JP2010043159A - Method for producing titanium oxide dispersion and titanium oxide film - Google Patents

Method for producing titanium oxide dispersion and titanium oxide film Download PDF

Info

Publication number
JP2010043159A
JP2010043159A JP2008206862A JP2008206862A JP2010043159A JP 2010043159 A JP2010043159 A JP 2010043159A JP 2008206862 A JP2008206862 A JP 2008206862A JP 2008206862 A JP2008206862 A JP 2008206862A JP 2010043159 A JP2010043159 A JP 2010043159A
Authority
JP
Japan
Prior art keywords
titanium oxide
dispersion
mass
hydrolyzate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008206862A
Other languages
Japanese (ja)
Inventor
Masahiro Honma
正洋 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2008206862A priority Critical patent/JP2010043159A/en
Publication of JP2010043159A publication Critical patent/JP2010043159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Catalysts (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium oxide dispersion capable of obtaining high photocatalytic activity, in which a titanium oxide particle is highly dispersed, and reduction in photocatalytic activity caused by acidity or alkalinity is avoided, to provide a method for producing the dispersion, and to provide a titanium oxide film. <P>SOLUTION: This titanium oxide dispersion is produced by a neutralization step of mixing at least one acid selected from among nitric acid, hydrochloric acid and a monovalent carboxylic acid with a hydrolyzate of an aminosilane compound represented by general formula (1) so as to maintain a pH of 5-8 to obtain a neutralized product of the hydrolyzate, and a dispersion step of mixing water or a hydrophilic solvent, titanium oxide powder with the hydrolyzate to disperse the titanium oxide powder to obtain the titanium oxide dispersion. In the dispersion step, a mixing amount of the titanium oxide powder is determined so that a content of the titanium oxide powder in the dispersion is 1-40 mass%, and an amount of the neutralized product of the hydrolyzate obtained by hydrolysis of the compound represented by general formula (1) is 0.5-20 pts.mass based on the titanium oxide powder of 100 pts.mass. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化チタン粒子を高分散させた酸化チタン分散液の製造方法に関するものである。   The present invention relates to a method for producing a titanium oxide dispersion in which titanium oxide particles are highly dispersed.

酸化チタン粉末は、白色顔料として古くから利用されており、近年は化粧品などの紫外線遮蔽材料、光触媒、コンデンサ、サーミスタの構成材料あるいはチタン酸バリウムの原料等電子材料に用いられる焼結材料に広く利用されている。特にここ数年、光触媒としての利用が盛んに試みられており、光触媒反応の用途開発が盛んに行われている。   Titanium oxide powder has long been used as a white pigment, and in recent years, it has been widely used in sintered materials used in electronic materials such as UV shielding materials for cosmetics, photocatalysts, capacitors, thermistors, and barium titanate materials. Has been. In particular, in recent years, the use as a photocatalyst has been actively attempted, and the use development of the photocatalytic reaction has been actively performed.

この酸化チタン光触媒の用途は非常に多岐に亘っており、水の分解による水素の発生、酸化還元反応を利用した有機化合物の合成、排ガス処理、空気清浄、防臭、殺菌、抗菌、水処理、照明機器等の汚れ防止等、数多くの用途開発が行われている。   This titanium oxide photocatalyst has a wide variety of uses. Generation of hydrogen by water decomposition, synthesis of organic compounds using redox reaction, exhaust gas treatment, air purification, deodorization, sterilization, antibacterial, water treatment, lighting. Numerous applications have been developed, such as preventing contamination of equipment.

しかしながら、酸化チタンは可視光付近の波長領域において大きな屈折率を示すため、可視光領域では殆ど光吸収は起こらない。屋内での蛍光灯などの下での利用を考えると、蛍光灯のスペクトルは殆どが400nm以上であるため、光触媒として十分な特性を発現することはできない。そこで、可視光領域での触媒活性を発現させ、より利用性の高い高活性の光触媒の開発が行なわれている。   However, since titanium oxide exhibits a large refractive index in the wavelength region near visible light, light absorption hardly occurs in the visible light region. Considering the use under an indoor fluorescent lamp or the like, since the spectrum of the fluorescent lamp is almost 400 nm or more, it cannot exhibit sufficient characteristics as a photocatalyst. In view of this, development of highly active photocatalysts that exhibit catalytic activity in the visible light region and have higher utilization is underway.

近年、従前の金属イオンを酸化チタンにドープした光触媒の不十分な触媒活性を改善するものとして、特開2006−1774号公報(特許文献1)には、硫黄含有酸化チタン粉末を用いた分散剤が開示されている。この酸化チタン分散体塗膜形成物によれば、紫外線領域だけではなく可視光領域の光触媒活性が高いことから、太陽光の当たらない蛍光灯等の室内においても十分に光触媒作用を発揮することができるものである。   In recent years, JP 2006-1774 (Patent Document 1) discloses a dispersant using sulfur-containing titanium oxide powder as an improvement in the insufficient catalytic activity of a conventional photocatalyst doped with titanium oxide with metal ions. Is disclosed. According to this titanium oxide dispersion coating film formed product, the photocatalytic activity not only in the ultraviolet region but also in the visible light region is high, so that the photocatalytic action can be sufficiently exerted even in a room such as a fluorescent lamp that is not exposed to sunlight. It can be done.

また、通常の酸化チタン分散液として、特開平11−319577号公報(特許文献2)には、有機系界面活性剤や強酸を用いず、非酸性条件下で高分散させ、高い透明性と光触媒活性を有する膜をコーティングできる分散液が開示されている。具体的には、光触媒微粒子を多孔質シリカにより表面被覆することにより得られる複合光触媒微粒子が、アルカリ条件下で分散、安定化した複合光触媒微粒子分散液である。   In addition, as an ordinary titanium oxide dispersion, Japanese Patent Application Laid-Open No. 11-319577 (Patent Document 2) discloses that a high dispersion and photocatalyst are achieved by highly dispersing under non-acidic conditions without using an organic surfactant or a strong acid. Dispersions that can coat active membranes are disclosed. Specifically, a composite photocatalyst fine particle dispersion obtained by dispersing and stabilizing composite photocatalyst fine particles obtained by coating the surface of photocatalyst fine particles with porous silica under alkaline conditions.

また、特開2007−217268号公報(特許文献3)には、主成分として屈折率が1.50以上の有機酸を分散安定剤として用いた、透明性及び安定性に優れた有機溶媒分散液が開示されている。
また、特開2008−120961号公報(特許文献4)には、 (a)以下の式で表わされるアミノ基を含むシラン化合物 R4−n−Si−(OR’) (式中、Rはアミノ基含有の有機基を表わし、R’はメチル基、エチル基またはプロピル基を表わし、nは1〜3から選択される整数を表わす)及び(b)HBO及びBからなる群から選択される少なくとも1種のホウ素化合物を、(a)成分1モルに対して(b)成分0.02モル以上の比率で反応させて得られる反応生成物を含む、高分子物質と、(c)光触媒活性を有する酸化物半導体と、を含む、高分子組成物が開示されている。
Further, JP 2007-217268 A (Patent Document 3) discloses an organic solvent dispersion excellent in transparency and stability using an organic acid having a refractive index of 1.50 or more as a main component as a dispersion stabilizer. Is disclosed.
JP 2008-120961 A (Patent Document 4) discloses (a) a silane compound containing an amino group represented by the following formula: R 4-n —Si— (OR ′) n (where R is An amino group-containing organic group, R ′ represents a methyl group, an ethyl group or a propyl group, n represents an integer selected from 1 to 3) and (b) from H 3 BO 3 and B 2 O 3 A polymer substance comprising a reaction product obtained by reacting at least one boron compound selected from the group consisting of (b) component 0.02 mol or more with respect to 1 mol of component (a); , (C) an oxide semiconductor having photocatalytic activity, and a polymer composition is disclosed.

特開2006−1774号公報(特許請求の範囲)JP 2006-1774 A (Claims) 特開平11−319577号公報(特許請求の範囲)JP 11-319577 A (Claims) 特開2007−217268号公報(特許請求の範囲)JP 2007-217268 A (Claims) 特開2008−120961号公報(特許請求の範囲)Japanese Patent Application Laid-Open No. 2008-120961 (Claims)

本発明者が検討したところ、特許文献2は、ポリシロキサンを用いた表面被覆によって得られる分散のメカニズムであるため、アルカリ側でしか、分散の安定化が困難であり、また、難分解性のシリカが酸化チタン表面を被覆するため、光触媒活性の低下に繋がる虞があった。また、特許文献3では、有機酸を分散安定剤として用いるため、光触媒分散液は酸性となる。従って、腐食しやすい金属への接触は好ましくないという欠点があった。更には、特許文献2及び特許文献3では、分散液の液性は酸性又はアルカリ性が強いであるため、この酸性あるいはアルカリ性に起因する物質が光触媒活性を低下させる虞があった。また、特許文献4では、高分子組成物が中性付近となる領域では、酸化チタンが良好に分散しないという欠点があった。   As a result of investigation by the present inventor, Patent Document 2 is a dispersion mechanism obtained by surface coating using polysiloxane, so that it is difficult to stabilize dispersion only on the alkali side, and it is difficult to decompose. Since silica coats the surface of titanium oxide, there is a possibility that the photocatalytic activity may be reduced. Moreover, in patent document 3, since an organic acid is used as a dispersion stabilizer, the photocatalyst dispersion liquid becomes acidic. Therefore, there is a disadvantage that contact with a metal which is easily corroded is not preferable. Furthermore, in patent document 2 and patent document 3, since the liquid property of the dispersion liquid is strong in acidity or alkalinity, there is a possibility that a substance resulting from the acidity or alkalinity may reduce the photocatalytic activity. Moreover, in patent document 4, there existed a fault that a titanium oxide did not disperse | distribute favorably in the area | region where a polymer composition becomes neutrality vicinity.

したがって、本発明の目的は、酸化チタン粒子が高分散されており、且つ、酸性又はアルカリ性に起因する光触媒活性の低下が少なく、高い光触媒活性が得られる酸化チタン分散液及びその製造方法並びに酸化チタン膜を提供することにある。   Accordingly, an object of the present invention is to provide a titanium oxide dispersion in which titanium oxide particles are highly dispersed and the photocatalytic activity caused by acidity or alkalinity is small and high photocatalytic activity is obtained, a method for producing the same, and titanium oxide. It is to provide a membrane.

