to 96:70 to 4 in terms of conversion to TiO 2 and SiO 2 , respectively. (Total 100) The solid content concentration in the total composition is 30% by weight or less, and the titanium oxide coating film-forming liquid composition for photocatalysts.
0.001〜0.5μmの平均粒径を持つチタン酸化物を分散含有した水性分散液を10〜50℃に維持し、これに下記一般式(1)で表わされる加水分解性珪素化合物を撹拌下に加えて1時間以上反応させ、加水分解率が50〜1500%の加水分解物を得る、チタン及び珪素の重量比が各々TiO2 およびSiO2 への換算値で30〜96:70〜4(合計100)であり、全組成物中の固形分濃度が30重量%以下である光触媒用酸化チタン塗膜形成性液状組成物の製法。
[化2]
一般式(1)
Si−X4 (1)
(ただし、X=ハロゲン、C1 8 のアルコキシ基で同一又は異なっていてもよい。)
An aqueous dispersion containing a titanium oxide having an average particle diameter of 0.001 to 0.5 μm is maintained at 10 to 50 ° C., and a hydrolyzable silicon compound represented by the following general formula (1) is stirred therein. In addition to the above, the reaction is performed for 1 hour or more to obtain a hydrolyzate having a hydrolysis rate of 50 to 1500%. The weight ratio of titanium and silicon is 30 to 96:70 to 4 in terms of conversion to TiO 2 and SiO 2 , respectively. (Total 100), The manufacturing method of the titanium oxide coating-film formation liquid composition for photocatalysts whose solid content concentration in all the compositions is 30 weight% or less.
[Chemical 2]
General formula (1)
Si-X 4 (1)
(However, X = halogen, it may be the same or different alkoxy group of C 1 ~ 8.)
0.001〜0.5μmの平均粒径を持つチタン酸化物を分散含有する水性分散液を10〜50℃に維持し、これに下記一般式(1)で表わされる加水分解性珪素化合物をアルコール中で加水分解率が50〜1500%になる量の水で加水分解させて得たアルコール性シリカゾルを加えて10〜50℃で混合し、チタン及び珪素の重量比が各々TiO2 およびSiO2 への換算値で30〜96:70〜4(合計100)であり、全組成物中の固形分濃度が30重量%以下である光触媒用酸化チタン塗膜形成性液状組成物の製法。
[化3]
一般式(1)
Si−X4 (1)
(ただし、X=ハロゲン、C1 8 のアルコキシ基で同一又は異なっていてもよい。)
An aqueous dispersion containing a titanium oxide having an average particle size of 0.001 to 0.5 μm is maintained at 10 to 50 ° C., and a hydrolyzable silicon compound represented by the following general formula (1) is added to the alcohol. The alcoholic silica sol obtained by hydrolysis with water in such an amount that the hydrolysis rate is 50 to 1500% is added and mixed at 10 to 50 ° C., and the weight ratio of titanium and silicon is changed to TiO 2 and SiO 2 , respectively. The manufacturing method of the titanium oxide coating-film formation liquid composition for photocatalysts which is 30-96: 70-4 (total 100) by the conversion value of, and the solid content concentration in all the compositions is 30 weight% or less.
[Chemical formula 3]
General formula (1)
Si-X 4 (1)
(However, X = halogen, it may be the same or different alkoxy group of C 1 ~ 8.)
0.001〜0.5μmの平均粒径を持つチタン酸化物、下記記一般式(1)
[化4]
Si−X4 (1)
(ただし、X=ハロゲン、C1 8 のアルコキシ基で同一又は異なっていてもよい。)
で表わされる加水分解性珪素化合物の加水分解率50〜1500%の加水分解物及び溶媒からなり、チタン及び珪素の重量比が各々TiO2 およびSiO2 への換算値で30〜96:70〜4(合計100)であり、全組成物中の固形分濃度が30重量%以下である液状組成物を塗布、乾燥して、厚さ0.1〜3μmの酸化チタン及び酸化珪素からなる塗膜を表面に形成した光触媒機能を有する基材。
Titanium oxide having an average particle diameter of 0.001 to 0.5 μm, the following general formula (1)
[Chemical formula 4]
Si-X 4 (1)
(However, X = halogen, it may be the same or different alkoxy group of C 1 ~ 8.)
The hydrolyzable silicon compound represented by the above formula is composed of a hydrolyzate having a hydrolysis rate of 50 to 1500% and a solvent, and the weight ratio of titanium and silicon is 30 to 96:70 to 4 in terms of conversion to TiO 2 and SiO 2 , respectively. A coating composition made of titanium oxide and silicon oxide having a thickness of 0.1 to 3 μm is applied by applying a liquid composition having a solid content concentration of 30% by weight or less in the total composition and drying. A substrate having a photocatalytic function formed on the surface.
JP2004368564A 2004-12-20 2004-12-20 Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same Pending JP2005163050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368564A JP2005163050A (en) 2004-12-20 2004-12-20 Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368564A JP2005163050A (en) 2004-12-20 2004-12-20 Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33219594A Division JP3732247B2 (en) 1994-12-13 1994-12-13 Titanium oxide coating film-forming liquid composition for photocatalyst and process for producing the same

