JP2003135964A - Catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas

Info

Publication number
JP2003135964A
JP2003135964A JP2001338088A JP2001338088A JP2003135964A JP 2003135964 A JP2003135964 A JP 2003135964A JP 2001338088 A JP2001338088 A JP 2001338088A JP 2001338088 A JP2001338088 A JP 2001338088A JP 2003135964 A JP2003135964 A JP 2003135964A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zirconia
amount
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001338088A
Other languages
Japanese (ja)
Other versions
JP4079622B2 (en
Inventor
Toshiya Sanao
俊哉 佐直
Norio Muramatsu
則男 村松
Hironori Satou
容規 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2001338088A priority Critical patent/JP4079622B2/en
Publication of JP2003135964A publication Critical patent/JP2003135964A/en
Application granted granted Critical
Publication of JP4079622B2 publication Critical patent/JP4079622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high heat resistant catalyst for cleaning an exhaust gas. SOLUTION: The catalyst for cleaning the exhaust gas consists of an NOx storage material and a support composed of porous oxides consisting of zirconia and alumina in which zirconia is contained by 50-150 g per 1 L volume of the catalyst for cleaning the exhaust gas. In such a constitution, the degradation of the NOx storage material caused by forming compound oxides with the porous oxides is suppressed. It is considered that the formation of the compound oxides is suppressed by separating the porous oxides such as titania having high affinity from the NOx storage material (e.g. Ba) by the addition of zirconia or the like. Also, it is preferable that zirconia and alumina are highly dispersed in the support.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は排ガス中に含まれる
一酸化炭素(CO)や炭化水素(HC)を酸化するのに
必要な量より過剰な酸素が含まれている排ガス中の、N
xを効率よく浄化できる排ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to N in exhaust gas containing oxygen in excess of that required to oxidize carbon monoxide (CO) and hydrocarbons (HC) contained in the exhaust gas.
The present invention relates to an exhaust gas purification catalyst that can efficiently purify O x .

【0002】[0002]

【従来の技術】リーンバーンエンジンにおいて、常時は
酸素過剰の燃料リーン条件で燃焼させ、間欠的に燃料を
ストイキ〜リッチ条件とすることにより排ガスを還元雰
囲気としてNOxを還元浄化するシステムが開発され、
実用化されている。そしてこのシステムに最適な触媒と
して、リーン雰囲気でNOxを吸蔵し、ストイキ〜リッ
チ雰囲気で吸蔵されたNOxを放出するNOx吸蔵材を用
いたNOx吸蔵還元型の排ガス浄化用触媒が開発されて
いる。
2. Description of the Related Art In a lean burn engine, a system has been developed for reducing and purifying NO x by using exhaust gas as a reducing atmosphere by intermittently burning fuel under lean oxygen conditions and intermittently making the fuel stoichiometric to rich. ,
It has been put to practical use. And as the best catalysts for this system, occludes NO x in lean atmosphere, stoichiometric ~ the NO x storage-reduction type exhaust purifying catalyst is developing with the NO x storage material that releases occluded NO x in a rich atmosphere Has been done.

【0003】NOx吸蔵還元型触媒は、アルカリ土類金
属、アルカリ金属若しくは希土類元素からなるNOX
蔵材と貴金属とをアルミナなどの多孔質酸化物担体に担
持したものである。
The NO x storage reduction catalyst is a NO x storage material made of an alkaline earth metal, an alkali metal or a rare earth element and a noble metal supported on a porous oxide carrier such as alumina.

【0004】このNOx吸蔵還元型触媒は、エンジンの
空燃比をリーン側からパルス状にストイキ〜リッチ側と
なるように制御して排気ガスもリーン側からパルス状に
ストイキ〜リッチ側となるように制御して用いられる。
つまり、排気ガスがリーン側ではNOx吸蔵還元型触媒
に含まれるNOX吸蔵材にNOXを吸蔵させ、リーン側か
らパルス状にストイキ〜リッチ側となるときには、NO
x吸蔵材がNOXを放出してHCやCOなどの還元性成分
と反応させて浄化する。したがって、リーンバーンエン
ジンからの排ガスであってもNOxを効率良く浄化する
ことができる。また排ガス中のHC及びCOは、貴金属
により酸化されるとともにNOxの還元にも消費される
ので、HC及びCOも効率よく浄化される。
In this NO x storage reduction catalyst, the air-fuel ratio of the engine is controlled from the lean side to the stoichiometric to rich side in a pulsed manner, and the exhaust gas is also pulsed from the lean side to the stoichiometric to rich side. Controlled to be used.
In other words, the exhaust gas is in the lean side to absorb NO X in the NO X storage material contained in the NO x storage-and-reduction type catalyst, when the stoichiometric-rich side from the lean side to the pulse shape, NO
x storage material to release the NO X is reacted with the reducing components such as HC and CO to purify. Therefore, NO x can be efficiently purified even with the exhaust gas from the lean burn engine. Further, HC and CO in the exhaust gas are oxidized by the noble metal and are also consumed for NO x reduction, so that HC and CO are also efficiently purified.