すなわち、本発明(1)は、下記一般式(1):     That is, the present invention (1) includes the following general formula (1):

(式中、Rは、アミノ基を有する炭化水素基を示し、R、R及びRは、炭素数が1〜8の炭化水素基を示し、R、R及びRは同一でも異なっていてもよい。)
で表されるアミノシラン化合物の加水分解物に、pHが5〜8となるように硝酸、塩酸及び1価のカルボン酸より選ばれる少なくとも一種の酸を混合し、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物を得る中和工程と、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物に、水又は親水性溶媒と、酸化チタン粉末とを混合し、該酸化チタン粉末を分散させて、酸化チタン分散液を得る分散工程と、を有する酸化チタン分散液の製造方法であり、
該分散工程での該酸化チタン粉末の混合量が、該酸化チタン分散液中の該酸化チタン粉末の含有量が1〜40質量%となる量であり、
前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物が、該酸化チタン粉末100質量部に対して、0.5〜20質量部であること、
を特徴とする酸化チタン分散液の製造方法を提供するものである。
(In the formula, R 1 represents a hydrocarbon group having an amino group, R 2 , R 3 and R 4 represent a hydrocarbon group having 1 to 8 carbon atoms, and R 2 , R 3 and R 4 represent They may be the same or different.)
At least one acid selected from nitric acid, hydrochloric acid and monovalent carboxylic acid is mixed with the hydrolyzate of the aminosilane compound represented by the formula (1) so that the pH is 5-8. A neutralization step of obtaining a neutralized product of a hydrolyzate of an aminosilane compound, a neutralized product of a hydrolyzate of an aminosilane compound represented by the general formula (1), water or a hydrophilic solvent, and titanium oxide powder A dispersion step of mixing and dispersing the titanium oxide powder to obtain a titanium oxide dispersion, and a method for producing a titanium oxide dispersion,
The mixing amount of the titanium oxide powder in the dispersion step is an amount such that the content of the titanium oxide powder in the titanium oxide dispersion is 1 to 40% by mass,
The neutralized product of the hydrolyzate of the aminosilane compound represented by the general formula (1) is 0.5 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide powder.
The manufacturing method of the titanium oxide dispersion liquid characterized by these is provided.

また、本発明(2)は、前記本発明(1)の製造方法で得られた酸化チタン分散液を用いて形成されたことを特徴とする酸化チタン膜を提供するものである。   In addition, the present invention (2) provides a titanium oxide film formed using the titanium oxide dispersion obtained by the production method of the present invention (1).

本発明によれば、酸化チタン粒子が高分散されており、且つ、酸性又はアルカリ性に起因する光触媒活性の低下が少なく、高い光触媒活性が得られる酸化チタン分散液の製造方法並びに酸化チタン膜を提供することができる。   According to the present invention, there are provided a method for producing a titanium oxide dispersion and a titanium oxide film in which titanium oxide particles are highly dispersed, and the photocatalytic activity is less reduced due to acidity or alkalinity, and high photocatalytic activity is obtained. can do.

本発明の酸化チタン分散液の製造方法は、下記一般式(1):   The production method of the titanium oxide dispersion of the present invention is represented by the following general formula (1):

(式中、Rは、アミノ基を有する炭化水素基を示し、R、R及びRは、炭素数が1〜8の炭化水素基を示し、R、R及びRは同一でも異なっていてもよい。)
で表されるアミノシラン化合物の加水分解物に、pHが5〜8となるように硝酸、塩酸及び1価のカルボン酸より選ばれる少なくとも一種の酸を混合し、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物を得る中和工程と、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物に、水又は親水性溶媒と酸化チタン粉末とを混合し、該酸化チタン粉末を分散させて、酸化チタン分散液を得る分散工程と、を有する酸化チタン分散液の製造方法であり、
該分散工程での該酸化チタン粉末の混合量が、該酸化チタン分散液中の該酸化チタン粉末の含有量が1〜40質量%となる量であり、
前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物の量が、該酸化チタン粉末100質量部に対して、0.5〜20質量部である酸化チタン分散液の製造方法である。
なお、通常、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物は、含水物又は該中和物が分散している中和物分散液であるため、ここで定義するアミノシラン化合物の加水分解物の中和物の量は、含水物の乾燥物又は中和物分散液中の乾燥物の質量である。そして、乾燥物の質量は、乾燥前のアミノシラン化合物の加水分解物の中和物の含水物又は中和物分散液の測定試料を、大気中で、120℃で加熱し、質量変化が0.2質量%/分以下となったときの測定試料の質量である。例えば、乾燥前のアミノシラン化合物の加水分解物の中和物の含水物又は中和物分散液の質量がX(g)、大気中で、120℃で加熱し、質量変化が0.2質量%/分以下となったときの質量がY(g)であったとすると、乾燥前のアミノシラン化合物の加水分解物の中和物の含水物又は中和物分散液中の乾燥物の質量割合は、(Y/X)×100(%)になるので、乾燥物の質量割合が(Y/X)×100(%)として、アミノシラン化合物の加水分解物の中和物の含水物又は中和物分散液の使用量を算出する(アミノシラン化合物の加水分解物の中和物の質量=乾燥前のアミノシラン化合物の加水分解物の中和物の含水物又は中和物分散液の使用量×(Y/X)で算出)。
(In the formula, R 1 represents a hydrocarbon group having an amino group, R 2 , R 3 and R 4 represent a hydrocarbon group having 1 to 8 carbon atoms, and R 2 , R 3 and R 4 represent They may be the same or different.)
At least one acid selected from nitric acid, hydrochloric acid and monovalent carboxylic acid is mixed with the hydrolyzate of the aminosilane compound represented by the formula (1) so that the pH is 5-8. A neutralization step for obtaining a neutralized product of a hydrolyzate of an aminosilane compound and a neutralized product of a hydrolyzate of an aminosilane compound represented by the general formula (1) are mixed with water or a hydrophilic solvent and titanium oxide powder. A dispersion step of dispersing the titanium oxide powder to obtain a titanium oxide dispersion, and a method for producing a titanium oxide dispersion,
The mixing amount of the titanium oxide powder in the dispersion step is an amount such that the content of the titanium oxide powder in the titanium oxide dispersion is 1 to 40% by mass,
The manufacturing method of the titanium oxide dispersion liquid whose quantity of the neutralized product of the hydrolyzate of the aminosilane compound represented by the said General formula (1) is 0.5-20 mass parts with respect to 100 mass parts of this titanium oxide powder. It is.
In addition, since the neutralized product of the hydrolyzate of the aminosilane compound represented by the general formula (1) is usually a hydrated product or a neutralized product dispersion in which the neutralized product is dispersed, it is defined here. The amount of the hydrolyzate of the aminosilane compound is the mass of the dried product in the water-containing product or the dried product in the neutralized product dispersion. And the mass of the dried product was measured by heating the water-containing product of the neutralized product of the hydrolyzate of the aminosilane compound or the neutralized product dispersion before drying at 120 ° C. in the atmosphere. It is the mass of the measurement sample when it becomes 2 mass% / min or less. For example, the weight of the hydrous or neutralized dispersion of the hydrolyzate of the aminosilane compound before drying is X (g), heated at 120 ° C. in the air, and the mass change is 0.2% by mass. Assuming that the mass when Y / g or less is Y (g), the weight ratio of the hydrolyzate of the hydrolyzate of the aminosilane compound before drying or the dry matter in the neutralized product dispersion is: Since (Y / X) × 100 (%), the weight ratio of the dried product is (Y / X) × 100 (%), and the hydrous or neutralized product dispersion of the hydrolyzate of the aminosilane compound is used. The amount of liquid used is calculated (mass of neutralized product of hydrolyzate of aminosilane compound = amount of hydrous neutralized product of hydrolyzed product of aminosilane compound or amount of neutralized product dispersion before drying x (Y / X).

本発明の酸化チタン分散液の製造方法では、先ず、前記一般式(1)で表わされるアミノシラン化合物の加水分解物に、pHが5〜8となるように、硝酸、塩酸及び1価のカルボン酸より選ばれる少なくとも一種の酸を混合し、前記一般式(1)で表わされるアミノシラン化合物の加水分解物を中和して、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物を得る中和工程を行う。   In the method for producing a titanium oxide dispersion of the present invention, first, the hydrolyzate of the aminosilane compound represented by the general formula (1) is mixed with nitric acid, hydrochloric acid, and monovalent carboxylic acid so that the pH becomes 5-8. And neutralizing the hydrolyzate of the aminosilane compound represented by the general formula (1) by mixing at least one acid selected from the above and neutralizing the hydrolyzate of the aminosilane compound represented by the general formula (1). The neutralization process which obtains a thing is performed.

前記一般式(1)中、Rは、アミノ基、すなわち、第一級アミノ基、第二級アミノ基又は第三級アミノ基を有する炭化水素基である。そして、Rに係る該アミノ基は、該酸により中和される基である。Rに係る該アミノ基が、第二級アミノ基又は第三級アミノ基の場合、その第二級アミノ基又は第三級アミノ基の窒素原子に結合する基としては、直鎖、分岐鎖又は脂環式のアルキル基、芳香族基などが挙げられる。Rに係る該アミノ基は、1種であっても、2種以上であってもよく、また、1つのR中に、1個の該アミノ基を有していてもよく、2個以上の該アミノ基を有していてもよい。また、Rに係る該アミノ基が、Rに係る該炭化水素基に結合している位置は、特に制限されない。 In the general formula (1), R 1 is an amino group, that is, a hydrocarbon group having a primary amino group, a secondary amino group, or a tertiary amino group. The amino group according to R 1 is a group that is neutralized by the acid. When the amino group according to R 1 is a secondary amino group or a tertiary amino group, the group bonded to the nitrogen atom of the secondary amino group or the tertiary amino group may be a straight chain or branched chain Or an alicyclic alkyl group, an aromatic group, etc. are mentioned. The amino group according to R 1 may be one kind or two or more kinds, and one R 1 may have one amino group, and two You may have the said amino group. Further, the amino group according to R 1 is located which is bound to the hydrocarbon group of the R 1 is not particularly limited.