Publications (1)

Publication Number Publication Date
JP2005163050A true JP2005163050A (en) 2005-06-23

Family

ID=34737444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368564A Pending JP2005163050A (en) 2004-12-20 2004-12-20 Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005163050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137783A (en) * 2007-12-04 2009-06-25 Pialex Technologies Corp Multifunctional ceramic material
CN104151875A (en) * 2014-07-10 2014-11-19 池州市英派科技有限公司 Strength-enhanced surface modified nano titanium dioxide and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137783A (en) * 2007-12-04 2009-06-25 Pialex Technologies Corp Multifunctional ceramic material
CN104151875A (en) * 2014-07-10 2014-11-19 池州市英派科技有限公司 Strength-enhanced surface modified nano titanium dioxide and preparation method thereof
CN104151875B (en) * 2014-07-10 2015-10-28 池州市英派科技有限公司 A kind of strengthened surface-modified nano titanium dioxide and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3732247B2 (en) Titanium oxide coating film-forming liquid composition for photocatalyst and process for producing the same
KR100350256B1 (en) Photocatalyst composite and process for producing the same
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP3559892B2 (en) Photocatalytic film and method for forming the same
JP3356437B2 (en) Photocatalyst, method for producing the same, and multifunctional member
JP3796403B2 (en) Photocatalytic oxide-containing composition, thin film and composite
TWI441678B (en) Photocatalyst coating and photocatalyst coating solution
KR20150028979A (en) Coating composition and uses thereof
JP2001179091A (en) Photocatalyst filter for cleaning air
JP2004337740A (en) Photocatalyst body
JP3961097B2 (en) Blind slat manufacturing method
CN1384152A (en) Titania nano-paint for photocatalytic decomposition of organic matter and its prepn
TWI280893B (en) Nano photocatalytic solution and application thereof
JP3791067B2 (en) Photocatalyst composition and glass article
JPH10212809A (en) Building material for external wall
JPH10167727A (en) Modified titanium oxide sol, photocatalyst composition and its forming agent
JP2004244608A (en) Hydrolytic polycondensation product solution, method for producing the same and transparent film forming composition given by using the same
JP4343335B2 (en) Titanium oxide coating film forming composition for photocatalyst and process for producing the same
JP2005163050A (en) Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same
JP2000017229A (en) Substrate film for photocatalytic film, formation thereof and article comprising base material having photocatalytic film formed using substrate film for photocatalytic film
JPH07222928A (en) Production of member having catalyst containing metal fine particles
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP2003138163A (en) Photocatalyst coating composition and method for producing the same and photocatalyst using the same
JP3995633B2 (en) Photocatalyst paint
JP2000302422A (en) Coating composition for forming photocatalyst film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106