【0005】ところでNOx吸蔵還元型触媒に限らず、
耐久性が向上することは好ましいことである。NOx
蔵還元型触媒は、排ガス中に含まれるSOxによりNOx
吸蔵材が被毒劣化すると、もはやNOxを吸蔵すること
ができなくなる。その被毒劣化を抑制する目的でチタニ
ア担体を用いていた。チタニアはSOxを吸着しないか
らである。本出願人等は、特開2000−246107
号公報において、少なくとも超微粒子であるチタニア粒
子とそれ以外の多孔質酸化物とを含む多孔質酸化物から
なり、貴金属とNOx吸蔵材とが担持された担体よりな
るNOx吸蔵還元型の排ガス浄化用触媒を提案してい
る。
By the way, not only the NO x storage reduction type catalyst,
It is preferable that the durability is improved. The NO x storage-reduction catalyst uses NO x due to SO x contained in the exhaust gas.
When the occlusion material is poisoned and deteriorated, NO x can no longer be stored. A titania carrier was used for the purpose of suppressing the poisoning deterioration. This is because titania does not adsorb SO x . The applicant of the present invention has disclosed in
Japanese Patent Laid-Open Publication No. 1994-242, an exhaust gas of a NO x storage reduction type, which is composed of a porous oxide containing at least ultrafine particles of titania particles and a porous oxide other than that, and which comprises a carrier carrying a noble metal and a NO x storage material. Proposing a purification catalyst.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記特開2
000−246107号公報に開示されたNOx吸蔵還
元型の排ガス浄化用触媒でも、近年の大気汚染の現状と
排ガス規制の強化に鑑みると特に高温耐久後のNOx
化能が充分ではなく、初期から耐久後まで高いNOx
化能を示す排ガス浄化用触媒の早期開発が望まれてい
る。
However, the above-mentioned Japanese Unexamined Patent Application Publication No.
Even in the NO x storage reduction type exhaust gas purifying catalyst disclosed in Japanese Patent Publication No. 000-246107, the NO x purifying ability after high temperature endurance is not sufficient especially in view of the present state of air pollution in recent years and the tightening of exhaust gas regulations. There is a demand for early development of an exhaust gas purifying catalyst that exhibits a high NO x purifying ability from the end to the end of life.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、耐熱性の高い排ガス浄化用触媒を提供する
ことを解決すべき課題とする。
The present invention has been made in view of such circumstances, and it is an object to be solved to provide an exhaust gas purifying catalyst having high heat resistance.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明者等は鋭意研究を行った結果、従来のアルミナ
とチタニアとを混合した担体を用いた排ガス浄化用触媒
が高温で劣化する原因として、高温でのアルミナ、チタ
ニアと吸蔵材との複合酸化物化ないし吸蔵材のシンタリ
ングが明らかとなった。この劣化を低減する目的で本発
明者等が行った研究により、チタニアの量を従来好まし
いと考えられていた量よりも低減させることで吸蔵材と
の複合酸化物化等を抑制でき、そしてチタニアの低減分
をアルミナ、ジルコニア等のアルカリ基材で増量し且つ
そのアルカリ基材をコート層内に高分散させることによ
りさらなる吸蔵材との複合酸化物化を抑制できることを
見出した。本発明者等は本知見に基づき以下の発明を行
った。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors in order to solve the above problems, a conventional exhaust gas purifying catalyst using a carrier prepared by mixing alumina and titania deteriorates at high temperature. As a cause, it was clarified that composite oxide of alumina and titania and the occlusion material at high temperature or sintering of the occlusion material was formed. According to the research conducted by the present inventors for the purpose of reducing this deterioration, it is possible to suppress the formation of a composite oxide with the storage material by reducing the amount of titania from the amount conventionally considered to be preferable, and the titania It has been found that by increasing the amount of reduction with an alkali base material such as alumina or zirconia and highly dispersing the alkali base material in the coating layer, it is possible to suppress further formation of a composite oxide with the storage material. The present inventors have made the following inventions based on this finding.

【0009】すなわち、本発明の排ガス浄化用触媒は、
多孔質酸化物からなる担体と、該担体に担持された貴金
属と、アルカリ金属又はアルカリ土類金属を含み該担体
に担持されたNOx吸蔵材と、よりなるNOx吸蔵還元型
の排ガス浄化用触媒であって、前記多孔質酸化物は、ジ
ルコニア及びアルミナからなり、該ジルコニアが、前記
排ガス浄化用触媒体積1Lあたりに50〜150g含ま
れることを特徴とする。
That is, the exhaust gas purifying catalyst of the present invention is
A NO x storage-reduction type exhaust gas purifying comprising a carrier composed of a porous oxide, a noble metal supported on the carrier, and an NO x storage material supported on the carrier containing an alkali metal or an alkaline earth metal. The catalyst is characterized in that the porous oxide is composed of zirconia and alumina, and the zirconia is contained in an amount of 50 to 150 g per 1 L of the exhaust gas purifying catalyst volume.

【0010】そして前記多孔質酸化物は、さらにチタニ
アを含み、該チタニア及び前記アルミナが、前記排ガス
浄化用触媒体積1Lあたりにそれぞれ30〜70g及び
100〜170g含まれることが好ましい。この範囲と
することで、シンタリングによる触媒の劣化が防止で
き、さらに耐硫黄被毒性能が向上できる。
It is preferable that the porous oxide further contains titania, and the titania and the alumina are contained in an amount of 30 to 70 g and 100 to 170 g per 1 L of the exhaust gas purifying catalyst volume, respectively. Within this range, deterioration of the catalyst due to sintering can be prevented, and the sulfur poisoning resistance performance can be improved.