に係る該炭化水素基としては、直鎖、分岐鎖又は脂環式のアルキル基、芳香族基などが挙げられる。また、Rは、酸素原子又はRに係る該アミノ基の窒素原子以外の窒素原子を有している炭化水素基であっても、Rに係る該アミノ基の窒素原子以外には、窒素原子又は酸素原子を有さない炭化水素基であってもよい。Rに係る該炭化水素基が、Rに係る該アミノ基の窒素原子以外の窒素原子又は酸素原子を有している場合、Rに係る該炭化水素基は、直鎖、分岐鎖、脂環式、芳香族環式等の炭化水素鎖中に、例えば、エーテル結合、カルボニル結合、エステル結合、アミド結合等、あるいは、第一級アミノ基、第二級アミノ基、第三級アミノ基、第四級アンモニウム基、水酸基等を有する基である。 Examples of the hydrocarbon group according to R 1 include a linear, branched, or alicyclic alkyl group, an aromatic group, and the like. R 1 may be an oxygen atom or a hydrocarbon group having a nitrogen atom other than the nitrogen atom of the amino group according to R 1, but other than the nitrogen atom of the amino group according to R 1 , It may be a hydrocarbon group having no nitrogen atom or oxygen atom. Hydrocarbon group according to R 1 is, if a nitrogen atom or an oxygen atom other than the nitrogen atom of said amino group according to R 1, hydrocarbon groups of the R 1 is a straight-chain, branched chain, In an alicyclic or aromatic cyclic hydrocarbon chain, for example, an ether bond, a carbonyl bond, an ester bond, an amide bond, etc., or a primary amino group, a secondary amino group, or a tertiary amino group , A group having a quaternary ammonium group, a hydroxyl group or the like.

前記一般式(1)中、R、R及びRは、炭素数が1〜8の炭化水素基であり、例えば、直鎖、分岐鎖又は脂環式のアルキル基、芳香族基等が挙げられる。また、R、R及びRは同一でも異なっていてもよい。 In said general formula (1), R < 2 >, R < 3 > and R < 4 > are C1-C8 hydrocarbon groups, for example, a linear, branched or alicyclic alkyl group, an aromatic group, etc. Is mentioned. R 2 , R 3 and R 4 may be the same or different.

、R及びRは、いずれも、RO−、RO−及びRO−とのように、酸素原子を介して、前記一般式(1)で表わされるアミノシラン化合物のSi原子に結合している。 R 2 , R 3, and R 4 are all aminosilane compounds represented by the general formula (1) via an oxygen atom, such as R 2 O—, R 3 O—, and R 4 O—. Bonded to Si atom.

そして、前記一般式(1)で表わされるアミノシラン化合物のうち、下記一般式(2):   Of the aminosilane compounds represented by the general formula (1), the following general formula (2):

(式中、R及びRは、水素原子、又は基中に1個以上の酸素原子又は窒素原子を有してもよい炭化水素基を示し、R及びRは、同一であっても異なってもよく、Rは、炭素数1〜8の二価の有機基を示し、R、R及びR10は、炭素数が1〜8の炭化水素基を示し、R、R及びR10は同一でも異なっていてもよい。)
で表わされるアミノシラン化合物が、酸化チタンの分散性が良好となる点で好ましい。
(Wherein R 5 and R 6 represent a hydrogen atom or a hydrocarbon group that may have one or more oxygen atoms or nitrogen atoms in the group, and R 5 and R 6 are the same, R 7 represents a divalent organic group having 1 to 8 carbon atoms, R 8 , R 9 and R 10 represent a hydrocarbon group having 1 to 8 carbon atoms, R 8 , R 9 and R 10 may be the same or different.)
Is preferable in that the dispersibility of titanium oxide is good.

前記一般式(2)中、R及びRは、水素原子、又は基中に1個以上の酸素原子又は窒素原子を有してもよい炭化水素基である。つまり、R及びRの両方が水素原子の場合、前記一般式(2)で表わされるアミノシラン化合物は、第一級のアミノ基を有するアミノシラン化合物であり、R及びRのいずれか一方が水素原子で、他方が基中に1個以上の酸素原子又は窒素原子を有してもよい炭化水素基の場合、前記一般式(2)で表わされるアミノシラン化合物は、第二級のアミノ基を有するアミノシラン化合物であり、R及びRの両方が基中に1個以上の酸素原子又は窒素原子を有してもよい炭化水素基の場合、前記一般式(2)で表わされるアミノシラン化合物は、第三級のアミノ基を有するアミノシラン化合物である。 In the general formula (2), R 5 and R 6 are a hydrogen atom or a hydrocarbon group that may have one or more oxygen atoms or nitrogen atoms in the group. That is, when both R 5 and R 6 are hydrogen atoms, the aminosilane compound represented by the general formula (2) is an aminosilane compound having a primary amino group, and one of R 5 and R 6 Is a hydrogen atom and the other is a hydrocarbon group which may have one or more oxygen atoms or nitrogen atoms in the group, the aminosilane compound represented by the general formula (2) is a secondary amino group. In the case where both R 5 and R 6 are hydrocarbon groups that may have one or more oxygen atoms or nitrogen atoms in the group, the aminosilane compound represented by the general formula (2) Is an aminosilane compound having a tertiary amino group.

及びRが、該基中に1個以上の酸素原子又は窒素原子を有してもよい炭化水素基の場合、R及びRとしては、酸化チタンの分散性が高くなる点で、炭素数が1〜3の直鎖、分岐鎖又は脂環式のアルキル基が好ましく、そのうち、炭素数が1〜3のアルキル基が特に好ましく、メチル基、エチル基がより好ましい。 In the case where R 5 and R 6 are hydrocarbon groups that may have one or more oxygen atoms or nitrogen atoms in the group, R 5 and R 6 are used in that the dispersibility of titanium oxide is increased. A linear, branched or alicyclic alkyl group having 1 to 3 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is particularly preferable, and a methyl group or an ethyl group is more preferable.

また、R及びRに係る該基中に1個以上の酸素原子又は窒素原子を有する炭化水素基としては、直鎖、分岐鎖、脂環式、芳香族環式等の炭化水素鎖中に、例えば、エーテル結合、カルボニル結合、エステル結合、アミド結合等、あるいは、第一級アミノ基、第二級アミノ基、第三級アミノ基、第四級アンモニウム基、水酸基、等を有する基である。これらのうち、R及びRに係る該基中に1個以上の酸素原子又は窒素原子を有する炭化水素基としては、第一級アミノ基、第二級アミノ基又は第三級アミノ基を有する炭素数が1〜3の炭化水素基が好ましい。 In addition, the hydrocarbon group having one or more oxygen atoms or nitrogen atoms in the group according to R 5 and R 6 includes hydrocarbon chains such as straight chain, branched chain, alicyclic, and aromatic cyclic. In addition, for example, an ether bond, a carbonyl bond, an ester bond, an amide bond, etc., or a group having a primary amino group, secondary amino group, tertiary amino group, quaternary ammonium group, hydroxyl group, etc. is there. Among these, as the hydrocarbon group having one or more oxygen atoms or nitrogen atoms in the groups according to R 5 and R 6 , a primary amino group, a secondary amino group, or a tertiary amino group is used. A hydrocarbon group having 1 to 3 carbon atoms is preferred.

前記一般式(2)中、Rは、炭素数1〜8の二価の有機基であり、例えば、直鎖、分岐鎖又は脂環式のアルキレン基、アルキル基を有してもよいフェニレン基等である。 In the general formula (2), R 7 is a divalent organic group having 1 to 8 carbon atoms, and for example, phenylene which may have a linear, branched or alicyclic alkylene group or an alkyl group. Group.

前記一般式(2)中、R、R及びR10は、炭素数1〜3のアルキル基であり、メチル基、エチル基、n−プロピル基、iso−プロピル基である。また、R、R及びR10は、同一であっても異なってもよい。 In the general formula (2), R 8, R 9 and R 10 is an alkyl group having 1 to 3 carbon atoms, a methyl group, an ethyl group, n- propyl group, an iso- propyl group. R 8 , R 9 and R 10 may be the same or different.

前記一般式(2)で表わされるアミノシラン化合物としては、例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシランなどが挙げられ、市販製品としては、信越化学工業株式会社製品KBM−903、KBE−903、KBM−603、KBE−603等が挙げられる。これらのうち、3−アミノプロピルトリメトキシシランが、保存安定性、酸化チタン分散液を用いて得られる酸化チタン膜の硬化性に優れる点で好ましい。   Examples of the aminosilane compound represented by the general formula (2) include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N -2- (aminoethyl) -3-aminopropyltriethoxysilane and the like, and commercially available products include Shin-Etsu Chemical Co., Ltd. products KBM-903, KBE-903, KBM-603, KBE-603 and the like. . Of these, 3-aminopropyltrimethoxysilane is preferable in terms of storage stability and excellent curability of the titanium oxide film obtained using the titanium oxide dispersion.

前記一般式(1)で表わされるアミノシラン化合物の加水分解物を得る方法としては、特に制限されず、例えば、前記一般式(1)で表わされるアミノシラン化合物に、水を添加して、50℃以下で、1〜8時間撹拌する方法が挙げられる。また、市販の前記一般式(1)で表わされるアミノシラン化合物の加水分解物としては、例えば、3−アミノプロピルトリメトキシシランの加水分解物である信越化学工業株式会社製品KBP−90が挙げられる。   The method for obtaining the hydrolyzate of the aminosilane compound represented by the general formula (1) is not particularly limited. For example, water is added to the aminosilane compound represented by the general formula (1), and the temperature is 50 ° C. or less. And the method of stirring for 1 to 8 hours is mentioned. Moreover, as a hydrolyzate of the aminosilane compound represented by the said general formula (1) on the market, Shin-Etsu Chemical Co., Ltd. product KBP-90 which is a hydrolyzate of 3-aminopropyltrimethoxysilane is mentioned, for example.

