JP2003134790A - Linear motor - Google Patents

Linear motor

Info

Publication number
JP2003134790A
JP2003134790A JP2001317566A JP2001317566A JP2003134790A JP 2003134790 A JP2003134790 A JP 2003134790A JP 2001317566 A JP2001317566 A JP 2001317566A JP 2001317566 A JP2001317566 A JP 2001317566A JP 2003134790 A JP2003134790 A JP 2003134790A
Authority
JP
Japan
Prior art keywords
teeth
armature
linear motor
moving direction
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001317566A
Other languages
Japanese (ja)
Other versions
JP3824060B2 (en
Inventor
Toru Shikayama
透 鹿山
Tadahiro Miyamoto
恭祐 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001317566A priority Critical patent/JP3824060B2/en
Publication of JP2003134790A publication Critical patent/JP2003134790A/en
Application granted granted Critical
Publication of JP3824060B2 publication Critical patent/JP3824060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a linear motor in which a copper loss due to a circulating current in armature windings and a viscous damping force can be eliminated even in the case that the right and left armature windings are connected in parallel. SOLUTION: The linear motor is provided with parallel stators 111, 112 in right and left which have a plurality of fixed permanent magnets 113, and a rotor 120 in which armature windings 123, 124 are wound around an armature core 129 having right and left teeth 125. In this motor, the number of teeth of one side out of the right and left teeth 125 of the core 129 is set at N (an odd number being a multiple of 3), the number of poles of the magnets 113 facing the number of teeth N is set at P (an even number not less than 2), and the moving direction positions of the magnets 113 provided on the right and left stators 111, 112 are mutually shifted by a degree of δ=((-P)×1/2+N)×P/N×180 in an electric angle. Also, the moving direction positions of the windings 123, 124 are shifted by M=(-P)×1/2+N slot, and the same phases of the right and left windings 123, 124 are mutually connected in parallel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は例えば半導体製造装
置などのFA機器に用いられると共に、高速・高精度位
置決めを要求されるリニアモータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor which is used in FA equipment such as semiconductor manufacturing equipment and which requires high speed and high accuracy positioning.

【0002】[0002]

【従来の技術】従来、半導体製造装置などのFA機器に
用いられると共に、高速・高精度位置決めを要求される
リニアモータは図8、図9のようになっている。図8は
従来のリニアモータの正断面図、図9は図8のA−A線
に沿う断面図である。リニアモータは相数が3、毎極毎
相のスロット数が3/8の可動コイル形のものであり、
ティース数がN=9、ティース数N=9に対向する永久
磁石の磁極数P=8で構成されている。図において、2
11は左側固定子、212は右側固定子、213は永久
磁石、220は可動子、221は第1の可動子取付部
材、222は第2の可動子取付部材、223は左側電機
子巻線、224は右側電機子巻線、225はティース、
226は継鉄、227は貫通穴、228はボルト、22
9は電機子コアである。リニアモータは複数の永久磁石
213を移動方向に沿って交互に順次異極となるように
内側に固着された左右平行な固定子(左側固定子211
および右側固定子212)が設けられている。また、永
久磁石213の磁石列と磁気的空隙を介して対向する面
には左右のティース225を有する電機子コア229に
左側電機子巻線223、右側電機子巻線224を集中巻
により巻装してなる可動子220が設けられている。さ
らに、固定子は図示しない他の固定子取付プレートによ
って剛に固定されている。可動子はティース225およ
び継鉄226の上下方向を第1の可動子取付材221と
第2の可動子取付部材222により挟み込み、貫通穴2
27に通したボルト228で締め付けられ、互いに剛に
固定されている。そして、第1の可動子取付部材121
の上面は図示しない負荷テーブルに固定され、可動子2
20は図示しないガイドによって長手方向に移動自在と
なっている。このような構成において、リニアモータは
可動子220の左右側面に左側固定子211および右側
固定子212が配置される構造であるため、可動子22
0と固定子211,212間に発生する磁気吸引力が左
右で相殺される。その結果、可動子220にかかる磁気
吸引力を考慮する必要が無く、可動子220を取り付け
るテーブルの軽量化、テーブルを支持するガイドの長寿
命化をはかることができる。また、永久磁石213を配
置した2個の固定子を半ピッチずらし、可動子220と
固定子211,212間に発生するコギング力(基本周
期が磁極ピッチλ)が左右で相殺されることから、コギ
ング力による速度リプルが無く、一定速送り高精度化を
はかることができる(例えば、特開平11―26223
6号公報)。
2. Description of the Related Art Conventionally, linear motors used in FA equipment such as semiconductor manufacturing equipment and required to perform high-speed and high-precision positioning are as shown in FIGS. 8 is a front sectional view of a conventional linear motor, and FIG. 9 is a sectional view taken along the line AA of FIG. The linear motor is a moving coil type with 3 phases and 3/8 slots for each pole and phase.
The number of teeth is N = 9, and the number of magnetic poles P of permanent magnets facing the number of teeth N = 9 is P = 8. In the figure, 2
11 is a left side stator, 212 is a right side stator, 213 is a permanent magnet, 220 is a mover, 221 is a first mover mounting member, 222 is a second mover mounting member, 223 is a left armature winding, 224 is the right armature winding, 225 is the tooth,
226 is a yoke, 227 is a through hole, 228 is a bolt, 22
Reference numeral 9 is an armature core. The linear motor includes a plurality of permanent magnets 213, which are fixed to each other in the left and right parallel stators (the left side stator 211 and the left stator 211) which are fixed to the inside so that the permanent magnets 213 are alternately and sequentially made to have different polarities along the moving direction.
And a right side stator 212) is provided. Further, the left armature winding 223 and the right armature winding 224 are wound by concentrated winding on an armature core 229 having left and right teeth 225 on the surface facing the magnet row of the permanent magnet 213 via a magnetic gap. A movable element 220 is provided. Further, the stator is rigidly fixed by another stator mounting plate (not shown). In the mover, the teeth 225 and the yoke 226 are vertically sandwiched by the first mover attachment member 221 and the second mover attachment member 222, and the through hole 2
Tightened with bolts 228 passing through 27, they are rigidly fixed to each other. Then, the first mover mounting member 121
The upper surface of the movable element 2 is fixed to a load table (not shown).
20 is movable in the longitudinal direction by a guide (not shown). In such a configuration, since the linear motor has a structure in which the left side stator 211 and the right side stator 212 are arranged on the left and right side surfaces of the mover 220, the mover 22
The magnetic attraction force generated between 0 and the stators 211 and 212 is offset on the left and right. As a result, it is not necessary to consider the magnetic attraction force applied to the mover 220, and it is possible to reduce the weight of the table on which the mover 220 is mounted and extend the life of the guide that supports the table. Further, the two stators in which the permanent magnets 213 are arranged are shifted by a half pitch, and the cogging force (the basic cycle is the magnetic pole pitch λ) generated between the mover 220 and the stators 211 and 212 is offset on the left and right, There is no speed ripple due to the cogging force, and it is possible to achieve high accuracy in constant speed feed (for example, Japanese Patent Laid-Open No. 11-26223).
No. 6).