【0011】また、前記貴金属はロジウムであり、質量
基準で前記ジルコニア全体の30〜100%に該ロジウ
ムが担持されていることが好ましい。
Further, it is preferable that the noble metal is rhodium, and the rhodium is supported on 30 to 100% of the entire zirconia on a mass basis.

【0012】[0012]

【発明の実施の形態】本発明の排ガス浄化用触媒では、
NOx吸蔵材と、担体中に多孔質酸化物であるジルコニ
ア及びアルミナを含み、そのジルコニアが、排ガス浄化
用触媒体積1Lあたりに50〜150g含まれる。この
ような構成とすることにより、NOx吸蔵材の多孔質酸
化物との複合酸化物化による劣化を抑制できる。詳細は
明らかではないが、ジルコニア等の添加により、親和性
が高いチタニア等の多孔質酸化物とNOx吸蔵材(たと
えばBa)とを分離して、その複合酸化物化を抑制する
ものと考えられる。したがって、ジルコニア及びアルミ
ナは担体中で高度に分散されていることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
The carrier contains a NO x storage material and zirconia and alumina which are porous oxides in the carrier, and the zirconia is contained in an amount of 50 to 150 g per 1 L of the exhaust gas purifying catalyst volume. With such a structure, deterioration of the NO x storage material due to formation of a composite oxide with the porous oxide can be suppressed. Although details are not clear, it is considered that the addition of zirconia or the like separates the porous oxide such as titania having a high affinity from the NO x storage material (for example, Ba) to suppress the formation of the composite oxide. . Therefore, zirconia and alumina are preferably highly dispersed in the carrier.

【0013】さらに、担体中にチタニアを排ガス浄化用
触媒体積1Lあたり30〜70g添加することが好まし
い。このような構成の担体とすることにより、担持され
ているNOx吸蔵材の硫黄被毒を効果的に抑制すること
ができ、耐久後にも高いNOx浄化能が発現される。こ
のようになる理由は明らかではないが、SOXとの親和
性の低いチタニア粒子を用い、他の多孔質酸化物との界
面を生成することにより、その界面においてアルミナな
ど他の多孔質酸化物にSOxが吸着しにくくなること
で、界面に存在するNOx吸蔵材の硫黄被毒が防止され
るから、と考えられる。
Furthermore, it is preferable to add 30 to 70 g of titania to the carrier per 1 L of the exhaust gas purifying catalyst volume. By using a carrier having such a structure, sulfur poisoning of the carried NO x storage material can be effectively suppressed, and a high NO x purifying ability is exhibited even after endurance. The reason for this is not clear, but by using titania particles having a low affinity for SO X and forming an interface with another porous oxide, another porous oxide such as alumina is formed at the interface. It is considered that the SO x is less likely to be adsorbed on the NO x and the sulfur poisoning of the NO x storage material existing at the interface is prevented.

【0014】そして、アルミナは、排ガス浄化用触媒体
積1Lあたり100〜170g含まれることが好まし
い。この範囲とすることで、シンタリングによる触媒の
劣化がさらに防止できる。このアルミナの好ましい添加
量の範囲内で、アルミナに代えてジルコニアを添加して
もよい。
Alumina is preferably contained in an amount of 100 to 170 g per 1 L of the exhaust gas purifying catalyst volume. Within this range, deterioration of the catalyst due to sintering can be further prevented. Zirconia may be added instead of alumina within the range of the preferable addition amount of alumina.

【0015】また担体には、セリアを含むことが好まし
い。セリアの酸素吸蔵放出能により、浄化性能が一層向
上する。またジルコニアで安定化されたセリア(セリア
−ジルコニア複合酸化物)を用いれば、その耐久性が一
層向上する。セリアの添加量としては、排ガス浄化用触
媒体積1Lあたり10〜30gが好ましい。
The carrier preferably contains ceria. Due to the oxygen storage / release capacity of ceria, the purification performance is further improved. Further, when ceria stabilized with zirconia (ceria-zirconia composite oxide) is used, its durability is further improved. The amount of ceria added is preferably 10 to 30 g per 1 L of the exhaust gas purifying catalyst volume.

【0016】貴金属としては、Pt、Rh、Pd、Ir
あるいはRuの1種又は複数種を用いることができ、特
にRhが好ましい。その担持量は、排ガス浄化用触媒体
積1Lあたり、Rhの場合は0.1〜2.5gが好まし
く、0.1〜0.75gが特に好ましい。そして、Pt
及びPdの場合は0.1〜10gが好ましく、2〜5g
が特に好ましい。また、貴金属がRhであり、質量基準
で担体中に含まれるジルコニア全体の30〜100%に
そのRhが担持されていることが好ましい。ジルコニア
にRhを担持することで水蒸気改質反応が促進され、硫
黄被毒が抑制されるからである。
Noble metals include Pt, Rh, Pd, and Ir.
Alternatively, one or more of Ru can be used, and Rh is particularly preferable. The supported amount is preferably 0.1 to 2.5 g, and particularly preferably 0.1 to 0.75 g in the case of Rh, per 1 L of the exhaust gas purifying catalyst volume. And Pt
And in the case of Pd, 0.1-10 g is preferable, and 2-5 g
Is particularly preferable. Further, it is preferable that the noble metal is Rh, and the Rh is supported on 30 to 100% of the entire zirconia contained in the carrier on a mass basis. By supporting Rh on zirconia, the steam reforming reaction is promoted and sulfur poisoning is suppressed.