そして、該中和工程では、前記一般式(1)で表わされるアミノシラン化合物の加水分解物に、pHが5〜8となるように、好ましくはpHが6〜7となるように、該酸を混合し、前記一般式(1)で表わされるアミノシラン化合物の加水分解物を中和する。前記一般式(1)で表わされるアミノシラン化合物の加水分解物に該酸を加えて、pHを上記範囲とすることにより、鉄、アルミニウム等の金属上に塗布する際に、腐食の問題が生じず、且つ、酸化チタン分散液の保存安定性及び分散性が優れる。   In the neutralization step, the acid is added to the hydrolyzate of the aminosilane compound represented by the general formula (1) so that the pH is 5 to 8, preferably 6 to 7. It mixes and neutralizes the hydrolyzate of the aminosilane compound represented by the said General formula (1). By adding the acid to the hydrolyzate of the aminosilane compound represented by the general formula (1) and adjusting the pH to the above range, there is no problem of corrosion when coating on a metal such as iron or aluminum. Moreover, the storage stability and dispersibility of the titanium oxide dispersion are excellent.

本発明の酸化チタン分散液の製造方法に係る酸は、酸化チタンの分散性が高くなる点で、硝酸、塩酸及び1価のカルボン酸から選ばれる少なくとも一種以上の酸である。1価のカルボン酸とは、化合物中に1個のカルボキシル基を有する化合物である。例えば、蟻酸、酢酸、プロピオン酸、n−酪酸、イソ酪酸、n−吉草酸、イソ吉草酸、2−メチル酪酸、ピバリン酸、トリメチル酢酸、アクリル酸、クロトン酸、ビニル酢酸、チグリン酸、4−ペンテン酸、trans−2−ペンテン酸、シクロブタンカルボン酸、安息香酸などが挙げられる。該酸の混合量は、酸の種類によって、適宜選択される。特に、硝酸及び酢酸が光触媒活性に優れる点、酸化チタンの分散性に優れる点で好ましい。   The acid according to the method for producing a titanium oxide dispersion of the present invention is at least one acid selected from nitric acid, hydrochloric acid, and monovalent carboxylic acid in that the dispersibility of titanium oxide is increased. A monovalent carboxylic acid is a compound having one carboxyl group in the compound. For example, formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, isovaleric acid, 2-methylbutyric acid, pivalic acid, trimethylacetic acid, acrylic acid, crotonic acid, vinylacetic acid, tiglic acid, 4- Examples include pentenoic acid, trans-2-pentenoic acid, cyclobutanecarboxylic acid, benzoic acid, and the like. The mixing amount of the acid is appropriately selected depending on the type of acid. In particular, nitric acid and acetic acid are preferable from the viewpoint of excellent photocatalytic activity and the dispersibility of titanium oxide.

次いで、本発明の酸化チタン分散液の製造方法では、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物に、水又は該親水性溶媒と、酸化チタン粉末とを混合し、該酸化チタン粉末を分散させることにより、酸化チタン分散液を得る分散工程を行う。
前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物の量は、該分散工程で混合する該酸化チタン粉末100質量部に対して、0.5〜20質量部、好ましくは4〜10質量部である。前記範囲にあることにより、酸化チタンの分散性に優れ、且つ、光触媒活性が高い酸化チタン分散液が得られる。
Next, in the method for producing a titanium oxide dispersion of the present invention, water or the hydrophilic solvent and titanium oxide powder are mixed with the neutralized product of the hydrolyzate of the aminosilane compound represented by the general formula (1). Then, a dispersion step of obtaining a titanium oxide dispersion is performed by dispersing the titanium oxide powder.
The amount of the hydrolyzate of the aminosilane compound represented by the general formula (1) is 0.5 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide powder mixed in the dispersion step, preferably 4 to 10 parts by mass. By being in the above range, a titanium oxide dispersion having excellent dispersibility of titanium oxide and high photocatalytic activity can be obtained.

本発明の酸化チタン分散液の製造方法に係る該酸化チタン粉末としては、酸化チタン、窒素や硫黄を内部に含む酸化チタン、硫黄をTiサイトにドープした酸化チタン、酸素が欠損した酸化チタン、貴金属を担持した酸化チタン、遷移金属が担持された酸化チタン、遷移金属を内部に含む酸化チタンなどが挙げられる。これらのうち、可視光で高活性を示す点で、硫黄をTiサイトにドープした酸化チタンが好ましい。また、該酸化チタン粉末は、酸化チタンに遷移金属や貴金属が添加又は担持されたものでもよい。遷移金属や貴金属の担持量は、種類によって異なるが、触媒活性が高くなるように設定され、通常、0.1〜5質量%である。   Examples of the titanium oxide powder according to the method for producing a titanium oxide dispersion of the present invention include titanium oxide, titanium oxide containing nitrogen and sulfur therein, titanium oxide doped with sulfur at a Ti site, titanium oxide lacking oxygen, and noble metal. And titanium oxide carrying transition metal, titanium oxide containing transition metal therein, and the like. Of these, titanium oxide doped with sulfur at the Ti site is preferred in that it exhibits high activity with visible light. The titanium oxide powder may be one in which a transition metal or a noble metal is added or supported on titanium oxide. The loading amount of the transition metal or noble metal varies depending on the type, but is set so that the catalytic activity is high, and is usually 0.1 to 5% by mass.

該酸化チタン粉末を混合する際の該酸化チタンの混合量は、酸化チタン分散液中の該酸化チタン粉末の含有量が1〜40質量%、好ましくは10〜20質量%となる量である。該酸化チタンの混合量が、上記範囲未満だと、酸化チタン光触媒膜の活性が低くなり、また、上記範囲を超えると、酸化チタンの分散性が悪くなる。   The mixing amount of the titanium oxide when mixing the titanium oxide powder is such that the content of the titanium oxide powder in the titanium oxide dispersion is 1 to 40% by mass, preferably 10 to 20% by mass. When the mixing amount of the titanium oxide is less than the above range, the activity of the titanium oxide photocatalyst film is lowered, and when it exceeds the above range, the dispersibility of the titanium oxide is deteriorated.

本発明の酸化チタン分散液に係る該親水性有機溶媒は、水と相溶性のある溶媒であればよく、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、アセトニトリル、アセトン、n−ブタノール、N,N−ジメチルホルムアミド、ジメチルスルホキシド等が挙げられ、これらのうち、エタノールが好ましい。   The hydrophilic organic solvent according to the titanium oxide dispersion of the present invention may be any solvent that is compatible with water. For example, methanol, ethanol, n-propanol, iso-propanol, acetonitrile, acetone, n-butanol, N, N-dimethylformamide, dimethyl sulfoxide and the like can be mentioned, and among these, ethanol is preferable.

前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物に、水又は該親水性有機溶媒と、該酸化チタン粉末とを混合した後、混合液を撹拌すること等により、該混合液に該酸化チタン粉末を分散させ、酸化チタン分散液を得る。該分散工程では、該混合液に該酸化チタン粉末を分散させる際、より高い分散性を得るために、該酸化チタン粉末の凝集を緩和することを目的として、該混合液を湿式粉砕処理することもできる。該湿式粉砕処理には、酸化チタン分散液中の酸化チタン粉末の凝集を緩和することができるものであれば、せん断作用や摩砕作用を利用した解砕装置、撹拌式の解砕装置等の公知の湿式解砕装置を使用することができる。具体的には、ジェットミル、ビーズミル、ロールミル、ハンマーミル、振動ミル、流星型ボールミル、サンドミル、三本ロールミル等の解砕装置を使用することができ、これらのうち、ビールミル解砕装置が、効率的に解砕できる点で好ましい。また、該湿式粉砕処理に先立って、酸化チタン分散体をボールミルにより予備解砕処理することより、酸化チタン粉末の凝集をより緩和することができるので、酸化チタン粉末の分散性を高めることができる。   By mixing water or the hydrophilic organic solvent and the titanium oxide powder with the neutralized product of the hydrolyzate of the aminosilane compound represented by the general formula (1), the mixture is stirred, etc. The titanium oxide powder is dispersed in the mixed solution to obtain a titanium oxide dispersion. In the dispersion step, when the titanium oxide powder is dispersed in the mixed solution, the mixed solution is subjected to a wet pulverization treatment in order to reduce aggregation of the titanium oxide powder in order to obtain higher dispersibility. You can also. As long as the wet pulverization treatment can alleviate the aggregation of the titanium oxide powder in the titanium oxide dispersion, a crushing device using a shearing action or a grinding action, a stirring type crushing apparatus, etc. A known wet crushing apparatus can be used. Specifically, a crushing device such as a jet mill, a bead mill, a roll mill, a hammer mill, a vibration mill, a meteor type ball mill, a sand mill, or a three roll mill can be used. It is preferable in that it can be crushed. In addition, prior to the wet pulverization treatment, the titanium oxide dispersion is preliminarily pulverized by a ball mill, so that the aggregation of the titanium oxide powder can be further relaxed, and thus the dispersibility of the titanium oxide powder can be improved. .

本発明の酸化チタン分散液の製造方法の形態例としては、例えば、前記一般式(1)で表わされるアミノシラン化合物に、水を添加し加水分解することより、前記一般式(1)で表わされるアミノシラン化合物の加水分解物を含有する加水分解液を得、次いで、得られた加水分解液に該酸を混合して、pHを5〜8にし、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物を含有する中和反応液を得(中和工程)、次いで、得られた中和反応液に、水又は該親水性溶媒を混合し、酸化チタン分散液中の含有量が1〜40質量%となる量の該酸化チタン粉末を混合した後、混合液を撹拌する等により、該混合液中に該酸化チタン粉末を分散させて、酸化チタン分散液を得る(分散工程)方法が挙げられる。アミノシラン化合物の加水分解物の中和物の量は、該分散工程で混合する該酸化チタン粉末100質量部に対して、0.5〜20質量部となる量である。   As an example of the manufacturing method of the titanium oxide dispersion liquid of the present invention, for example, the aminosilane compound represented by the general formula (1) is represented by the general formula (1) by adding water and hydrolyzing it. A hydrolyzate containing a hydrolyzate of an aminosilane compound is obtained, and then the acid is mixed with the obtained hydrolyzate to adjust the pH to 5 to 8, so that the aminosilane compound represented by the general formula (1) A neutralization reaction solution containing a hydrolyzate neutralized product is obtained (neutralization step), then water or the hydrophilic solvent is mixed with the obtained neutralization reaction solution, and contained in the titanium oxide dispersion After mixing the titanium oxide powder in an amount of 1 to 40% by mass, the titanium oxide powder is dispersed in the mixed solution by stirring the mixed solution to obtain a titanium oxide dispersion (dispersion) Step) method. The amount of the hydrolyzate of the aminosilane compound is 0.5 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide powder mixed in the dispersion step.