【0003】[0003]

【発明が解決しようとする課題】ところが従来技術では
リニアモータの移動速度に比例した誘起電圧の増加によ
る駆動電圧不足を避けるために、左右の電機子巻線を並
列結線する必要があるが、次のような問題が生じた。 (1)可動子をある速度で移動させた場合、2個の固定
子に対面した左右の電機子巻線が鎖交する磁束に位相差
が生じると共に、左右の電機子巻線を並列結線すると、
左右の電機子巻線内で循環電流が流れて銅損が発生し、
その結果、電機子コアの温度上昇、可動子取付部の熱変
形などを生じていた。 (2)また、循環電流は可動子の速度に比例した粘性制
動力を発生させるため、可動子の移動速度が速い場合に
は大きな粘性制動力に打ち勝つために電流を増やす必要
があることから、従来に比べて電流の増加による多大な
銅損が発生した。本発明は、上記課題を解決するために
なされたものであり、左右の電機子巻線を並列結線した
場合でも、電機子巻線内での循環電流による銅損および
粘性制動力を無くすことができるリニアモータを提供す
ることを目的とする。
However, in the prior art, it is necessary to connect the left and right armature windings in parallel in order to avoid a drive voltage shortage due to an increase in induced voltage proportional to the moving speed of the linear motor. The problem like this occurred. (1) When the mover is moved at a certain speed, when the left and right armature windings are connected in parallel, a phase difference occurs in the magnetic flux interlinking the left and right armature windings facing the two stators. ,
Circulating current flows in the left and right armature windings, causing copper loss,
As a result, the temperature rise of the armature core and the thermal deformation of the mover mounting portion have occurred. (2) Further, the circulating current generates a viscous braking force proportional to the speed of the mover. Therefore, when the moving speed of the mover is high, it is necessary to increase the current to overcome the large viscous braking force. Compared with the conventional method, a large amount of copper loss was caused by the increase in current. The present invention has been made to solve the above problems, and even when the left and right armature windings are connected in parallel, copper loss and viscous braking force due to circulating current in the armature windings can be eliminated. It is an object of the present invention to provide a linear motor that can be used.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、請求項1の本発明は、複数の永久磁石を移動方向に
沿って交互に順次異極となるように内側に固着された左
右平行な固定子と、前記永久磁石の磁石列と磁気的空隙
を介して対向する面に左右のティースを有する電機子コ
アに電機子巻線を巻装してなる可動子とを備えたリニア
モータにおいて、前記電機子コアの左右のティースのう
ち、片側のティースの数をN(3の倍数とする奇数)、
前記ティース数Nに対面した前記永久磁石の磁極数をP
(2以上の偶数)としたときに、左右の前記固定子に設
けられた前記永久磁石の移動方向位置は互いに電気角
で、δ=((−P)×1/2+N)×P/N×180度
ずらしてあり、前記電機子コアの左右に巻回した電機子
巻線の移動方向位置を、M=(−P)×1/2+N ス
ロット分ずらしてあり、前記左右の電機子巻線の同相同
士を並列接続したものである。また、請求項2の本発明
は、請求項1に記載のリニアモータにおいて、略長方形
状に打ち抜いた電磁鋼板の両側面に凹凸状の係合部を設
けて積層してなるコアを順次移動方向に複数並べて連結
したものである。また、請求項3の本発明は、複数の永
久磁石を移動方向に沿って交互に順次異極となるように
内側に固着された左右平行な固定子と、前記永久磁石の
磁石列と磁気的空隙を介して対向する面に左右のティー
スを有する電機子コアに電機子巻線を巻装してなる可動
子とを備えたリニアモータにおいて、前記電機子コアの
左右のティースのうち、片側のティースの数をN(3の
倍数とする偶数)、前記ティース数Nに対面した前記永
久磁石の磁極数をP(2以上の偶数)としたときに、左
右の前記固定子に設けられた前記永久磁石の移動方向位
置は互いに電気角で、δ=(P×3/2−N)×P/N
×180度ずらしてあり、左右の前記電機子巻線の移動
方向位置を、M=P×3/2−N+P スロット分ずら
してあり、左右の前記電機子巻線の同相同士を並列接続
したものである。請求項4の本発明は。請求項3に記載
のリニアモータにおいて、略長方形状に打ち抜いた電磁
鋼板の両側面に凹凸状の係合部を設けて積層してなるコ
アを順次移動方向に複数並べて連結したものである。
In order to solve the above-mentioned problems, the present invention according to claim 1 is characterized in that a plurality of permanent magnets are fixed to the inside in parallel so as to be alternately different poles alternately along the moving direction. A linear motor having a stator and a mover in which armature windings are wound around an armature core having left and right teeth on a surface facing the magnet row of the permanent magnets via a magnetic gap. , Of the left and right teeth of the armature core, the number of teeth on one side is N (an odd number that is a multiple of 3),
The number of magnetic poles of the permanent magnet facing the number of teeth N is P
(Even number of 2 or more), the moving direction positions of the permanent magnets provided on the left and right stators are electrical angles with each other, and δ = ((− P) × 1/2 + N) × P / N × The armature windings, which are shifted by 180 degrees, are displaced from each other in the moving direction by M = (− P) × 1/2 + N slots. The same phase is connected in parallel. Further, according to the present invention of claim 2, in the linear motor according to claim 1, the core formed by stacking the electromagnetic steel plates punched into a substantially rectangular shape by providing concave and convex engaging portions on both side surfaces is sequentially moved. It is the one that is lined up and connected. Further, according to the present invention of claim 3, left and right parallel stators in which a plurality of permanent magnets are fixed to the inside so as to sequentially become different poles alternately along the moving direction, and a magnet array of the permanent magnets and magnetic In a linear motor including a mover formed by winding armature windings on an armature core having left and right teeth on surfaces facing each other with a gap, one of the left and right teeth of the armature core is When the number of teeth is N (even number that is a multiple of 3) and the number of magnetic poles of the permanent magnets facing the number N of teeth is P (even number of 2 or more), the stators provided on the left and right sides are provided. The positions of the permanent magnets in the moving direction are electrical angles with each other, and δ = (P × 3 / 2−N) × P / N
The positions of the armature windings on the left and right are shifted by 180 degrees, and the positions in the moving direction of the left and right armature windings are shifted by M = P × 3 / 2−N + P slots, and the same phases of the left and right armature windings are connected in parallel. It is a thing. The present invention according to claim 4 is. In the linear motor according to a third aspect of the present invention, a plurality of cores, which are formed by stacking the electromagnetic steel plates punched out in a substantially rectangular shape with concave and convex engaging portions on both side surfaces, are sequentially arranged and connected in the moving direction.