【0017】NOx吸蔵材としては、アルカリ金属、ア
ルカリ土類金属及び希土類元素から選ばれる少なくとも
一種を用いることができる。中でもアルカリ度が高くN
Ox吸蔵能の高いアルカリ金属及びアルカリ土類金属の
少なくとも一方を用いるのが好ましい。
As the NO x storage material, at least one selected from alkali metals, alkaline earth metals and rare earth elements can be used. Above all, the alkalinity is high and N
It is preferable to use at least one of an alkali metal and an alkaline earth metal having a high Ox storage capacity.

【0018】アルカリ金属としては、リチウム、ナトリ
ウム、カリウム、ルビジウム、セシウム、フランシウム
が例示される。アルカリ土類金属とは周期表2A族元素
をいい、バリウム、ベリリウム、マグネシウム、カルシ
ウム、ストロンチウムなどが例示される。また希土類元
素としては、スカンジウム、イットリウム、ランタン、
セリウム、プラセオジム、ネオジム、ジスプロシウム、
イッテルビウムなどが例示される。
Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium and francium. The alkaline earth metal means an element of Group 2A of the periodic table, and examples thereof include barium, beryllium, magnesium, calcium, strontium and the like. Further, as rare earth elements, scandium, yttrium, lanthanum,
Cerium, praseodymium, neodymium, dysprosium,
An example is ytterbium.

【0019】NOx吸蔵材の担持量は、排ガス浄化用触
媒体積1Lあたり0.3〜1.0モルの範囲が望まし
い。担持量をこの範囲とすると、NOx吸蔵能力が飽和
することなく充分含有でき、NOx浄化性能が向上す
る。
The amount of the NO x storage material carried is preferably in the range of 0.3 to 1.0 mol per 1 L of the exhaust gas purifying catalyst volume. When the supported amount is within this range, the NO x storage capacity can be sufficiently contained without being saturated, and the NO x purification performance is improved.

【0020】さて、上記した本発明の排ガス浄化用触媒
に用いられる担体を製造するには、ジルコニア及びアル
ミナ等の多孔質酸化物粉末を乾式混合するだけでもよい
が、これらの粉末を界面活性剤の存在下で水と混合して
形成されたスラリーから担体を形成することが望まし
い。界面活性剤でジルコニア及びアルミナを高分散させ
ることでシンタリング抑制能力が向上する。
In order to produce the carrier used for the above-mentioned catalyst for purifying exhaust gas of the present invention, porous oxide powders such as zirconia and alumina may be simply dry mixed, but these powders are used as a surfactant. It is desirable to form the carrier from a slurry formed by mixing with water in the presence of By highly dispersing zirconia and alumina with a surfactant, the sintering suppressing ability is improved.

【0021】これらの粉末が混合された分散液に界面活
性剤を添加してもよいし、界面活性剤水溶液に多孔質酸
化物粉末を分散してもよい。界面活性剤としては、アニ
オン系、カチオン系及びノニオン系の界面活性剤のほ
か、ステアリン酸ナトリウムなどの金属セッケン、ポリ
ビニルアルコール、ポリビニルピロリドン、ポリアクリ
ルアミド、ポリアクリル酸などの高分子界面活性剤など
を用いることができる。
A surfactant may be added to the dispersion liquid in which these powders are mixed, or the porous oxide powder may be dispersed in an aqueous surfactant solution. As the surfactant, in addition to anionic, cationic and nonionic surfactants, metal soaps such as sodium stearate, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polymeric surfactants such as polyacrylic acid, etc. Can be used.

【0022】上記のようにして得られたスラリーから触
媒を形成するには、ハニカム形状の担体基材にスラリー
をコートして乾燥・焼成して担持層を形成し、その担持
層に貴金属とNOx吸蔵材を定法で担持すればよい。ま
たスラリーを押出成形後切断するなどしてペレット状に
成形し、それを乾燥・焼成した後に貴金属とNOx吸蔵
材を担持してペレット触媒を製造することもできる。さ
らに、上記スラリーを調製する際に、多孔質酸化物粉末
の一部又は全部に予め貴金属が担持された貴金属担持粉
末を用いてもよい。
In order to form a catalyst from the slurry obtained as described above, a honeycomb-shaped carrier substrate is coated with the slurry, dried and fired to form a supporting layer, and the supporting layer is formed of a noble metal and NO. x The occlusion material may be supported by a standard method. It is also possible to produce a pellet catalyst by carrying out extrusion molding and then cutting it into pellets, drying and firing it, and then carrying a noble metal and a NO x storage material. Further, when preparing the above slurry, a noble metal-supported powder in which a noble metal is previously supported on a part or all of the porous oxide powder may be used.