本発明の酸化チタン分散液は、下記一般式(1):   The titanium oxide dispersion of the present invention has the following general formula (1):

(式中、Rは、アミノ基を有する炭化水素基を示し、R、R及びRは、炭素数が1〜8の炭化水素基を示し、R、R及びRは同一でも異なっていてもよい。)
で表されるアミノシラン化合物の加水分解物に、pHが5〜8となるように硝酸、塩酸及び1価のカルボン酸より選ばれる少なくとも一種の酸を混合し、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物を得る中和工程と、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物に、水又は親水性溶媒と、酸化チタン粉末とを混合し、該酸化チタン粉末を分散させて、酸化チタン分散液を得る分散工程と、を行い得られる酸化チタン分散液であり、
該分散工程での該酸化チタン粉末の混合量が、該酸化チタン分散液中の該酸化チタン粉末の含有量が1〜40質量%となる量であり、
前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物の量が、該酸化チタン粉末100質量部に対して、0.5〜20質量部である酸化チタン分散液である。
(In the formula, R 1 represents a hydrocarbon group having an amino group, R 2 , R 3 and R 4 represent a hydrocarbon group having 1 to 8 carbon atoms, and R 2 , R 3 and R 4 represent They may be the same or different.)
At least one acid selected from nitric acid, hydrochloric acid and monovalent carboxylic acid is mixed with the hydrolyzate of the aminosilane compound represented by the formula (1) so that the pH is 5-8. A neutralization step of obtaining a neutralized product of a hydrolyzate of an aminosilane compound, a neutralized product of a hydrolyzate of an aminosilane compound represented by the general formula (1), water or a hydrophilic solvent, and titanium oxide powder A titanium oxide dispersion obtained by mixing and dispersing the titanium oxide powder to obtain a titanium oxide dispersion.
The mixing amount of the titanium oxide powder in the dispersion step is an amount such that the content of the titanium oxide powder in the titanium oxide dispersion is 1 to 40% by mass,
The amount of the hydrolyzate of the aminosilane compound represented by the general formula (1) is 0.5 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide powder.

本発明の酸化チタン分散液に係る該中和工程及び該分散工程は、本発明の酸化チタン分散液の製造方法に係る該中和工程及び該分散工程と同様である。   The neutralization step and the dispersion step according to the titanium oxide dispersion of the present invention are the same as the neutralization step and the dispersion step according to the method for producing a titanium oxide dispersion of the present invention.

本発明の酸化チタン分散液には、本願発明の効果を損なわない範囲で、バインダーとして任意成分を加えてもよい。任意成分としては、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸アンモニウムのようなアルカリシリケート、シリカ、コロイダルシリカ(シリカゾル)、加水分解性珪素化合物、フッ素樹脂モノマー、フッ素樹脂エマルジョンが挙げられる。該加水分解性珪素化合物としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシランなどのオルガノシラン、これらのオリゴマーであるポリオルガノシロキサンなどが挙げられる。   An optional component may be added as a binder to the titanium oxide dispersion of the present invention within a range not impairing the effects of the present invention. Optional components include alkali silicates such as lithium silicate, sodium silicate, potassium silicate, and ammonium silicate, silica, colloidal silica (silica sol), hydrolyzable silicon compounds, fluororesin monomers, and fluororesin emulsions. . Examples of the hydrolyzable silicon compound include organosilanes such as tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and vinyltrimethoxysilane, and polyorganosiloxanes that are oligomers thereof.

本発明の酸化チタン膜は、本発明の酸化チタン分散液を用いて形成される酸化チタン膜である。   The titanium oxide film of the present invention is a titanium oxide film formed using the titanium oxide dispersion of the present invention.

本発明の酸化チタン膜は、本発明の酸化チタン分散液を基材上に塗布した後、乾燥することにより形成される。   The titanium oxide film of the present invention is formed by applying the titanium oxide dispersion of the present invention on a substrate and then drying.

本発明の酸化チタン分散液が塗布される基材としては、合成樹脂、鉄、アルミニウム、SUS等の金属材、ガラス等が挙げられる。   Examples of the substrate on which the titanium oxide dispersion of the present invention is applied include synthetic resins, metal materials such as iron, aluminum, and SUS, and glass.

本発明の酸化チタン分散液は中性であるため、鉄、アルミニウム、SUS等の金属材へも腐食の虞はない。本発明の酸化チタンの塗布方法は、特に制限されず、従来の方法を用いることができ、例えば、刷毛刷り、ローラー刷り、スプレーコーティング、ディップコーティング、ロールコーティング、フローコーティング、スピンコーティングなどがある。   Since the titanium oxide dispersion of the present invention is neutral, there is no risk of corrosion even on metal materials such as iron, aluminum, and SUS. The method for applying titanium oxide of the present invention is not particularly limited, and conventional methods can be used. Examples thereof include brush printing, roller printing, spray coating, dip coating, roll coating, flow coating, and spin coating.

塗膜の乾燥処理は、オーブンなどの加熱設備にて行なわれる。該塗膜の乾燥処理の条件は、乾燥処理温度が120℃以下、好ましくは25〜110℃であり、乾燥処理時間が1時間以内、好ましくは5分以内、より好ましくは0.5分〜1分である。該塗膜の乾燥処理の際の乾燥雰囲気は、特に制限されないが、大気雰囲気が経済的である。   The coating film is dried by a heating facility such as an oven. The conditions for the drying treatment of the coating film are that the drying treatment temperature is 120 ° C. or less, preferably 25 to 110 ° C., and the drying treatment time is within 1 hour, preferably within 5 minutes, more preferably from 0.5 minute to 1 Minutes. The drying atmosphere during the drying treatment of the coating film is not particularly limited, but an air atmosphere is economical.

本発明の酸化チタン分散液を用いて形成される本発明の酸化チタン膜は、透明性に優れ、光触媒活性も高い。   The titanium oxide film of the present invention formed using the titanium oxide dispersion of the present invention has excellent transparency and high photocatalytic activity.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

[実施例1]
[酸化チタン分散液の調製]
(中和工程)
3−アミノプロピルトリメトキシシラン加水分解物液(信越化学工業株式会社、KBP90、3−アミノプロピルトリメトキシシラン加水分解物の含有量:32.8質量%、溶媒:水)に、酢酸(和光純薬工業株式会社製、含有量:99%)及び水を添加し、pH7に調整すると共に、3−アミノプロピルトリメトキシシラン加水分解物の中和物の含有量が10質量%となるように調整し、アミノシランの加水分解物の中和物を含有する中和反応液Aを得た。なお、3−アミノプロピルトリメトキシシラン加水分解物の中和物の含有量は、加熱乾燥式水分計 ML−50(株式会社エー・アンド・デイ)により、中和反応液Aの測定試料5gを、大気中で、120℃まで昇温及び加熱し、測定試料の質量変化が0.2質量%/分以下となったときの質量を、中和反応液A中のアミノトリプロピルメトキシシランの加水分解物の中和物の質量として、算出した(なお、以下でも同様である)。
[Example 1]
[Preparation of titanium oxide dispersion]
(Neutralization process)
3-aminopropyltrimethoxysilane hydrolyzate solution (Shin-Etsu Chemical Co., Ltd., KBP90, 3-aminopropyltrimethoxysilane hydrolyzate content: 32.8% by mass, solvent: water) and acetic acid (Wako Pure) Yaku Kogyo Co., Ltd., content: 99%) and water are added to adjust to pH 7, and the content of neutralized 3-aminopropyltrimethoxysilane hydrolyzate is adjusted to 10% by mass. Then, a neutralization reaction liquid A containing a neutralized product of the hydrolyzate of aminosilane was obtained. In addition, the content of the neutralized product of 3-aminopropyltrimethoxysilane hydrolyzate was obtained by measuring 5 g of the measurement sample of the neutralization reaction liquid A with a heat drying moisture meter ML-50 (A & D Co., Ltd.). In the atmosphere, the temperature was raised to 120 ° C. and heated, and the mass when the change in the mass of the measurement sample was 0.2% by mass / min or less was determined by adding the aminotripropylmethoxysilane in the neutralization reaction liquid A It was calculated as the mass of the neutralized product of the decomposition product (the same applies below).

(分散工程)
中和反応液A 50質量部に、溶媒として水を加えた後、Tiサイトを硫黄が置換した酸化チタン粉末(硫黄0.01%含有酸化チタン、可視光応答型光触媒)100質量部を加え、混合した。次いで、0.05μmジルコニアビーズをメディアとしたビーズミルにて、混合液の分散処理を行ない、酸化チタン分散液を作製した。なお、酸化チタン分散液全量で1000重量部となるように調整した。
(評価)
下記評価方法により、得られた酸化チタン分散液のpH、保存安定性、分散性、透明性、酸化チタン膜の活性を評価した。結果を表2に示す。
(Dispersion process)
After adding water as a solvent to 50 parts by mass of the neutralization reaction liquid A, 100 parts by mass of titanium oxide powder (0.01% sulfur-containing titanium oxide, visible light responsive photocatalyst) containing Ti sites substituted with sulfur is added, Mixed. Subsequently, the mixed solution was dispersed in a bead mill using 0.05 μm zirconia beads as a medium to prepare a titanium oxide dispersion. The total amount of titanium oxide dispersion was adjusted to 1000 parts by weight.
(Evaluation)
The pH, storage stability, dispersibility, transparency, and activity of the titanium oxide film of the obtained titanium oxide dispersion were evaluated by the following evaluation methods. The results are shown in Table 2.