【0005】[0005]

【発明の実施の形態】以下、本発明を図に基づいて説明
する。図1は本発明の第1実施例を示すリニアモータで
あって、図8のA−A線に沿うリニアモータの上部から
見た断面図に相当する。このリニアモータは、従来技術
と同じく相数が3、毎極毎相のスロット数が3/8の可
動コイル形リニアモータであって、ティース数がN=
9、ティース数N=9に対向する永久磁石の磁極数P=
8で構成されている。図において、111は左側固定
子、112は右側固定子、113は永久磁石、120は
可動子、123は左側電機子巻線、124は右側電機子
巻線、125はティース、126は継鉄、127は貫通
穴、129は電機子コアである。本発明のうち、複数の
永久磁石113を移動方向に沿って内側に等ピッチλに
て固着された左右平行な固定子と、永久磁石113の磁
石列と磁気的空隙を介して対向する面に電機子巻線12
3、124を巻装した電機子コア129を有する可動子
120とを設けた構成、固定子を図示しない固定子取付
プレートによって固定し、可動子を2つの可動子取付材
により挟み込んで固定する構成、については従来技術と
基本的には同じである。本発明が従来技術と異なる点は
以下のとおりである。すなわち、電機子コア129の左
右のティース125のうち、片側のティースの数をN
(3の倍数とする奇数)、ティース数Nに対面した永久
磁石113の磁極数をP(2以上の偶数)としたとき
に、左右の固定子111、112に設けられた永久磁石
113の移動方向位置は互いに電気角で、δ=((−
P)×1/2+N)×P/N×180度ずらしてあり、
電機子コア129の左右に巻回した電機子巻線123、
124の移動方向位置を、M=(−P)×1/2+N
スロット分ずらしてあり、左右の電機子巻線123、1
24の同相同士を並列接続した点である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings. FIG. 1 is a linear motor showing a first embodiment of the present invention, and corresponds to a cross-sectional view seen from the upper part of the linear motor taken along the line AA of FIG. This linear motor is a moving coil type linear motor in which the number of phases is 3 and the number of slots for each pole and phase is 3/8, and the number of teeth is N =
9, the number of teeth N = 9, and the number of magnetic poles of the permanent magnet P =
It is composed of 8. In the figure, 111 is a left stator, 112 is a right stator, 113 is a permanent magnet, 120 is a mover, 123 is a left armature winding, 124 is a right armature winding, 125 is teeth, 126 is a yoke, Reference numeral 127 is a through hole, and 129 is an armature core. In the present invention, a plurality of permanent magnets 113 are fixed to the inside in the left-right parallel stator fixed at an equal pitch λ along the moving direction, and to the surface facing the magnet row of the permanent magnets 113 via a magnetic gap. Armature winding 12
3, a structure provided with a mover 120 having an armature core 129 wound around it, a structure in which the stator is fixed by a stator mounting plate (not shown), and the mover is sandwiched and fixed by two mover mounting members. , Are basically the same as in the prior art. The present invention is different from the prior art in the following points. That is, of the teeth 125 on the left and right of the armature core 129, the number of teeth on one side is N
When the number of magnetic poles of the permanent magnet 113 facing the number of teeth N (an odd number that is a multiple of 3) is P (even number of 2 or more), the movement of the permanent magnet 113 provided on the left and right stators 111 and 112 is moved. The directional positions are electrical angles to each other, and δ = ((-
P) × 1/2 + N) × P / N × 180 degrees shifted,
Armature windings 123 wound to the left and right of the armature core 129,
The moving direction position of 124 is M = (− P) × 1/2 + N
The armature windings 123, 1 on the left and right are displaced by the slots.
The point is that 24 in-phase components are connected in parallel.