【0023】そして本発明の排ガス浄化用触媒は、空燃
比(A/F)が18以上で運転され間欠的に燃料ストイ
キ〜リッチ雰囲気とされるリーンバーンエンジンからの
排ガスと接触させると、燃料リーン雰囲気では、排ガス
中に含まれるNOが触媒上で酸化されてNOxとなり、
それがNOx吸蔵材に吸蔵される。そして間欠的に燃料
ストイキ〜リッチ雰囲気とされると、NOx吸蔵材から
NOxが放出され、それが触媒上で排ガス中のHCやC
Oと反応して還元される。
When the exhaust gas purifying catalyst of the present invention is operated at an air-fuel ratio (A / F) of 18 or more and is brought into contact with exhaust gas from a lean burn engine which is intermittently in a fuel stoichiometric or rich atmosphere, the fuel lean In the atmosphere, NO contained in the exhaust gas is oxidized on the catalyst to NO x ,
It is stored in the NO x storage material. When the fuel stoichiometric-rich atmosphere is intermittently generated, NO x is released from the NO x storage material, which is the HC or C in the exhaust gas on the catalyst.
It reacts with O and is reduced.

【0024】このとき、ジルコニア及びアルミナ等が、
NOx吸蔵材の劣化を抑制することができる。これによ
り耐久性が著しく向上し、高いNOx浄化能を長期間維
持することができる。
At this time, zirconia, alumina, etc.
It is possible to suppress the deterioration of the NO x storage material. Thereby, the durability is remarkably improved, and the high NO x purification ability can be maintained for a long period of time.

【0025】[0025]

【実施例】(触媒1)Rhが1質量%担持されたジルコ
ニア(Rh/ZrO2)を50質量部と、多孔質酸化物
としてのアルミナを100質量部及びジルコニアを90
質量部と、チタニアを30質量部と、セリア/ジルコニ
アの複合酸化物(CeO2/ZrO2)を20質量部と、
適量の水と、バインダゾル(硝酸アルミニウム溶液等)
とを混合し、スラリー化する。
Example (Catalyst 1) 50 parts by mass of zirconia (Rh / ZrO 2 ) carrying 1% by mass of Rh, 100 parts by mass of alumina as a porous oxide and 90 parts of zirconia.
Parts by mass, 30 parts by mass of titania, and 20 parts by mass of a ceria / zirconia composite oxide (CeO 2 / ZrO 2 ).
Appropriate amount of water and binder sol (aluminum nitrate solution, etc.)
And are mixed to form a slurry.

【0026】なお、Rh/ZrO2の調製は、ジルコニ
アを適量の水に分散後、Rh量がジルコニアに対して1
質量%となるように、所定濃度の塩化ロジウム水溶液を
加え、1時間攪拌後ろ過し、110℃で10時間程度乾
燥後、250℃で2時間焼成して行った。
The preparation of Rh / ZrO 2 was carried out by dispersing zirconia in an appropriate amount of water and then adjusting the amount of Rh to 1 relative to zirconia.
An aqueous solution of rhodium chloride having a predetermined concentration was added so that the content of the mixture was 1% by mass, the mixture was stirred for 1 hour, filtered, dried at 110 ° C. for about 10 hours, and then baked at 250 ° C. for 2 hours.

【0027】また、CeO2/ZrO2の調製は、セリア
粉末と、オキシ硝酸ジルコニウム溶液とをセリア:ジル
コニア質量比で85:15の比率で混合、撹拌後乾燥、
焼成を行った。
CeO 2 / ZrO 2 was prepared by mixing ceria powder and zirconium oxynitrate solution at a ceria: zirconia mass ratio of 85:15, stirring and drying.
Firing was performed.

【0028】このスラリーをモノリス担体にコート(コ
ート層の形成)する。その後、250℃で1時間乾燥、
500℃で1時間焼成を行った。
A monolith carrier is coated with this slurry (formation of a coat layer). Then, dry at 250 ° C for 1 hour,
Firing was performed at 500 ° C. for 1 hour.

【0029】このとき。コート組成は触媒体積1Lあた
り、アルミナ100g、Rh/ZrO250g、ジルコ
ニア90g、CeO2/ZrO220gであった。
At this time. The coating composition was 100 g of alumina, 50 g of Rh / ZrO 2 , 90 g of zirconia, and 20 g of CeO 2 / ZrO 2 per 1 L of the catalyst volume.

【0030】その後、コート層を形成したモノリス担体
を酢酸バリウム、酢酸カリウム及び酢酸リチウム混合溶
液中に1分間浸漬後乾燥させ、それぞれバリウム、カリ
ウム及びリチウムを10質量%、2.2質量%、0.3
質量%となるように、調製した水溶液中に1分間浸漬し
た後、乾燥して目的の触媒を得た。
Thereafter, the monolith carrier having the coat layer formed thereon is immersed in a mixed solution of barium acetate, potassium acetate and lithium acetate for 1 minute and then dried to obtain barium, potassium and lithium at 10% by mass, 2.2% by mass and 0% by mass, respectively. .3
It was immersed in the prepared aqueous solution for 1 minute so as to be a mass% and then dried to obtain a target catalyst.

【0031】(触媒2〜6)各組成が表1に示す担持量
となるように各触媒2〜6を調製した。各触媒の調製は
触媒1と同様にして行った。
(Catalysts 2 to 6) Catalysts 2 to 6 were prepared so that each composition had the loading amount shown in Table 1. Each catalyst was prepared in the same manner as catalyst 1.