[酸化チタン分散液の評価方法]
1.pHの評価方法
pHメータ(株式会社堀場製作所製 pHメータD−51)を用いて測定した。pHが、5未満か、5〜8か、8を超えるかで評価した。
2.保存安定性の評価方法
作製した酸化チタン分散液を安静にして一ヶ月間保管し、沈降又は分離を起していないか目視で確認した。○は沈降及び分離のいずれも無かった場合、△は若干の沈降又は分離が見られた場合、×は著しく沈降又は分離の傾向が見られた場合である。
3.分散性の評価方法
作製した酸化チタン分散液の粒度分布を、動的散乱法による粒度分布計(大塚電子株式会社製FPRA1000)によって測定した。「5」は50nm以下、「4」は50nm以上55nm未満、「3」は55nm以上100nm未満、「2」は100nm以上250nm未満、「1」は250nm以上を示す。
4.透明性の評価方法
酸化チタン含有量が1wt%となるように、純水で希釈し、超音波ホモジナイザー40Wで1分間分散処理を行ない、吸光度測定用分散液を作製した。吸光度測定機(日本分光株式会社製V−550)を用いて、作製した吸光度測定用分散液の透過度を測定した。
◎は透過度90%以上、○は透過度80%以上90%未満、△は透過度70%以上80%未満、×は透過度70%未満である。
5.活性の評価方法
先ず、実施例及び比較例の酸化チタン分散液を、10×10cmのガラス板に塗布し、塗膜を常温で乾燥させてサンプルピースを作製した。次にこのサンプルピースを1000mlのテドラーバックに封入し、そこにアセトアルデヒドガス濃度100ppm、酸素濃度200ppm、他窒素ガスとなるよう調製した混合ガス1000mlを投入した。混合ガスの入ったテドラーバックを、暗所に12時間放置した後、4000lxの蛍光灯で2時間照射を行い、アセトアルデヒドを分解したことによって発生したCOの発生量を測定した。実施例3のCO発生量を基準特性の100とし、各実施例及び比較例を相対的に比較した。◎は150以上、○は100以上150未満、△は40以上100未満、×は40未満を示す。
[Method for evaluating titanium oxide dispersion]
1. pH Evaluation Method The pH was measured using a pH meter (pH meter D-51, manufactured by Horiba, Ltd.). Evaluation was made based on whether the pH was less than 5, 5 to 8, or more than 8.
2. Storage Stability Evaluation Method The prepared titanium oxide dispersion was kept quiet for one month, and it was visually confirmed whether sedimentation or separation had occurred. ○ indicates that there is no sedimentation or separation, Δ indicates that there is a slight sedimentation or separation, and x indicates that there is a significant tendency for sedimentation or separation.
3. Dispersibility Evaluation Method The particle size distribution of the produced titanium oxide dispersion was measured with a particle size distribution meter (FPRA1000 manufactured by Otsuka Electronics Co., Ltd.) using a dynamic scattering method. “5” indicates 50 nm or less, “4” indicates 50 nm or more and less than 55 nm, “3” indicates 55 nm or more and less than 100 nm, “2” indicates 100 nm or more and less than 250 nm, and “1” indicates 250 nm or more.
4). Transparency Evaluation Method Dilution with pure water was performed so that the titanium oxide content was 1 wt%, and dispersion treatment was performed with an ultrasonic homogenizer 40W for 1 minute to prepare a dispersion for measuring absorbance. Using the absorbance measuring device (V-550 manufactured by JASCO Corporation), the transmittance of the prepared dispersion for measuring absorbance was measured.
The symbol ◎ indicates a transmittance of 90% or more, the symbol ◯ indicates a transmittance of 80% or more and less than 90%, the symbol Δ indicates a transmittance of 70% or more and less than 80%, and a symbol X indicates a transmittance of less than 70%.
5). Activity Evaluation Method First, the titanium oxide dispersions of Examples and Comparative Examples were applied to a 10 × 10 cm glass plate, and the coating film was dried at room temperature to prepare a sample piece. Next, this sample piece was sealed in a 1000 ml Tedlar bag, and 1000 ml of a mixed gas prepared so as to be an acetaldehyde gas concentration of 100 ppm, an oxygen concentration of 200 ppm, and other nitrogen gas was charged therein. The Tedlar bag containing the mixed gas was allowed to stand in a dark place for 12 hours, and then irradiated with a 4000 lx fluorescent lamp for 2 hours to measure the amount of CO 2 generated by decomposing acetaldehyde. The amount of CO 2 generated in Example 3 was set to 100 as a reference characteristic, and each Example and Comparative Example were relatively compared. A indicates 150 or more, ○ indicates 100 or more and less than 150, Δ indicates 40 or more and less than 100, and X indicates less than 40.

[実施例2]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液A 200質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 2]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that instead of 50 parts by mass of the neutralization reaction liquid A, 200 parts by mass of the neutralization reaction liquid A was used.
(Evaluation)
The same method as in Example 1 was used.

[実施例3]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液A 5質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 3]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
It replaced with 50 mass parts of neutralization reaction liquid A, and carried out similarly to Example 1 except having set it as 5 mass parts of neutralization reaction liquid A, and produced the titanium oxide dispersion liquid.
(Evaluation)
The same method as in Example 1 was used.

[実施例4]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
溶媒として水を加えることに代えて、溶媒としてエタノール(和光純薬工業株式会社製、含有量:95%)を加えること以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 4]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
Instead of adding water as a solvent, a titanium oxide dispersion was prepared in the same manner as in Example 1 except that ethanol (manufactured by Wako Pure Chemical Industries, Ltd., content: 95%) was added as a solvent.
(Evaluation)
The same method as in Example 1 was used.

[実施例5]
(中和工程)
酢酸を添加することに代えて、硝酸を添加すること以外は、実施例1と同様に行い、中和反応液Bを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液B 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 5]
(Neutralization process)
A neutralized reaction solution B was obtained in the same manner as in Example 1 except that nitric acid was added instead of adding acetic acid.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid A.
(Evaluation)
The same method as in Example 1 was used.

[実施例6]
(中和工程)
酢酸を添加することに代えて、塩酸を添加すること以外は、実施例1と同様に行い、中和反応液Cを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液C 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 6]
(Neutralization process)
A neutralized reaction solution C was obtained in the same manner as in Example 1 except that hydrochloric acid was added instead of adding acetic acid.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1, except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid A.
(Evaluation)
The same method as in Example 1 was used.

[実施例7]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
酸化チタン粉末100質量部に代えて、酸化チタン粉末50質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 7]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of titanium oxide powder was used instead of 100 parts by mass of titanium oxide powder.
(Evaluation)
The same method as in Example 1 was used.

[実施例8]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
酸化チタン粉末100質量部に代えて、酸化チタン粉末300質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 8]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that instead of 100 parts by mass of titanium oxide powder, 300 parts by mass of titanium oxide powder was used.
(Evaluation)
The same method as in Example 1 was used.

[実施例9]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液A 40質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 9]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
It replaced with 50 mass parts of neutralization reaction liquid A, and carried out similarly to Example 1 except having set it as 40 mass parts of neutralization reaction liquid A, and produced the titanium oxide dispersion liquid.
(Evaluation)
The same method as in Example 1 was used.

[実施例10]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液A 100質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 10]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
It replaced with 50 mass parts of neutralization reaction liquid A, and carried out similarly to Example 1 except having set it as 100 mass parts of neutralization reaction liquid A, and produced the titanium oxide dispersion liquid.
(Evaluation)
The same method as in Example 1 was used.

[実施例11]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
酸化チタン粉末100質量部に代えて、酸化チタン粉末200質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 11]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that instead of 100 parts by mass of titanium oxide powder, 200 parts by mass of titanium oxide powder was used.
(Evaluation)
The same method as in Example 1 was used.

[実施例12]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液A 10質量部とすること及び酸化チタン粉末100質量部に代えて、酸化チタン粉末10質量部としたこと以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 12]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
Example 1 except that 50 parts by mass of the neutralization reaction liquid A was changed to 10 parts by mass of the neutralization reaction liquid A and 10 parts by mass of the titanium oxide powder instead of 100 parts by mass of the titanium oxide powder. In the same manner, a titanium oxide dispersion was produced.
(Evaluation)
The same method as in Example 1 was used.

[実施例13]
(中和工程)
3−アミノプロピルトリメトキシシラン加水分解物液(信越化学工業(株)KBP90、3−アミノプロピルトリメトキシシラン加水分解物の含有量:32.8質量%、溶媒:水)に、酢酸(和光純薬工業(株)製、含有量:99%)及び水を添加し、pH5に調整すると共に、3−アミノプロピルトリメトキシシランの加水分解物の中和物の含有量が10質量%となるように調整し、中和反応液Dを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液D 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 13]
(Neutralization process)
3-aminopropyltrimethoxysilane hydrolyzate liquid (Shin-Etsu Chemical Co., Ltd. KBP90, 3-aminopropyltrimethoxysilane hydrolyzate content: 32.8 mass%, solvent: water), acetic acid (Wako Pure) Yaku Kogyo Co., Ltd., content: 99%) and water are added to adjust the pH to 5, and the content of the neutralized product of the hydrolyzate of 3-aminopropyltrimethoxysilane is 10% by mass. The neutralization reaction liquid D was obtained.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid A.
(Evaluation)
The same method as in Example 1 was used.

[実施例14]
(中和工程)
3−アミノプロピルトリメトキシシラン加水分解物液(信越化学工業(株)KBP90、3−アミノプロピルトリメトキシシラン加水分解物の含有量:32.8質量%、溶媒:水)に、酢酸(和光純薬工業(株)製、含有量:99%)及び水を添加し、pH8に調整すると共に、3−アミノプロピルトリメトキシシラン換算の含有量が10質量%となるように調整し、中和反応液Eを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液E 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 14]
(Neutralization process)
3-aminopropyltrimethoxysilane hydrolyzate liquid (Shin-Etsu Chemical Co., Ltd. KBP90, 3-aminopropyltrimethoxysilane hydrolyzate content: 32.8 mass%, solvent: water), acetic acid (Wako Pure) Yaku Kogyo Co., Ltd., content: 99%) and water are added to adjust the pH to 8, and the content in terms of 3-aminopropyltrimethoxysilane is adjusted to 10% by mass to neutralize the reaction. Liquid E was obtained.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid A.
(Evaluation)
The same method as in Example 1 was used.

[実施例15]
(中和工程)
N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン(信越化学工業株式会社、KBM603)15質量部に、水30質量部を加えて、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシランの加水分解物液を得、次いで、酢酸(和光純薬工業株式会社製、含有量:99%)及び水を添加し、pH7に調整すると共に、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシランの加水分解物の中和物の含有量が10質量%となるように調整し、中和反応液Fを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液F 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 15]
(Neutralization process)
N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM603) is added to 30 parts by mass of water, and N-2- (aminoethyl) -3-amino is added. A hydrolyzate solution of propyltrimethoxysilane was obtained, and then acetic acid (manufactured by Wako Pure Chemical Industries, Ltd., content: 99%) and water were added to adjust the pH to 7, and N-2- (aminoethyl) The neutralized reaction solution F was obtained by adjusting the content of the neutralized product of the hydrolyzate of -3-aminopropyltrimethoxysilane to 10% by mass.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid F.
(Evaluation)
The same method as in Example 1 was used.