【0006】本実施例の左側固定子111と右側固定子
112においては、ティース数がN=9、ティース数N
=9に対向する永久磁石の磁極数P=8の条件の下で、
左側固定子111の永久磁石113に対して右側固定子
112の永久磁石113を、電気角で次の角度だけずら
していることになる。 δ=((−P)×1/2+N)×P/N×180度 =(−8×1/2+9)×8/9×180度=800度 このとき、電気角800度は、800度−360度×2
=80度であるため、寸法で表せば80/180×λ=
4/9×λとなる。
In the left side stator 111 and the right side stator 112 of this embodiment, the number of teeth is N = 9 and the number of teeth is N.
= 9, under the condition of the number of magnetic poles P of the permanent magnet facing P = 8,
This means that the permanent magnet 113 of the right stator 112 is displaced from the permanent magnet 113 of the left stator 111 by the following electrical angle. δ = ((− P) × 1/2 + N) × P / N × 180 degrees = (− 8 × 1/2 + 9) × 8/9 × 180 degrees = 800 degrees At this time, the electrical angle of 800 degrees is 800 degrees− 360 degrees x 2
= 80 degrees, it is 80/180 x λ =
It becomes 4/9 × λ.

【0007】次に、電機子巻線の結線方法を図2、図3
に基づいて説明する。図2は第1の実施例による左右の
電機子巻線の各スロット位置におけるコイルル結線図、
図3は第1の実施例における各相ごとに並列接続された
左右の電機子巻線の結線図を示したものである。ここ
で、図2における1〜10までの数字はスロット番号、
スロット番号下の角度はあるスロット位置を電気角0度
とした場合の各スロット位置における電気角を表してい
る。そして、右側電機子巻線124において、U相はU
R、XR端子、V相はVR、YR端子、W相はWR、Z
R端子を持っており、左側電機子巻線123において、
U相はUL、XL端子、V相はYL、VL端子、W相
はWL、ZL端子を持っている。これら端子は、図3に
おいて、URとUL,XRとXL,VRとVL 、YR
とYL、WRとWL、ZRとZLが接続され、右側電機
子巻線124と左側電機子巻線123は各相ごとに並列
接続されている。同図に示されているように、右側電機
子巻線124は左側電機子巻線123に対し、Mスロッ
ト分 M=(−P)×1/2+N=−8×1/2+9=5 ずらしている。これを電気角で表すと M×P/N×180度=5×8/9×180度=800
度 すなわち、800度−2×360度=80度となってい
る。
Next, the method of connecting the armature windings will be described with reference to FIGS.
It will be described based on. FIG. 2 is a coil connection diagram at each slot position of the left and right armature windings according to the first embodiment,
FIG. 3 is a connection diagram of the left and right armature windings connected in parallel for each phase in the first embodiment. Here, the numbers 1 to 10 in FIG. 2 are slot numbers,
The angle below the slot number represents the electrical angle at each slot position when the electrical angle at a certain slot position is 0 degree. Then, in the right armature winding 124, the U phase is U
R, XR terminals, V phase VR, YR terminals, W phase WR, Z
It has an R terminal, and in the left armature winding 123,
The U phase has UL and XL terminals, the V phase has YL and VL terminals, and the W phase has WL and ZL terminals. These terminals are UR and UL, XR and XL, VR and VL, YR in FIG.
And YL, WR and WL, ZR and ZL are connected, and the right armature winding 124 and the left armature winding 123 are connected in parallel for each phase. As shown in the figure, the right armature winding 124 is displaced from the left armature winding 123 by M slots M = (− P) × 1/2 + N = −8 × 1/2 + 9 = 5. There is. If this is expressed in electrical angle, M × P / N × 180 degrees = 5 × 8/9 × 180 degrees = 800
That is, 800 degrees−2 × 360 degrees = 80 degrees.

【0008】次に、推力発生原理について説明する。左
側電機子巻線123のU相は、3つのコイルから構成さ
れ、電気角160度間隔に直列接続されている。従っ
て、可動子120を左側固定子111に対し相対移動さ
せれば、3つのコイルに磁束が鎖交し、誘起電圧が発生
する。同様に、U相に対し電気角120度、240度に
配置されたV相、W相のコイルにも、U相に対し電気角
120度、240度の位相差を持つ誘起電圧が発生す
る。従って、この誘起電圧に応じた所定の電流を与える
ことにより、左側電機子巻線123に推力が発生する。
一方、右側電機子巻線124は、左側電機子巻線123
に対し5スロット分ずらしている。左側固定子111と
右側固定子112にずれが無い場合、可動子120を右
側固定子112に対し相対移動させれば、左側電機子巻
線123に対し電気角80度遅れた誘起電圧が発生す
る。しかしながら、右側固定子112は左側固定子11
1に対し電気角δ=80度ずらしているため、右側電機
子巻線124に発生する誘起電圧には位相差が生じな
い。従って、図3に示すごとく、左側電機子巻線123
と右側電機子巻線124を並列結線しても、そこには循
環電流が生じないことになる。
Next, the principle of thrust generation will be described. The U-phase of the left armature winding 123 is composed of three coils, which are connected in series at electrical angle intervals of 160 degrees. Therefore, when the mover 120 is moved relative to the left stator 111, magnetic fluxes are linked to the three coils and an induced voltage is generated. Similarly, an induced voltage having a phase difference of 120 ° and 240 ° with respect to the U phase is also generated in the V-phase and W-phase coils arranged at 120 ° and 240 ° with respect to the U-phase. Therefore, thrust is generated in the left armature winding 123 by applying a predetermined current according to the induced voltage.
On the other hand, the right armature winding 124 is
It is shifted by 5 slots. If there is no displacement between the left side stator 111 and the right side stator 112, if the mover 120 is moved relative to the right side stator 112, an induced voltage delayed by an electrical angle of 80 degrees with respect to the left side armature winding 123 is generated. . However, the right side stator 112 is the left side stator 11
Since the electrical angle δ is shifted by 80 ° with respect to 1, the induced voltage generated in the right armature winding 124 has no phase difference. Therefore, as shown in FIG. 3, the left armature winding 123
Even if the right armature winding 124 and the right armature winding 124 are connected in parallel, no circulating current is generated there.

【0009】次に、コギング力の低減効果について図4
に基づいて説明する。図4はコギング波形の低減効果の
説明図であって、(a)は第1の実施例によるコギング
力波形、(b)は2個の固定子をずらしていない従来構
造のリニアモータによるコギング力波形である。図4
(b)の従来のものによると、左右の固定子と可動子間
に発生する各々のコギング力は、磁極ピッチλ(電気角
180度)を基本周期とし同位相である。よって、左右
足し合わせによって大きなコギング力が発生している。
一方、図4(a)の本実施例のものによると、左右の固
定子と可動子間に発生するコギング力は電気角80度の
位相差が生じるため、合成されたコギング力は大幅に低
減されている。
Next, the effect of reducing the cogging force is shown in FIG.
It will be described based on. 4A and 4B are explanatory views of the effect of reducing the cogging waveform. FIG. 4A is a cogging force waveform according to the first embodiment, and FIG. 4B is a cogging force due to a linear motor having a conventional structure in which two stators are not displaced. It is a waveform. Figure 4
According to the conventional example of (b), the respective cogging forces generated between the left and right stators and the mover are in phase with the magnetic pole pitch λ (electrical angle 180 degrees) as a basic period. Therefore, a large cogging force is generated by adding the left and right sides.
On the other hand, according to the present embodiment of FIG. 4A, the cogging force generated between the left and right stators and the mover has a phase difference of 80 electrical degrees, so the combined cogging force is significantly reduced. Has been done.

【0010】このように、第1の実施例は上記の構成に
したので、左右の電機子巻線を並列結線した場合ても、
循環電流が発生することはなく、これにより従来発生し
ていた循環電流による銅損や粘性制動力を無くすことが
可能なリニアモータを提供することができる。また、左
右の固定子と可動子間に発生するコギング力(基本周期
が磁極ピッチλ(電気角180度))がδ=80度のず
れによって相殺され、合成されたコギング力を大幅に低
減することができる。
As described above, since the first embodiment has the above structure, even when the left and right armature windings are connected in parallel,
It is possible to provide a linear motor capable of eliminating the copper loss and the viscous braking force due to the circulating current that have been conventionally generated, because the circulating current is not generated. Further, the cogging force (the basic period is the magnetic pole pitch λ (electrical angle 180 degrees)) generated between the left and right stators and the mover is offset by the deviation of δ = 80 degrees, and the combined cogging force is significantly reduced. be able to.

【0011】次に、本発明の第2の実施例について説明
する。図5は本発明の第2実施例を示すリニアモータで
あって、図8のA−A線に沿うリニアモータの上部から
見た断面図に相当する。図6は左側電機子巻線123お
よび右側電機子巻線124のコイル結線図である。図7
は第2の実施例におけるコギング力波形を示す図であ
る。なお、このリニアモータは、相数が3、毎極毎相の
スロット数が2/5の可動コイル形リニアモータであ
る。つまり、ティース数がN=12、ティース数N=1
2に対向する永久磁石の磁極数P=10で構成されてい
る。第2の実施例が第1の実施例と異なる点は、以下の
とおりである。 すなわち、電機子コア129の左右のティース125の
うち、片側のティースの数をN(3の倍数とする偶
数)、ティース数Nに対面した永久磁石113の磁極数
をP(2以上の偶数)としたときに、左右の固定子11
1、112に設けられた永久磁石113の移動方向位置
は互いに電気角で、δ=(P×3/2−N)×P/N×
180度ずらしてあり、左右の電機子巻線123,12
4の移動方向位置を、M=P×3/2−N+P スロッ
ト分ずらしてあり、左右の電機子巻線123,124の
同相同士を並列接続した点である。 本実施例においては、左側固定子111の永久磁石11
3と右側固定子112の永久磁石113のずれ分δ、左
側電機子巻線123と右側電機子巻線124のずれスロ
ット分Mは、N=12、P=10の条件のもとで、次の
ように計算される。 δ=(P×3/2−N)×P/N×180度 =(10×3/2−12)×10/12×180度=450度 =450度−360度=90度 M=P×3/2−N =10×3/2−12=3 左側固定子111の永久磁石113に対して右側固定子
112の永久磁石113を、90/180×λ=1/2
×λだけずらしている。また、左側電機子巻線123と
右側電機子巻線124を、3×10/12×180=9
0度だけずらしている。
Next, a second embodiment of the present invention will be described. FIG. 5 shows a linear motor according to a second embodiment of the present invention, which corresponds to a sectional view of the linear motor taken along the line AA of FIG. 8 as seen from above. FIG. 6 is a coil connection diagram of the left armature winding 123 and the right armature winding 124. Figure 7
FIG. 8 is a diagram showing a cogging force waveform in the second embodiment. Note that this linear motor is a moving coil type linear motor having three phases and 2/5 slots for each pole and each phase. That is, the number of teeth is N = 12, and the number of teeth is N = 1.
The number of magnetic poles of the permanent magnet facing 2 is P = 10. The difference between the second embodiment and the first embodiment is as follows. That is, of the left and right teeth 125 of the armature core 129, the number of teeth on one side is N (even number that is a multiple of 3), and the number of magnetic poles of the permanent magnet 113 facing the number N of teeth is P (even number of 2 or more). Then, the left and right stators 11
The positions in the moving direction of the permanent magnets 113 provided in Nos. 1 and 112 are electrical angles with each other, and δ = (P × 3 / 2−N) × P / N ×
The armature windings 123 and 12 on the left and right are shifted by 180 degrees
4 is shifted in the moving direction position by M = P × 3 / 2−N + P slots, and the same phase of the left and right armature windings 123 and 124 is connected in parallel. In this embodiment, the permanent magnet 11 of the left stator 111 is
3 and the shift amount δ of the permanent magnet 113 of the right stator 112, and the shift slot amount M of the left armature winding 123 and the right armature winding 124, under the conditions of N = 12 and P = 10, Is calculated as δ = (P × 3 / 2−N) × P / N × 180 degrees = (10 × 3 / 2-12) × 10/12 × 180 degrees = 450 degrees = 450 degrees−360 degrees = 90 degrees M = P × 3 / 2−N = 10 × 3 / 2-12 = 3 For the permanent magnet 113 of the left stator 111, the permanent magnet 113 of the right stator 112 is 90/180 × λ = 1/2.
It is offset by × λ. In addition, the left armature winding 123 and the right armature winding 124 are 3 × 10/12 × 180 = 9.
It is offset by 0 degrees.

【0012】このように、第2の実施例は上記の構成に
したので、第1の実施例同様、左側電機子巻線123と
右側電機子巻線124の誘起電圧の位相は一致し、並列
接続した場合にも循環電流が生じないことになる。ま
た、左側固定子111の永久磁石113に対して右側固
定子112の永久磁石113を電気角δ=90度ずらし
ているため、図7に示すごとく、左右の固定子と可動子
間に発生するコギング力の合成を無くすことができる。
第1の実施例のδ=80度よりさらにコギング力を低減
することができる。
As described above, the second embodiment has the above-mentioned structure. Therefore, as in the first embodiment, the phases of the induced voltages in the left armature winding 123 and the right armature winding 124 are the same and the phases are parallel to each other. Even if they are connected, no circulating current will occur. Further, since the permanent magnet 113 of the right stator 112 is displaced from the permanent magnet 113 of the left stator 111 by an electrical angle δ = 90 degrees, it occurs between the left and right stators and the mover as shown in FIG. It is possible to eliminate the synthesis of cogging force.
It is possible to further reduce the cogging force compared with δ = 80 degrees in the first embodiment.

【0013】なお、以上の実施例では、可動コイル形リ
ニアモータとして説明したが、可動マグネット形リニア
モータとして構成しても構わず、本発明の可動コイル形
と同等の効果を得ることができる。よって、設計変更の
範疇として容易に実施できることは言うまでもない。ま
た、電機子コアは、電磁鋼鈑から複数のティースと継鉄
を一体化する構成のものに打ち抜いコアの例で説明した
が、略長方形状に打ち抜いた電磁鋼板の両側面に凹凸状
の係合部を設けて積層してなるコアを順次移動方向に複
数並べて連結したものであっても構わない。また、ティ
ース数N=9の場合にはP=8、ティース数N=12の
場合にはP=10として説明したが、ティース数N=9
の場合にはP=10、ティース数N=12の場合にはP
=14としても同様の効果を得ることができる。
In the above embodiments, the moving coil type linear motor has been described, but it may be configured as a moving magnet type linear motor, and the same effect as that of the moving coil type of the present invention can be obtained. Therefore, it goes without saying that it can be easily implemented as a category of design change. The armature core has been described as an example of a core punched from a magnetic steel plate into a structure in which a plurality of teeth and yokes are integrated. A plurality of cores, which are provided with joint portions and are laminated, may be sequentially arranged and connected in the moving direction. In addition, when the number of teeth N = 9, P = 8, and when the number of teeth N = 12, P = 10. However, the number of teeth N = 9.
In case of, P = 10, and in case of number of teeth N = 12, P
The same effect can be obtained by setting = 14.

【0014】[0014]

【発明の効果】以上述べたように、本発明によれば以下
のような効果がある。第1の実施例によれば、電機子コ
アの左右のティースのうち、片側のティースの数をN
(3の倍数とする奇数)、ティース数Nに対面した永久
磁石の磁極数をP(2以上の偶数)としたときに、左右
の固定子に設けられた永久磁石の移動方向位置は互いに
電気角で、δ=((−P)×1/2+N)×P/N×1
80度ずらしてあり、電機子コアの左右に巻回した電機
子巻線の移動方向位置を、M=(−P)×1/2+N
スロット分ずらしてあり、左右の電機子巻線の同相同士
を並列接続したため、左右の電機子巻線を並列結線して
も循環電流を生じることが無い。よって、循環電流によ
る銅損や粘性制動力が発生しない。また、基本周期を電
気角180度とするコギング力がδ=80度によって相
殺され、コギング力を低減することができる。
As described above, the present invention has the following effects. According to the first embodiment, of the left and right teeth of the armature core, the number of teeth on one side is N
When the number of magnetic poles of the permanent magnets facing the number of teeth N (an odd number that is a multiple of 3) is P (even number of 2 or more), the moving direction positions of the permanent magnets provided on the left and right stators are electrically different from each other. At a corner, δ = ((− P) × 1/2 + N) × P / N × 1
The position in the moving direction of the armature windings wound on the left and right of the armature core is shifted by 80 degrees, and M = (− P) × 1/2 + N
Since they are shifted by the slots and the same phases of the left and right armature windings are connected in parallel, no circulating current is generated even if the left and right armature windings are connected in parallel. Therefore, copper loss and viscous braking force due to the circulating current do not occur. Further, the cogging force having a fundamental cycle of 180 electrical degrees is canceled by δ = 80 degrees, and the cogging force can be reduced.

【0015】第2の実施例によれば、電機子コアの左右
のティースのうち、片側のティースの数をN(3の倍数
とする偶数)、ティース数Nに対面した永久磁石の磁極
数をP(2以上の偶数)としたときに、左右の固定子に
設けられた永久磁石の移動方向位置は互いに電気角で、
δ=(P×3/2−N)×P/N×180度ずらしてあ
り、左右の電機子巻線の移動方向位置を、M=P×3/
2−N+P スロット分ずらしてあり、左右の電機子巻
線の同相同士を並列接続したため、第1の実施例同様、
循環電流を無くすことができる。また、基本周期を電気
角180度とするコギング力がδ=90度となることに
より、第1の実施例におけるコギング力よりもさらに低
減することができる。
According to the second embodiment, of the left and right teeth of the armature core, the number of teeth on one side is N (even number that is a multiple of 3), and the number of magnetic poles of the permanent magnet facing the number N of teeth is set. When P (even number of 2 or more), the moving direction positions of the permanent magnets provided on the left and right stators are electric angles with respect to each other,
δ = (P × 3 / 2−N) × P / N × 180 ° shifted, and the moving direction positions of the left and right armature windings are M = P × 3 /
2-N + P slots are shifted and the left and right armature windings of the same phase are connected in parallel. Therefore, as in the first embodiment,
Circulating current can be eliminated. Further, since the cogging force having a basic cycle of 180 electrical degrees is δ = 90 degrees, the cogging force can be further reduced as compared with the cogging force in the first embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すリニアモータであ
って、図8のA−A線に沿うリニアモータの上部から見
た断面図に相当する。
FIG. 1 is a linear motor showing a first embodiment of the present invention and corresponds to a cross-sectional view seen from the upper portion of the linear motor taken along the line AA of FIG.

【図2】本発明の第1の実施例による左右の電機子巻線
の各スロット位置におけるコイル結線図である。
FIG. 2 is a coil connection diagram at each slot position of the left and right armature windings according to the first embodiment of the present invention.

【図3】本発明の第1の実施例における各相ごとに並列
接続された左右の電機子巻線の結線図を示したものであ
る。
FIG. 3 is a connection diagram of left and right armature windings connected in parallel for each phase in the first embodiment of the present invention.

【図4】コギング波形の低減効果の説明図であって、
(a)は第1の実施例によるコギング力波形、(b)は
2個の固定子をずらしていない従来構造のリニアモータ
によるコギング力波形である。
FIG. 4 is an explanatory diagram of a cogging waveform reduction effect,
(A) is a cogging force waveform according to the first embodiment, and (b) is a cogging force waveform due to a linear motor having a conventional structure in which two stators are not displaced.

【図5】本発明の第2の実施例を示すリニアモータであ
って、図8のA−A線に沿うリニアモータの上部から見
た断面図に相当する。
FIG. 5 is a linear motor showing a second embodiment of the present invention, and corresponds to a cross-sectional view of the linear motor taken along the line AA of FIG. 8 as seen from above.

【図6】本発明の第2の実施例における左側電機子巻線
123および右側電機子巻線124のコイル結線図であ
る。
FIG. 6 is a coil connection diagram of a left armature winding 123 and a right armature winding 124 according to a second embodiment of the present invention.

【図7】本発明の第2の実施例におけるコギング力波形
を示す図
FIG. 7 is a diagram showing a cogging force waveform in the second embodiment of the present invention.

【図8】従来のリニアモータの正断面図である。FIG. 8 is a front sectional view of a conventional linear motor.

【図9】図8のA−A線に沿うリニアモータの上部から
見た断面図である。
9 is a cross-sectional view of the linear motor taken along the line AA of FIG. 8 seen from above.

【符号の説明】[Explanation of symbols]

111 左側固定子(固定子) 112 右側固定子(固定子) 113 永久磁石 120 可動子 121 第1の可動子取付部材 122 第2の可動子取付部材 123 左側電機子巻線(電機子巻線) 124 右側電機子巻線(電機子巻線) 125 ティース 126 継鉄 127 貫通穴 128 ボルト 129 電機子コア 111 Left stator (stator) 112 Right stator (stator) 113 permanent magnet 120 mover 121 First Mover Attachment Member 122 Second Mover Attachment Member 123 Left armature winding (armature winding) 124 Right armature winding (armature winding) 125 teeth 126 Yoke 127 through hole 128 volts 129 Armature core

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数の永久磁石を移動方向に沿って交互に
順次異極となるように内側に固着された左右平行な固定
子と、前記永久磁石の磁石列と磁気的空隙を介して対向
する面に左右のティースを有する電機子コアに電機子巻
線を巻装してなる可動子とを備えたリニアモータにおい
て、前記電機子コアの左右のティースのうち、片側のテ
ィースの数をN(3の倍数とする奇数)、前記ティース
数Nに対面した前記永久磁石の磁極数をP(2以上の偶
数)としたときに、左右の前記固定子に設けられた前記
永久磁石の移動方向位置は互いに電気角で δ=((−P)×1/2+N)×P/N×180 度ずらしてあり、前記電機子コアの左右に巻回した電機
子巻線の移動方向位置を、 M=(−P)×1/2+N スロット分ずらしてあり、前記左右の電機子巻線の同相
同士を並列接続したことを特徴とするリニアモータ。
1. A left-right parallel stator in which a plurality of permanent magnets are fixed inside so as to alternately and sequentially become different poles along the moving direction, and a permanent magnet array and a magnet row of the permanent magnets face each other via a magnetic gap. In a linear motor including a mover in which armature windings are wound around an armature core having left and right teeth on its surface, the number of teeth on one side of the left and right teeth of the armature core is N. When the number of magnetic poles of the permanent magnet facing the number of teeth N is P (even number of 2 or more) (moving direction of the permanent magnet provided on the left and right stators) The positions are shifted in electrical angle from each other by δ = ((− P) × 1/2 + N) × P / N × 180 degrees, and the moving direction position of the armature winding wound to the left and right of the armature core is expressed by M = (-P) x 1/2 + N slots are shifted, and the left and right electric machines are A linear motor characterized in that the same phases of the child windings are connected in parallel.
【請求項2】前記電機子コアは、略長方形状に打ち抜い
た電磁鋼板の両側面に凹凸状の係合部を設けて積層して
なるコアを順次移動方向に複数並べて連結したものであ
ることを特徴とする請求項1に記載のリニアモータ。
2. The armature core is formed by stacking a plurality of cores, which are laminated in order by providing concave and convex engaging portions on both side surfaces of an electromagnetic steel plate punched out in a substantially rectangular shape, in sequence in the moving direction. The linear motor according to claim 1, wherein:
【請求項3】複数の永久磁石を移動方向に沿って交互に
順次異極となるように内側に固着された左右平行な固定
子と、前記永久磁石の磁石列と磁気的空隙を介して対向
する面に左右のティースを有する電機子コアに電機子巻
線を巻装してなる可動子とを備えたリニアモータにおい
て、 前記電機子コアの左右のティースのうち、片側のティー
スの数をN(3の倍数とする偶数)、前記ティース数N
に対面した前記永久磁石の磁極数をP(2以上の偶数)
としたときに、左右の前記固定子に設けられた前記永久
磁石の移動方向位置は互いに電気角で δ=(P×3/2−N)×P/N×180 度ずらしてあり、左右の前記電機子巻線の移動方向位置
を、 M=P×3/2−N+P スロット分ずらしてあり、左右の前記電機子巻線の同相
同士を並列接続したことを特徴とするリニアモリニアモ
ータ。
3. A left-right parallel stator in which a plurality of permanent magnets are fixed inside so as to sequentially have different poles alternately along the movement direction, and a magnet row of the permanent magnets, which face each other via a magnetic gap. In a linear motor including a mover in which armature windings are wound around an armature core having left and right teeth on its surface, the number of teeth on one side of the left and right teeth of the armature core is N. (Even number that is a multiple of 3), the number of teeth N
The number of magnetic poles of the permanent magnet facing P is P (even number of 2 or more)
In this case, the moving direction positions of the permanent magnets provided on the left and right stators are displaced from each other by δ = (P × 3 / 2−N) × P / N × 180 degrees in terms of electrical angle. A linear molinear motor characterized in that the moving direction positions of the armature windings are shifted by M = P × 3 / 2−N + P slots, and the same phases of the left and right armature windings are connected in parallel.
【請求項4】前記電機子コアは、略長方形状に打ち抜い
た電磁鋼板の両側面に凹凸状の係合部を設けて積層して
なるコアを順次移動方向に複数並べて連結したものであ
ることを特徴とする請求項3に記載のリニアモータ。
4. The armature core is formed by connecting a plurality of cores, which are formed by stacking an electromagnetic steel plate punched out in a substantially rectangular shape with concave and convex engaging portions on both side surfaces, sequentially in the moving direction. The linear motor according to claim 3, wherein:
JP2001317566A 2001-10-16 2001-10-16 Linear motor Expired - Fee Related JP3824060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317566A JP3824060B2 (en) 2001-10-16 2001-10-16 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317566A JP3824060B2 (en) 2001-10-16 2001-10-16 Linear motor

Publications (2)

Publication Number Publication Date
JP2003134790A true JP2003134790A (en) 2003-05-09
JP3824060B2 JP3824060B2 (en) 2006-09-20

Family

ID=19135416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317566A Expired - Fee Related JP3824060B2 (en) 2001-10-16 2001-10-16 Linear motor

Country Status (1)

Country Link
JP (1) JP3824060B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099379A (en) * 2006-10-10 2008-04-24 Hitachi Metals Ltd Low-profile linear motor
DE112008002686T5 (en) 2007-10-04 2010-08-19 Mitsubishi Electric Corp. linear motor
CN101958633A (en) * 2010-09-26 2011-01-26 华中科技大学 Composite core-based primary permanent magnet synchronous linear motor
WO2019130646A1 (en) * 2017-12-28 2019-07-04 Kyb株式会社 Cylindrical linear motor
KR20200093293A (en) * 2019-01-28 2020-08-05 주식회사 져스텍 Method for manufacturing coil module for linear motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099379A (en) * 2006-10-10 2008-04-24 Hitachi Metals Ltd Low-profile linear motor
DE112008002686T5 (en) 2007-10-04 2010-08-19 Mitsubishi Electric Corp. linear motor
US8274182B2 (en) 2007-10-04 2012-09-25 Mitsubishi Electric Corporation Linear motor including extended tooth tips
CN101958633A (en) * 2010-09-26 2011-01-26 华中科技大学 Composite core-based primary permanent magnet synchronous linear motor
WO2019130646A1 (en) * 2017-12-28 2019-07-04 Kyb株式会社 Cylindrical linear motor
JP2019122072A (en) * 2017-12-28 2019-07-22 Kyb株式会社 Cylindrical linear motor
US11245321B2 (en) 2017-12-28 2022-02-08 Kyb Corporation Cylindrical linear motor
KR20200093293A (en) * 2019-01-28 2020-08-05 주식회사 져스텍 Method for manufacturing coil module for linear motor
KR102170734B1 (en) 2019-01-28 2020-10-27 주식회사 져스텍 Method for manufacturing coil module for linear motor

Also Published As

Publication number Publication date
JP3824060B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US7893569B2 (en) Primary part and linear electrical machine with force ripple compensation
US20210234415A1 (en) Rotating electric machine
JP3360606B2 (en) Linear motor
WO1999041825A1 (en) Linear motor
KR20080018207A (en) Motor and control device thereof
US20130049489A1 (en) Mover for a linear motor and linear motor
JP5289799B2 (en) Linear motor
JP7151698B2 (en) linear motor
WO2005060076A1 (en) Linear motor and attraction-compensating type linear motor
JP4382437B2 (en) Linear motor
JP2000278931A (en) Linear motor
JPWO2002023702A1 (en) Linear motor
JP2004357353A (en) Linear electromagnetic actuator
JP3894297B2 (en) Linear actuator
JP3824060B2 (en) Linear motor
JP3941314B2 (en) Coreless linear motor
JPH11178310A (en) Linear motor
JP2001119919A (en) Linear motor
JP4110335B2 (en) Linear motor
JP4402948B2 (en) Linear motor
JP3944766B2 (en) Permanent magnet synchronous linear motor
JP2002101636A (en) Linear motor
WO2020261809A1 (en) Linear motor
WO2021246235A1 (en) Electric motor
JP6408120B2 (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040913

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110707

LAPS Cancellation because of no payment of annual fees