【0032】[0032]

【表1】 [Table 1]

【0033】(耐熱試験)各触媒について、それぞれ、
排気量4Lのエンジンを用い、ストイキF/B雰囲気
で、触媒床内温度800℃、ガス空間速度60000h
-1の条件で50時間耐久を行った。その後、排気量1.
8Lのリーンバーンエンジンを用いて各触媒の性能評価
を行った。性能評価はNOX吸蔵量で判断し、触媒入り
ガス温度を300℃、350℃、400℃と変化させ、
出ガスが安定したところでリッチスパイクを導入し、入
りガス量から出ガス量を差し引いた量の合計によりRS
NOX吸蔵量の測定を行った。また、耐久後の各触媒の
吸蔵材について粒子径(BaCO3及びBaAlTi
O)をXRDにより測定した。結果を表2に示す。
(Heat resistance test) For each catalyst,
Using a 4-liter engine, stoichiometric F / B atmosphere, catalyst bed temperature 800 ° C, gas space velocity 60000h
Durability was performed for 50 hours under the condition of -1 . After that, displacement 1.
The performance of each catalyst was evaluated using an 8 L lean burn engine. The performance evaluation is judged by the NO X storage amount, and the temperature of the gas containing the catalyst is changed to 300 ° C, 350 ° C, 400 ° C,
Introduce a rich spike when the output gas is stable, and then calculate RS by the total of the input gas amount and the output gas amount.
The NO X storage amount was measured. In addition, the particle size (BaCO 3 and BaAlTi
O) was measured by XRD. The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】表2からジルコニアの担持量(ジルコニア
合計)の多い触媒1〜5はジルコニア担持量(ジルコニ
ア合計)の少ない触媒6と比較して、触媒入りガス温度
の上昇に伴うNOX吸蔵量の減少が抑制されており、触
媒の耐熱性に優れていることが明らかとなった。触媒6
のNOX吸蔵量はその絶対値も触媒1〜5と比較して小
さかった。
As shown in Table 2, the catalysts 1 to 5 having a large zirconia supported amount (total zirconia) were compared with the catalyst 6 having a small zirconia supported amount (total zirconia) in the NO x storage amount with an increase in the gas temperature entering the catalyst. The decrease was suppressed, and it was revealed that the catalyst has excellent heat resistance. Catalyst 6
The NO X storage amount of was also smaller in absolute value than the catalysts 1 to 5.

【0036】これは、ジルコニア(すなわち、Zr元
素)を触媒中に添加することで、TiとAlとBaとの
反応性を抑制できるためと考えられる。これは、表1に
示した高温耐久後のBaCO3及びBaAlTiOの粒
子径の値からも明らかである。つまり、触媒5、触媒1
から触媒4とジルコニア担持量が少なくなるに従って、
触媒中のBaCO3粒子が、BaAlTiO粒子に変化
している量が多くなっている(つまり、NOX吸蔵材が
劣化している)。
It is considered that this is because the reactivity of Ti, Al and Ba can be suppressed by adding zirconia (ie, Zr element) to the catalyst. This is also clear from the values of the particle diameters of BaCO 3 and BaAlTiO after high temperature durability shown in Table 1. That is, catalyst 5, catalyst 1
Therefore, as the amount of catalyst 4 and zirconia supported decreases,
The amount of BaCO 3 particles in the catalyst changed to BaAlTiO particles is large (that is, the NO X storage material is deteriorated).

【0037】したがって、ジルコニアの担持量の増加に
より触媒の熱耐久性能を向上させることができる。この
ジルコニアの担持量の増加による耐熱性向上の効果はジ
ルコニアの担持量(ジルコニア合計)が50g/Lであ
る触媒4でも充分発揮されていることから、耐熱性向上
の観点からはジルコニアの担持量(ジルコニア合計)と
して50g/L以上であれば充分であることが明らかと
なった。
Therefore, the thermal durability of the catalyst can be improved by increasing the amount of zirconia supported. The effect of improving the heat resistance due to the increase in the supported amount of zirconia is sufficiently exhibited by the catalyst 4 having a supported amount of zirconia (total zirconia) of 50 g / L. From the viewpoint of improving the heat resistance, the supported amount of zirconia is increased. It has been clarified that it is sufficient if the total (zirconia) is 50 g / L or more.