[実施例16]
(中和工程)
N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン(信越化学工業株式会社、KBE603)15質量部に、水30質量部を加えて、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシランの加水分解物液を得、次いで、酢酸(和光純薬工業株式会社製、含有量:99%)及び水を添加し、pH7に調整すると共に、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシランの加水分解物の中和物の含有量が10質量%となるように調整し、中和反応液Gを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液G 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 16]
(Neutralization process)
N-2- (aminoethyl) -3-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE603) 15 parts by mass, water 30 parts by mass was added, and N-2- (aminoethyl) -3-amino A hydrolyzate solution of propyltriethoxysilane was obtained, and then acetic acid (manufactured by Wako Pure Chemical Industries, Ltd., content: 99%) and water were added to adjust to pH 7, and N-2- (aminoethyl) A neutralized reaction solution G was obtained by adjusting the content of the neutralized product of the hydrolyzate of -3-aminopropyltriethoxysilane to 10% by mass.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid A.
(Evaluation)
The same method as in Example 1 was used.

[実施例17]
(中和工程)
3−アミノプロピルトリメトキシシラン(信越化学工業株式会社、KBM903)15質量部に、水30質量部を加えて、3−アミノプロピルトリメトキシシランの加水分解物液を得、次いで、酢酸(和光純薬工業株式会社製、含有量:99%)及び水を添加し、pH7に調整すると共に、3−アミノプロピルトリメトキシシランの加水分解物の中和物の含有量が10質量%となるように調整し、中和反応液Hを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液H 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 17]
(Neutralization process)
30 parts by mass of water is added to 15 parts by mass of 3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM903) to obtain a hydrolyzate solution of 3-aminopropyltrimethoxysilane, and then acetic acid (Wako Pure) Yaku Kogyo Co., Ltd., content: 99%) and water are added to adjust the pH to 7, so that the content of the hydrolyzate of 3-aminopropyltrimethoxysilane is 10% by mass. The neutralization reaction liquid H was prepared.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid A.
(Evaluation)
The same method as in Example 1 was used.

[実施例18]
(中和工程)
3−アミノプロピルトリエトキシシラン(信越化学工業株式会社、KBE903)15質量部に、水30質量部を加えて、3−アミノプロピルトリエトキシシランの加水分解物液を得、次いで、酢酸(和光純薬工業株式会社製、含有量:99%)及び水を添加し、pH7に調整すると共に、3−アミノプロピルトリエトキシシランの加水分解物の中和物の含有量が10質量%となるように調整し、中和反応液Iを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液I 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Example 18]
(Neutralization process)
30 parts by mass of water was added to 15 parts by mass of 3-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE903) to obtain a hydrolyzate solution of 3-aminopropyltriethoxysilane, and then acetic acid (Wako Pure) Yaku Kogyo Co., Ltd., content: 99%) and water are added to adjust the pH to 7, so that the content of the neutralized product of the hydrolyzate of 3-aminopropyltriethoxysilane is 10% by mass. The neutralization reaction liquid I was obtained by adjusting.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid I.
(Evaluation)
The same method as in Example 1 was used.

[比較例1]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液A 1質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 1]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
It replaced with 50 mass parts of neutralization reaction liquid A, and carried out similarly to Example 1 except having set it as 1 mass part of neutralization reaction liquid A, and produced the titanium oxide dispersion liquid.
(Evaluation)
The same method as in Example 1 was used.

[比較例2]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液A 220質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 2]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that instead of 50 parts by mass of the neutralization reaction liquid A, 220 parts by mass of the neutralization reaction liquid A was used.
(Evaluation)
The same method as in Example 1 was used.

[比較例3]
(アミノシランの加水分解)
3−アミノプロピルトリメトキシシラン(信越化学工業株式会社、KBM903)15質量部に、水30質量部を加えて、3−アミノプロピルトリメトキシシランの加水分解物液aを得た。
(分散)
3−アミノプロピルトリメトキシシランの加水分解物液aに、溶媒として水を加えた後、Tiサイトを硫黄が置換した酸化チタン粉末(硫黄0.01%含有酸化チタン、可視光応答型光触媒)を加え、混合した。次いで、0.05μmジルコニアビーズをメディアとしたビーズミルにて、混合液の分散処理を行ない、酸化チタン分散液を作製した。なお、3−アミノプロピルトリメトキシシランの加水分解物が50質量部、酸化チタン粉末が100質量部、酸化チタン分散液全量で1000重量部となるように調整した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 3]
(Hydrolysis of aminosilane)
30 parts by mass of water was added to 15 parts by mass of 3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM903) to obtain a hydrolyzate liquid a of 3-aminopropyltrimethoxysilane.
(dispersion)
After adding water as a solvent to the hydrolyzate liquid a of 3-aminopropyltrimethoxysilane, titanium oxide powder in which Ti sites are substituted with sulfur (0.01% sulfur-containing titanium oxide, visible light responsive photocatalyst) Added and mixed. Subsequently, the mixed solution was dispersed in a bead mill using 0.05 μm zirconia beads as a medium to prepare a titanium oxide dispersion. The hydrolyzate of 3-aminopropyltrimethoxysilane was adjusted to 50 parts by mass, the titanium oxide powder was 100 parts by mass, and the total amount of the titanium oxide dispersion was adjusted to 1000 parts by weight.
(Evaluation)
The same method as in Example 1 was used.

[比較例4]
(分散)
溶媒としての水に、実施例1と同量の酢酸を加え、次いで、Tiサイトを硫黄が置換した酸化チタン粉末(硫黄0.01%含有酸化チタン、可視光応答型光触媒)100質量部を加え、混合した。次いで、0.05μmジルコニアビーズをメディアとしたビーズミルにて、混合液の分散処理を行ない、酸化チタン分散液を作製した。なお、酸化チタン分散液全量で1000重量部となるように調整した。
[Comparative Example 4]
(dispersion)
To the water as a solvent, the same amount of acetic acid as in Example 1 was added, and then 100 parts by mass of titanium oxide powder in which Ti sites were replaced with sulfur (0.01% sulfur-containing titanium oxide, visible light responsive photocatalyst) was added. , Mixed. Subsequently, the mixed solution was dispersed in a bead mill using 0.05 μm zirconia beads as a medium to prepare a titanium oxide dispersion. The total amount of titanium oxide dispersion was adjusted to 1000 parts by weight.

[比較例5]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
酸化チタン粉末100質量部に代えて、酸化チタン粉末450質量部とした以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 5]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that instead of 100 parts by mass of titanium oxide powder, 450 parts by mass of titanium oxide powder was used.
(Evaluation)
The same method as in Example 1 was used.

[比較例6]
(中和工程)
実施例1と同様の方法で行い、中和反応液Aを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液A 5質量部とすること及び酸化チタン粉末100質量部に代えて、酸化チタン粉末5質量部としたこと以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 6]
(Neutralization process)
A neutralization reaction solution A was obtained in the same manner as in Example 1.
(Dispersion process)
Example 1 except that 50 parts by mass of the neutralization reaction liquid A was changed to 5 parts by mass of the neutralization reaction liquid A and 5 parts by mass of the titanium oxide powder instead of 100 parts by mass of the titanium oxide powder. In the same manner, a titanium oxide dispersion was produced.
(Evaluation)
The same method as in Example 1 was used.

[比較例7]
(中和工程)
N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン(信越化学工業株式会社、KBM602)15質量部に、水30質量部を加えて、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシランの加水分解物液を得、次いで、酢酸(和光純薬工業株式会社製、含有量:99%)及び水を添加し、pH7に調整すると共に、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン加水分解物の中和物の含有量が10質量%となるように調整し、中和反応液Jを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液J 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 7]
(Neutralization process)
N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM602) 15 parts by mass, water 30 parts by mass was added, N-2- (aminoethyl) -3-amino A hydrolyzate solution of propylmethyldimethoxysilane was obtained, and then acetic acid (manufactured by Wako Pure Chemical Industries, Ltd., content: 99%) and water were added to adjust the pH to 7, and N-2- (aminoethyl) A neutralized reaction solution J was obtained by adjusting the content of the neutralized product of the hydrolyzate of 3-aminopropylmethyldimethoxysilane to 10% by mass.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid J.
(Evaluation)
The same method as in Example 1 was used.

[比較例8]
(中和工程)
酢酸を添加することに代えて、硼酸を添加すること以外は、実施例1と同様に行い、中和反応液Kを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液K 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 8]
(Neutralization process)
A neutralized reaction solution K was obtained in the same manner as in Example 1 except that boric acid was added instead of adding acetic acid.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid A.
(Evaluation)
The same method as in Example 1 was used.

[比較例9]
(中和工程)
酢酸を添加することに代えて、蓚酸を添加すること以外は、実施例1と同様に行い、中和反応液Lを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液L 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 9]
(Neutralization process)
A neutralized reaction solution L was obtained in the same manner as in Example 1 except that succinic acid was added instead of adding acetic acid.
(Dispersion process)
It replaced with 50 mass parts of neutralization reaction liquid A, and carried out similarly to Example 1 except having set it as 50 mass parts of neutralization reaction liquid L, and produced the titanium oxide dispersion liquid.
(Evaluation)
The same method as in Example 1 was used.

[比較例10]
(中和工程)
酢酸を添加することに代えて、マレイン酸を添加すること以外は、実施例1と同様に行い、中和反応液Mを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液M 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 10]
(Neutralization process)
A neutralized reaction solution M was obtained in the same manner as in Example 1 except that maleic acid was added instead of adding acetic acid.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid A.
(Evaluation)
The same method as in Example 1 was used.

[比較例11]
(中和工程)
酢酸を添加することに代えて、フタル酸を添加すること以外は、実施例1と同様に行い、中和反応液Nを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液N 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 11]
(Neutralization process)
A neutralization reaction solution N was obtained in the same manner as in Example 1 except that phthalic acid was added instead of adding acetic acid.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid N.
(Evaluation)
The same method as in Example 1 was used.

[比較例12]
(中和工程)
酢酸を添加することに代えて、コハク酸を添加すること以外は、実施例1と同様に行い、中和反応液Oを得た。
(分散工程)
中和反応液A 50質量部に代えて、中和反応液O 50質量部とする以外は、実施例1と同様に行い、酸化チタン分散液を作製した。
(評価)
実施例1と同様の方法で行った。
[Comparative Example 12]
(Neutralization process)
A neutralized reaction solution O was obtained in the same manner as in Example 1 except that succinic acid was added instead of adding acetic acid.
(Dispersion process)
A titanium oxide dispersion was prepared in the same manner as in Example 1 except that 50 parts by mass of the neutralization reaction liquid A was used instead of 50 parts by mass of the neutralization reaction liquid O.
(Evaluation)
The same method as in Example 1 was used.

[参考例1]
10×10cm角のシャーレに実施例1で使用したTiサイトを硫黄が置換した酸化チタン粉末0.1gを入れ、次いで純水を2g入れ、該粉末を純水に馴染ませ、シャーレ一面に該粉末が行き渡るようにした後に、110℃で1時間乾燥したものサンプルとし、同様に光触媒活性を評価した。その結果、◎であった。
[Reference Example 1]
Place 0.1 g of titanium oxide powder in which the Ti site used in Example 1 is replaced with sulfur in a 10 × 10 cm square petri dish, then add 2 g of pure water, blend the powder with pure water, and place the powder on one side of the petri dish. The sample was dried at 110 ° C. for 1 hour, and the photocatalytic activity was evaluated in the same manner. As a result, it was ◎.

1)1は、3−アミノプロピルトリメトキシシラン
2は、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン
3は、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン
4は、3−アミノプロピルトリエトキシシラン
5は、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン
2)中和反応液中、アミノシラン換算の含有量は10質量%
3)分散工程で混合した酸化チタン粉末100質量部に対するアミノシラン加水分解物の中和物の使用量
4)分散液全量中の酸化チタンの質量割合
1) 1 is 3-aminopropyltrimethoxysilane 2 is N-2- (aminoethyl) -3-aminopropyltrimethoxysilane 3 is N-2- (aminoethyl) -3-aminopropyltriethoxysilane 4 is 3-aminopropyltriethoxysilane 5 is N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane 2) The content in terms of aminosilane in the neutralization reaction solution is 10% by mass
3) Amount of neutralized aminosilane hydrolyzate used for 100 parts by mass of titanium oxide powder mixed in the dispersion step 4) Mass ratio of titanium oxide in the total amount of the dispersion

-;未測定 -; Not measured

Claims (4)

下記一般式(1):

(式中、Rは、アミノ基を有する炭化水素基を示し、R、R及びRは、炭素数が1〜8の炭化水素基を示し、R、R及びRは同一でも異なっていてもよい。)
で表されるアミノシラン化合物の加水分解物に、pHが5〜8となるように硝酸、塩酸及び1価のカルボン酸より選ばれる少なくとも一種の酸を混合し、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物を得る中和工程と、前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物に、水又は親水性溶媒と、酸化チタン粉末とを混合し、該酸化チタン粉末を分散させて、酸化チタン分散液を得る分散工程と、を有する酸化チタン分散液の製造方法であり、
該分散工程での該酸化チタン粉末の混合量が、該酸化チタン分散液中の該酸化チタン粉末の含有量が1〜40質量%となる量であり、
前記一般式(1)で表わされるアミノシラン化合物の加水分解物の中和物が、該酸化チタン粉末100質量部に対して、0.5〜20質量部であること、
を特徴とする酸化チタン分散液の製造方法。
The following general formula (1):

(In the formula, R 1 represents a hydrocarbon group having an amino group, R 2 , R 3 and R 4 represent a hydrocarbon group having 1 to 8 carbon atoms, and R 2 , R 3 and R 4 represent They may be the same or different.)
At least one acid selected from nitric acid, hydrochloric acid and monovalent carboxylic acid is mixed with the hydrolyzate of the aminosilane compound represented by the formula (1) so that the pH is 5-8. A neutralization step of obtaining a neutralized product of a hydrolyzate of an aminosilane compound, a neutralized product of a hydrolyzate of an aminosilane compound represented by the general formula (1), water or a hydrophilic solvent, and titanium oxide powder A dispersion step of mixing and dispersing the titanium oxide powder to obtain a titanium oxide dispersion, and a method for producing a titanium oxide dispersion,
The mixing amount of the titanium oxide powder in the dispersion step is an amount such that the content of the titanium oxide powder in the titanium oxide dispersion is 1 to 40% by mass,
The neutralized product of the hydrolyzate of the aminosilane compound represented by the general formula (1) is 0.5 to 20 parts by mass with respect to 100 parts by mass of the titanium oxide powder.
A method for producing a titanium oxide dispersion liquid.
前記酸が、酢酸及び硝酸から選ばれる少なくとも一種以上の酸であることを特徴とする請求項1記載の酸化チタン分散液の製造方法。 The method for producing a titanium oxide dispersion according to claim 1, wherein the acid is at least one acid selected from acetic acid and nitric acid. 前記一般式(1)で表わされるアミノシラン化合物が、下記一般式(2):

(式中、R及びRは、水素原子、又は基中に1個以上の酸素原子又は窒素原子を有してもよい炭化水素基を示し、R及びRは、同一であっても異なってもよく、Rは、炭素数1〜8の二価の有機基を示し、R、R及びR10は、炭素数が1〜8の炭化水素基を示し、R、R及びR10は同一でも異なっていてもよい。)
で表わされるアミノシラン化合物であることを特徴とする請求項1又は2いずれか1項記載の酸化チタン分散液の製造方法。
The aminosilane compound represented by the general formula (1) is represented by the following general formula (2):

(Wherein R 5 and R 6 represent a hydrogen atom or a hydrocarbon group that may have one or more oxygen atoms or nitrogen atoms in the group, and R 5 and R 6 are the same, may be different, R 7 represents a divalent organic group having 1 to 8 carbon atoms, R 8, R 9 and R 10 is a hydrocarbon group having 1 to 8 carbon atoms, R 8, R 9 and R 10 may be the same or different.)
The method for producing a titanium oxide dispersion according to claim 1, wherein the compound is an aminosilane compound represented by the formula:
請求項1〜3に記載の製造方法で得られた酸化チタン分散液を用いて形成されたことを特徴とする酸化チタン膜。 A titanium oxide film formed using the titanium oxide dispersion obtained by the production method according to claim 1.
JP2008206862A 2008-08-11 2008-08-11 Method for producing titanium oxide dispersion and titanium oxide film Pending JP2010043159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206862A JP2010043159A (en) 2008-08-11 2008-08-11 Method for producing titanium oxide dispersion and titanium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206862A JP2010043159A (en) 2008-08-11 2008-08-11 Method for producing titanium oxide dispersion and titanium oxide film

Publications (1)

Publication Number Publication Date
JP2010043159A true JP2010043159A (en) 2010-02-25

Family

ID=42014792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206862A Pending JP2010043159A (en) 2008-08-11 2008-08-11 Method for producing titanium oxide dispersion and titanium oxide film

Country Status (1)

Country Link
JP (1) JP2010043159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059476A (en) * 2010-09-08 2012-03-22 Nippon Shokubai Co Ltd Anode support type half cell and method for manufacturing the same, and anode support type cell
JP2015157739A (en) * 2014-01-21 2015-09-03 株式会社ダイセル Iron compound-carrying titanium oxide particle
JP2019056070A (en) * 2017-09-22 2019-04-11 シャープ株式会社 Aqueous photocatalyst coating and purification method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059476A (en) * 2010-09-08 2012-03-22 Nippon Shokubai Co Ltd Anode support type half cell and method for manufacturing the same, and anode support type cell
JP2015157739A (en) * 2014-01-21 2015-09-03 株式会社ダイセル Iron compound-carrying titanium oxide particle
JP2019056070A (en) * 2017-09-22 2019-04-11 シャープ株式会社 Aqueous photocatalyst coating and purification method
JP7034644B2 (en) 2017-09-22 2022-03-14 シャープ株式会社 Water-based photocatalytic paint and purification method

Similar Documents

Publication Publication Date Title
TWI481677B (en) Near-infrared shield coating agent which is curable with ordinary temperature and the near-infrared shield coating prepared using the same and the process for preparing the coating
JP5427093B2 (en) Uniformly dispersible photocatalyst coating liquid, method for producing the same, and photocatalytically active composite material obtained using the same
JP3796403B2 (en) Photocatalytic oxide-containing composition, thin film and composite
EP2351787A2 (en) Silicone resin composition
JP4619601B2 (en) PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM
WO2018042803A1 (en) Coating composition and coated article
JP2012250134A (en) Photocatalyst-coated object, and photocatalyst coating liquid therefor
CN107614436B (en) Composite particle containing zinc oxide, composition for shielding ultraviolet ray, and cosmetic
KR20190049695A (en) The photocatalyst laminated body
JP2010043159A (en) Method for producing titanium oxide dispersion and titanium oxide film
WO2018025610A1 (en) Zinc-oxide-containing composite particles, composition for uv shielding, and cosmetic
JP2013107926A (en) Coating film forming composition, method of preparing the same and solar cell module using the same
JP4820152B2 (en) Composite coating structure and painted exterior materials
JPWO2018096914A1 (en) Inorganic particle-siloxane composite, method for producing the same, and inorganic particle-containing silicone composition
JP2009209250A (en) Photocatalyst coating film forming composition, photocatalyst coating film, and forming method of photocatalyst coating film
JP4972268B2 (en) Liquid for forming titanium oxide film, method for forming titanium oxide film, titanium oxide film and photocatalytic member
JP2003138163A (en) Photocatalyst coating composition and method for producing the same and photocatalyst using the same
JP5084418B2 (en) Bulk composition redispersible in organic solvent, process for producing the same, and organic solvent-dispersed sol in which the bulk composition is redispersed
JP7463164B2 (en) Coating Fluid
JP2005113023A (en) Photocatalyst-containing silicon composition
JP4227802B2 (en) Photocatalyst dispersed toner
JP2023150249A (en) coating liquid
JP2023148192A (en) Hydrophilic agent and manufacturing method thereof
KR100563556B1 (en) Coating composition for surface modification and preparation thereof
JP4079248B2 (en) Modified titania sol composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120717