【0038】(硫黄被毒耐久試験)各触媒1〜6につい
て、それぞれ、排気量1.8Lのリーンバーンエンジン
を用い、触媒入りガス内温度550℃、ガス空間速度5
0000h-1の条件で20時間耐久を行った。このとき
にS分500ppmのガソリンを用いて耐久を行うため
に短時間での促進S耐久試験が達成できる。その後、排
気量1.8Lのリーンバーンエンジンを用いて各触媒の
性能評価を行った。性能評価はNOX吸蔵量で判断し、
触媒入りガス温度を300℃、350℃、400℃と変
化させ、耐熱試験後の性能評価試験と同様の方法により
測定を行った。結果を表3に示す。
(Sulfur poisoning endurance test) For each of the catalysts 1 to 6, a lean burn engine with a displacement of 1.8 L was used, and the temperature of the gas containing the catalyst was 550 ° C. and the gas space velocity was 5
Durability was performed for 20 hours under the condition of 0000 h -1 . At this time, since the durability is performed using gasoline with an S content of 500 ppm, the accelerated S durability test can be achieved in a short time. Then, the performance of each catalyst was evaluated using a lean burn engine with a displacement of 1.8 L. The performance evaluation is judged by the NO X storage amount,
The temperature of the gas containing the catalyst was changed to 300 ° C., 350 ° C., and 400 ° C., and the measurement was performed by the same method as the performance evaluation test after the heat resistance test. The results are shown in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】表3から明らかなように、触媒1〜4及び
6は高い耐硫黄被毒性能をもつ。これは、SOXと親和
性の低いチタニア粒子を分散性良く配置したために高い
耐硫黄被毒性を維持できたと考えられる。チタニアの添
加は触媒1の添加量(30g/L)でも充分な耐硫黄被
毒性能を発揮していることから、30g/L以上担持さ
せることが好ましいことが明らかとなった。
As is clear from Table 3, catalysts 1 to 4 and 6 have high sulfur poisoning resistance. It is considered that this is because the titania particles having a low affinity for SO X are arranged with good dispersibility, and thus high sulfur poisoning resistance can be maintained. It has been clarified that it is preferable to support 30 g / L or more, because the addition of titania exerts sufficient sulfur poisoning resistance performance even with the addition amount of catalyst 1 (30 g / L).

【0041】(耐熱試験及び硫黄被毒耐久試験)耐熱試
験及び硫黄被毒耐久試験の結果から耐熱性向上の観点か
らはジルコニアの担持量の増加が、耐硫黄被毒性の向上
の観点からはチタニアの担持量の増加が、それぞれ望ま
しいことが明らかとなったが、触媒の暖気性能を一定以
上とするには触媒全体の担持量はできるだけ少なくした
い。そこで限られた触媒担持量を有効利用することを目
的として表2及び表3を参照すると、ジルコニアの担持
量としては触媒1(ジルコニア担持量140g/L)か
ら触媒5(ジルコニア担持量170g/L)となる付近
で効果が飽和しているので、ジルコニアの担持量として
は触媒1Lあたり、50〜150g程度が好ましいこと
が明らかとなった。
(Heat Resistance Test and Sulfur Poisoning Durability Test) From the results of the heat resistance test and the sulfur poisoning durability test, the amount of zirconia supported increased from the viewpoint of improving the heat resistance, and the titania from the viewpoint of improving the sulfur poisoning resistance. It was revealed that it is desirable to increase the supported amount of each of the catalysts. However, in order to keep the warm-up performance of the catalyst above a certain level, the supported amount of the entire catalyst should be as small as possible. Therefore, referring to Tables 2 and 3 for the purpose of effectively utilizing the limited amount of supported catalyst, the supported amounts of zirconia are from catalyst 1 (supported amount of zirconia 140 g / L) to catalyst 5 (supported amount of zirconia 170 g / L). Since the effect is saturated in the vicinity of (1), it becomes clear that the supported amount of zirconia is preferably about 50 to 150 g per 1 L of the catalyst.

【0042】同様に、チタニアの担持量についても触媒
3(チタニア担持量70g/L)から触媒4(チタニア
担持量120g/L)、さらには触媒6(チタニア担持
量140g/L)と増加しても効果が飽和しており、チ
タニアの担持量としては触媒1Lあたり、30〜70g
程度が好ましいことが明らかとなった。
Similarly, the amount of titania supported increases from catalyst 3 (titania supported amount 70 g / L) to catalyst 4 (titania supported amount 120 g / L), and further catalyst 6 (titania supported amount 140 g / L). The effect is saturated, and the amount of titania supported is 30 to 70 g per 1 L of the catalyst.
It became clear that the degree is preferable.

【0043】[0043]

【発明の効果】以上説明したように、本発明の排ガス浄
化用触媒は、ジルコニアの担持量を増加させたことで、
NOX吸蔵材の熱による劣化が抑制でき、耐熱性の高い
排ガス浄化用触媒を提供することができる。また、チタ
ニアの担持量を増加させたことで、硫黄による触媒の劣
化を抑制でき、耐硫黄性の高い排ガス浄化用触媒を提供
することができる。
As described above, the catalyst for purifying exhaust gas of the present invention increases the supported amount of zirconia,
It is possible to suppress deterioration of the NO X storage material due to heat, and it is possible to provide an exhaust gas-purifying catalyst having high heat resistance. Further, by increasing the amount of titania supported, it is possible to suppress deterioration of the catalyst due to sulfur, and it is possible to provide an exhaust gas purifying catalyst having high sulfur resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 容規 静岡県小笠郡大東町千浜7800番地 株式会 社キャタラー内 Fターム(参考) 3G091 AA12 AB06 AB09 BA01 BA11 BA14 BA39 CB02 DA01 DA02 FA14 FB03 FB10 FB11 FB12 FC08 GA06 GA07 GA16 GA20 GB01X GB02Y GB04Y GB05W GB06W GB07W GB10X GB16X 4D048 AA06 AB02 BA03X BA07X BA08X BA19X BA33X BA41X BA42X BB02 4G069 AA03 AA08 BA01B BA04B BA05B BB04B BB06B BC03B BC04B BC13B BC43B BC71B CA03 CA08 CA13 DA06 EA19 ED06 FB04 FB06 FB07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshinori Sato             7800 Chihama, Daito Town, Ogasa County, Shizuoka Prefecture Stock Association             Inside the company caterer F-term (reference) 3G091 AA12 AB06 AB09 BA01 BA11                       BA14 BA39 CB02 DA01 DA02                       FA14 FB03 FB10 FB11 FB12                       FC08 GA06 GA07 GA16 GA20                       GB01X GB02Y GB04Y GB05W                       GB06W GB07W GB10X GB16X                 4D048 AA06 AB02 BA03X BA07X                       BA08X BA19X BA33X BA41X                       BA42X BB02                 4G069 AA03 AA08 BA01B BA04B                       BA05B BB04B BB06B BC03B                       BC04B BC13B BC43B BC71B                       CA03 CA08 CA13 DA06 EA19                       ED06 FB04 FB06 FB07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔質酸化物からなる担体と、該担体に
担持された貴金属と、アルカリ金属又はアルカリ土類金
属を含み該担体に担持されたNOx吸蔵材と、よりなる
NOx吸蔵還元型の排ガス浄化用触媒であって、 前記多孔質酸化物は、ジルコニア及びアルミナからな
り、 該ジルコニアが、前記排ガス浄化用触媒体積1Lあたり
に50〜150g含まれることを特徴とする排ガス浄化
用触媒。
1. A NO x storage reduction comprising a support made of a porous oxide, a noble metal supported on the support, and an NO x storage material supported on the support containing an alkali metal or an alkaline earth metal. Type exhaust gas purifying catalyst, wherein the porous oxide comprises zirconia and alumina, and the zirconia is contained in an amount of 50 to 150 g per 1 L of the exhaust gas purifying catalyst volume. .
【請求項2】 前記多孔質酸化物は、さらにチタニアを
含み、 該チタニア及び前記アルミナが、前記排ガス浄化用触媒
体積1Lあたりにそれぞれ30〜70g及び100〜1
70g含まれる請求項1に記載の排ガス浄化用触媒。
2. The porous oxide further contains titania, and the titania and the alumina are 30 to 70 g and 100 to 1 per 1 L of the exhaust gas purifying catalyst volume, respectively.
The exhaust gas-purifying catalyst according to claim 1, which contains 70 g.
【請求項3】 前記貴金属はロジウムであり、質量基準
で前記ジルコニア全体の30〜100%に該ロジウムが
担持されている請求項1又は2に記載の排ガス浄化用触
媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the noble metal is rhodium, and the rhodium is supported on 30 to 100% of the entire zirconia on a mass basis.
JP2001338088A 2001-11-02 2001-11-02 Exhaust gas purification catalyst Expired - Fee Related JP4079622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338088A JP4079622B2 (en) 2001-11-02 2001-11-02 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001338088A JP4079622B2 (en) 2001-11-02 2001-11-02 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2003135964A true JP2003135964A (en) 2003-05-13
JP4079622B2 JP4079622B2 (en) 2008-04-23

Family

ID=19152632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338088A Expired - Fee Related JP4079622B2 (en) 2001-11-02 2001-11-02 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4079622B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297234A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Method of manufacturing composite material
JP2009202090A (en) * 2008-02-27 2009-09-10 Cataler Corp Method for manufacturing exhaust gas treatment catalyst
JP2017030990A (en) * 2015-07-29 2017-02-09 トヨタ自動車株式会社 Oxide solid solution-oxide mixed material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297234A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Method of manufacturing composite material
JP2009202090A (en) * 2008-02-27 2009-09-10 Cataler Corp Method for manufacturing exhaust gas treatment catalyst
JP2017030990A (en) * 2015-07-29 2017-02-09 トヨタ自動車株式会社 Oxide solid solution-oxide mixed material

Also Published As

Publication number Publication date
JP4079622B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JPWO2007145152A1 (en) Exhaust gas purification catalyst
JPH10286462A (en) Catalyst of purifying exhaust gas
JP3798727B2 (en) Exhaust gas purification catalyst
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
KR20100037164A (en) Exhaust gas purifying catalyst
JP2006051431A (en) Ternary catalyst for exhaust gas purification, and its production method
WO2014171443A1 (en) Exhaust-gas purification catalyst
JP5094049B2 (en) Exhaust gas purification catalyst
JP3378096B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3860929B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4079622B2 (en) Exhaust gas purification catalyst
JPH08281116A (en) Catalyst for purifying exhaust gas
JPH10249199A (en) Catalyst for purifying exhaust gas
JPH07171392A (en) Catalyst for exhaust gas purification
JP2002331240A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning apparatus
JP3664201B2 (en) Exhaust gas purification catalyst
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2006043637A (en) Catalyst for cleaning exhaust gas
JP4103407B2 (en) NOx storage reduction catalyst
JP2015093227A (en) Exhaust gas purification catalyst and manufacturing method thereof
JP2000157867A (en) Catalyst for exhaust gas treatment
JPH0857314A (en) Catalyst for purification of exhaust gas
JP2001009271A (en) Nitrogen oxides absorbent material and catalyst for purification of exhaust gas using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees