JP2008099379A - Low-profile linear motor - Google Patents

Low-profile linear motor Download PDF

Info

Publication number
JP2008099379A
JP2008099379A JP2006276065A JP2006276065A JP2008099379A JP 2008099379 A JP2008099379 A JP 2008099379A JP 2006276065 A JP2006276065 A JP 2006276065A JP 2006276065 A JP2006276065 A JP 2006276065A JP 2008099379 A JP2008099379 A JP 2008099379A
Authority
JP
Japan
Prior art keywords
magnet
linear motor
movable plate
movable
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006276065A
Other languages
Japanese (ja)
Inventor
Makoto Kawakami
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006276065A priority Critical patent/JP2008099379A/en
Publication of JP2008099379A publication Critical patent/JP2008099379A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that a linear motor to be used for an X-Y stage for placing samples for an analysis instrument or various test equipment has a limitation in reduction in profile to obtain a desired thrust force, leaks a large number of magnetic fluxes and has low degree of freedom in assembling design. <P>SOLUTION: This linear motor has a configuration in which a pair of magnet arrays forming a mover are disposed with a formed predetermined gap, and an armature array forming a stator is disposed in the gap to allow a magnetic flux to be generated in a permanent magnet of each magnet array to efficiently act to armature core of the armature array, and yokes are disposed in the opposite side surface of an opposing surface of each magnet array to reduce leakage of magnetic flux. Thus, the low-profile linear motor enabling high thrust force and reduction in profile is realized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、分析機器や各種検査装置の試料搭載用X-Yステージのような薄型化が求められているステージに使用するリニアモータに関する。さらに好ましくは、分析機器などリニアモータからの磁束の漏れによる周辺機器への悪影響が懸念されるような用途に用いる薄型リニアモータに関する。   The present invention relates to a linear motor used for a stage that is required to be thin, such as an X-Y stage for sample loading of analytical instruments and various inspection apparatuses. More preferably, the present invention relates to a thin linear motor used for an application such as an analytical instrument in which there is a concern about adverse effects on peripheral devices due to leakage of magnetic flux from the linear motor.

近年、分析機器や各種検査装置の試料搭載用X-Yステージ等に使用されるリニアモータとして種々の構造が提案されている。   In recent years, various structures have been proposed as linear motors used in specimen mounting X-Y stages of analytical instruments and various inspection apparatuses.

特許文献1(特開2004-7884号公報)には、ベース上に複数の永久磁石を所定方向に配列してなる永久磁石列を配置した固定子と、コイルを嵌装した複数の磁極部材を所定方向に配列するとともに当該磁極部材の一方端を前記永久磁石列と空隙を介して対向配置し、かつ他方端をヨークにて一体的に固定してなる可動子とを有する構造が提案されている。なお、上記永久磁石は、ベースの永久磁石配置面に対して垂直な方向に磁化されており、隣り合う永久磁石の磁化の向きは交互に異なっている。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-7884) includes a stator in which a permanent magnet array in which a plurality of permanent magnets are arranged in a predetermined direction on a base, and a plurality of magnetic pole members fitted with coils. There has been proposed a structure having a mover that is arranged in a predetermined direction, has one end of the magnetic pole member disposed opposite to the permanent magnet row via a gap, and the other end is integrally fixed by a yoke. Yes. The permanent magnet is magnetized in a direction perpendicular to the permanent magnet arrangement surface of the base, and the magnetization directions of adjacent permanent magnets are alternately different.

また、特許文献2(特開2006−54974号公報)には、図6に示す構造からなる高推力を実現したリニアモータが提案されている。この構造は板状ヨーク111の両面に可動子116
の移動方向に配列した複数の永久磁石112を配置する固定子113と、各永久磁石112に対向して電機子コイル115が巻かれた電機子コア114を配置する一対の可動子116を有する。また、電機子コア114は図示の如く、永久磁石12と対向する端部と異なる端部が一体的に接続されている。なお、上記永久磁石112は、板状ヨーク111の永久磁石配置面に対して垂直な方向に磁化されており、隣り合う永久磁石112の磁化の向きは交互に異なるとともに、板上ヨーク111を介して向かい合う2つの永久磁石112は磁化の向きが逆になっている。
Patent Document 2 (Japanese Patent Laid-Open No. 2006-54974) proposes a linear motor having a structure shown in FIG. 6 and realizing high thrust. This structure has a movable element 116 on both sides of the plate-like yoke 111.
And a pair of movers 116 on which an armature core 114 around which an armature coil 115 is wound is disposed so as to face each permanent magnet 112. Further, the armature core 114 is integrally connected with an end different from the end facing the permanent magnet 12 as shown in the figure. The permanent magnet 112 is magnetized in a direction perpendicular to the permanent magnet arrangement surface of the plate-like yoke 111, and the magnetization directions of the adjacent permanent magnets 112 are alternately different, and the permanent magnet 112 is interposed via the on-plate yoke 111. The two permanent magnets 112 facing each other have opposite magnetization directions.

特許文献3(特開2003-134792号公報)には、図7に示す構造からなる漏れ磁束の低減を実現したリニアモータが提案されている。この構造は、複数の永久磁石203を配列した一対のヨーク201、202からなる界磁極204と電機子(図示せず)からなるリニアモータにおいて、互いに対向したヨーク201、202を、その長手方向に向かって所定の間隔を置いて複数の平板状磁性体206で連結したものであり、漏れ磁束の大半を板状磁性体206に通すことによってリニアモータからの漏れ磁束の低減を達成する。   Patent Document 3 (Japanese Patent Laid-Open No. 2003-134792) proposes a linear motor having a structure shown in FIG. In this structure, in a linear motor composed of a field pole 204 composed of a pair of yokes 201, 202 in which a plurality of permanent magnets 203 are arranged and an armature (not shown), the opposing yokes 201, 202 are arranged in the longitudinal direction. The magnetic flux is connected by a plurality of flat magnetic bodies 206 at a predetermined interval toward the plate, and the leakage magnetic flux from the linear motor is reduced by passing most of the leakage magnetic flux through the plate magnetic body 206.

特開2004-7884号公報JP 2004-7884 A

特開2006-54974号公報JP 2006-54974

特開2003-134792号公報Japanese Patent Laid-Open No. 2003-134792

特許文献1に示すリニアモータ構造は、可動子を構成するコイルの巻回スペースを有効に利用することで比較的高推力が得やすい反面、リニアモータの厚み方向に伸びる磁極部材を必須部材とするため薄型化には限度があり、厚さ数mmのリニアモータを実現するのが難しい状況にあった。   The linear motor structure shown in Patent Document 1 makes it easy to obtain a relatively high thrust by effectively using the winding space of the coil constituting the mover, but uses a magnetic pole member extending in the thickness direction of the linear motor as an essential member. Therefore, there is a limit to the reduction in thickness, and it has been difficult to realize a linear motor having a thickness of several millimeters.

特許文献2に示すリニアモータ構造は、特許文献1と同様にリニアモータの厚み方向に伸びる電機子コア(磁極部材)を必須部材とすることから薄型化が困難であるだけでなく、板状ヨーク111の両面に配置される永久磁石112は板状ヨーク111を介して互いに磁化の向きが逆になる(同磁極が対向する)ようにして接着してあるため周囲の空間に漏れ磁束を多く発生させてしまう問題がある。漏れ磁束の発生はリニアモータ近傍に配置される各種機器に悪影響を及ぼすだけでなく、磁気効率の観点からも好ましくなく、推力低下の要因ともなる。また、電気子コア114は一端部において共通に接続された部分が存在するため、各相の磁束の干渉が発生する問題もある。   The linear motor structure shown in Patent Document 2 is not only difficult to reduce in thickness because it uses an armature core (magnetic pole member) that extends in the thickness direction of the linear motor as in the case of Patent Document 1, but it also has a plate-like yoke. The permanent magnets 112 arranged on both surfaces of the 111 are bonded so that their magnetization directions are opposite to each other via the plate-like yoke 111 (the same magnetic poles face each other), so a large amount of leakage magnetic flux is generated in the surrounding space. There is a problem that will let you. The generation of the leakage magnetic flux not only adversely affects various devices arranged in the vicinity of the linear motor, but is not preferable from the viewpoint of magnetic efficiency, and causes a reduction in thrust. In addition, since the armature core 114 has a commonly connected portion at one end, there is a problem in that interference of magnetic flux of each phase occurs.

特許文献3に示すリニアモータ構造は、複数の平板状磁性体206を配置することで漏れ磁束の低減は達成できるものの、リニアモータを構成する磁気回路部(界磁極204)に後から磁性体を追加することになり、結果として電機子を配置する磁気ギャップ内の磁束密度を変化させる恐れがあり、所定の推力が得られない場合がある。   Although the linear motor structure shown in Patent Document 3 can achieve a reduction in leakage magnetic flux by arranging a plurality of flat plate-like magnetic bodies 206, a magnetic body is later applied to the magnetic circuit portion (field pole 204) constituting the linear motor. As a result, there is a possibility that the magnetic flux density in the magnetic gap in which the armature is arranged is changed, and a predetermined thrust may not be obtained.

この発明は、上記のような課題を解決するためになされたものである。この発明の目的は、漏れ磁束が少なく高推力を実現する薄型リニアモータの提供を目的とするものである。特に、高推力を実現する汎用性の高い10mm以下の厚さからなる薄型リニアモータの提供を目的とするものである。   The present invention has been made to solve the above-described problems. An object of the present invention is to provide a thin linear motor that realizes a high thrust with little leakage magnetic flux. In particular, the object is to provide a thin linear motor having a thickness of 10 mm or less that is highly versatile and realizes a high thrust.

上記の目的を達成するために、請求項1に記載の薄型リニアモータは、一軸方向に移動自在に支持される可動プレートと、可動プレートの一方主面に複数の永久磁石を可動プレートの移動方向と同方向に配列してなる一対の磁石列を可動プレートの移動方向と直角方向に所定の間隙を形成して対向配置し、各永久磁石が一対の磁石列対向方向に磁化されるとともに可動プレートの移動方向に隣接する永久磁石の磁化の向きが交互に逆向きとなり、かつ前記間隙を介して対向位置に配置される永久磁石の磁化の向きが同じである可動磁石列と、各磁石列の対向面の反対側側面に配置されるヨークとを有する可動子と、前記一対の磁石列にて形成される間隙内に配置され、励磁コイルを巻回してなる軟質磁性材料からなる複数の電気子コアを可動プレートの移動方向と同方向に配列するとともに当該励磁コイルへ印加する励磁電流によって電気子コアを前記一対の磁石列対向方向に磁化可能な電気子列と、当該電気子列を支持するベースプレートとを有する固定子からなる薄型リニアモータを特徴とする。   In order to achieve the above object, the thin linear motor according to claim 1 is provided with a movable plate that is supported so as to be movable in one axial direction, and a plurality of permanent magnets on one main surface of the movable plate. A pair of magnet arrays arranged in the same direction as the movable plate are arranged to face each other with a predetermined gap in a direction perpendicular to the moving direction of the movable plate, and each permanent magnet is magnetized in the opposing direction of the pair of magnet arrays and the movable plate The direction of the magnetization of the permanent magnets adjacent to each other in the moving direction of the movable magnet row alternately opposite to each other, and the direction of the magnetization of the permanent magnet arranged at the opposite position through the gap, A plurality of electric elements made of a soft magnetic material, which is arranged in a gap formed by the pair of magnet rows and wound with an exciting coil, and having a yoke arranged on the opposite side surface of the opposing surface Core is movable An electric element array that is arranged in the same direction as the rate movement direction and can magnetize an electric core in the direction opposite to the pair of magnet arrays by an exciting current applied to the exciting coil, and a base plate that supports the electric element array It features a thin linear motor composed of a stator having the same.

請求項2に記載の薄型リニアモータは、請求項1に記載の薄型リニアモータにおいて、前記可動プレートが軟質磁性材料からなり、ベースプレートが非磁性材料からなる薄型リニアモータを特徴とする。   The thin linear motor according to claim 2 is the thin linear motor according to claim 1, characterized in that the movable plate is made of a soft magnetic material and the base plate is made of a nonmagnetic material.

請求項1に記載の薄型リニアモータでは、一対の磁石列を構成する各永久磁石が一対の磁石列対向方向に磁化されるとともに可動プレートの移動方向に隣接する永久磁石の磁化の向きが交互に逆向きとなり、かつ前記間隙を介して対向位置に配置される永久磁石の磁化の向きが同じであることから、可動プレートの移動方向と直角方向、すなわち可動プレート主面と平行方向(水平方向)に磁束を発生する構成であり、かつ各磁石列の対向面の反対側側面にヨークを有することから、当該ヨークの外側にはほとんど磁束が漏れない。
したがって、磁束の漏れを要因とするリニアモータ近傍に配置される各種機器への悪影響を懸念する必要がなく、種々装置への組み込み設計の自由度が高くなる。先に説明した特許文献3のような磁気シールド部材を追加することによる推力への悪影響をも心配をする必要がない。
In the thin linear motor according to claim 1, the permanent magnets constituting the pair of magnet rows are magnetized in the opposing direction of the pair of magnet rows, and the magnetization directions of the permanent magnets adjacent in the moving direction of the movable plate are alternately Since the direction of magnetization of the permanent magnets that are opposite to each other and opposite to each other through the gap is the same, the direction perpendicular to the moving direction of the movable plate, that is, the direction parallel to the main surface of the movable plate (horizontal direction) Since a yoke is provided on the side surface opposite to the opposing surface of each magnet row, almost no magnetic flux leaks outside the yoke.
Therefore, there is no need to worry about adverse effects on various devices arranged in the vicinity of the linear motor due to magnetic flux leakage, and the degree of freedom of design for incorporation into various devices is increased. There is no need to worry about the adverse effect on the thrust caused by the addition of the magnetic shield member as described in Patent Document 3 described above.

また、励磁コイルを巻回してなる軟質磁性材料からなる複数の電気子コアは、可動プレートの移動方向と同方向に配列するとともに当該励磁コイルへ印加する励磁電流によって前記一対の磁石列対向方向に磁化可能に配置され、前記ヨークを通して磁気回路を閉じる構造であることから、電気子コアを効率よく磁化することが可能であり、しかも前記一対の磁石列にて形成される間隙内に配置されるため、リニアモータの薄型化を実現できる。   In addition, a plurality of electric cores made of a soft magnetic material formed by winding an exciting coil are arranged in the same direction as the moving direction of the movable plate, and in the opposite direction of the pair of magnet rows by the exciting current applied to the exciting coil. Since the magnet circuit is arranged so as to be magnetized and the magnetic circuit is closed through the yoke, it is possible to efficiently magnetize the electric core, and the magnet core is arranged in the gap formed by the pair of magnet arrays. Therefore, the linear motor can be thinned.

さらに、上記一対の磁石列と電気子コアの配置構造により、各永久磁石から発生する磁束が全て電気子コアに印加されるため、永久磁石から発生した磁束が効率良く推力に利用され磁石重量あたりの推力比を大きくとれる。   Furthermore, since the magnetic flux generated from each permanent magnet is all applied to the electric core due to the arrangement structure of the pair of magnet rows and the electric core, the magnetic flux generated from the permanent magnet is efficiently used for thrust and per magnet weight. The thrust ratio can be increased.

請求項2に記載の薄型リニアモータでは、可動プレートを軟質磁性材料とすることにより、リニアモータ外部への磁束の漏れを一層低減することができる。すなわち、上述した永久磁石の磁化方向及びヨークの配置により、磁束は可動プレート主面と平行方向(水平方向)に発生し、実質的にリニアモータの厚さ方向に発生することはない。例えリニアモータの厚さ方向に磁束の漏れが発生しても、可動プレートが軟質磁性材料であれば、当該可動プレート自体が磁気回路の一部材として機能し、外部への磁束の漏れを防ぐことが可能となる。   In the thin linear motor according to claim 2, leakage of magnetic flux to the outside of the linear motor can be further reduced by using the movable plate as a soft magnetic material. That is, due to the magnetization direction of the permanent magnet and the arrangement of the yoke described above, the magnetic flux is generated in a direction parallel to the main surface of the movable plate (horizontal direction) and is not substantially generated in the thickness direction of the linear motor. Even if magnetic flux leaks in the thickness direction of the linear motor, if the movable plate is a soft magnetic material, the movable plate itself functions as a member of the magnetic circuit to prevent leakage of magnetic flux to the outside. Is possible.

また、電気子列を支持するベースプレートを非磁性材料とすることで、適正な磁気回路形成に悪影響を及ぼすことを防ぐことができる。   In addition, by using a non-magnetic material for the base plate that supports the electric element array, it is possible to prevent adverse effects on proper magnetic circuit formation.

この発明によれば、磁束の漏れが少ない高推力の薄型リニアモータを提供することができる。   According to the present invention, it is possible to provide a thin linear motor with high thrust with less magnetic flux leakage.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)は本発明の薄型リニアモータの実施形態を示す正面図、図1(b)は平面図、図1(c)は側面図、図2は可動磁石列と電気子列との配置関係を示すために可動プレートを除いた状態の平面図である。なお、磁石列4およびヨーク5は、可動プレート側に接着されている。   FIG. 1 (a) is a front view showing an embodiment of a thin linear motor of the present invention, FIG. 1 (b) is a plan view, FIG. 1 (c) is a side view, and FIG. It is a top view in the state where a movable plate was removed in order to show arrangement relation. The magnet row 4 and the yoke 5 are bonded to the movable plate side.

図中1は可動子であり、2は固定子である。可動子1は板状の可動プレート3と、可動プレート3の一方主面に配置される複数の永久磁石を可動プレートの移動方向(図中矢印X−X’方向)と同方向に配列してなる一対の磁石列4、4からなる可動磁石列、各磁石列4、4の対向面の反対側側面に配置されるヨーク5、5からなる。   In the figure, 1 is a mover and 2 is a stator. The mover 1 has a plate-like movable plate 3 and a plurality of permanent magnets arranged on one main surface of the movable plate 3 arranged in the same direction as the moving direction of the movable plate (direction of arrow XX ′ in the figure). The movable magnet row is composed of a pair of magnet rows 4 and 4 and the yokes 5 and 5 are arranged on the side surface opposite to the opposing surface of each magnet row 4 and 4.

図示の実施態様において、板状の可動プレート3は、軟質磁性材料である純鉄を削り出して所定寸法に加工した。また、ヨーク5、5も軟質磁性材料である純鉄からなり、可動プレート3の一方主面の2箇所に、長手方向を可動プレートの移動方向に一致させて配置する。このヨーク5、5と可動プレート3は各々独立した部材から構成してもよく、前記軟質磁性材料である純鉄を削り出す際に、当該ヨーク5、5を突起状に形成して可動プレート3と同一部材にて一体的に構成しても良い。   In the illustrated embodiment, the plate-shaped movable plate 3 is made by cutting pure iron, which is a soft magnetic material, into a predetermined size. The yokes 5 and 5 are also made of pure iron, which is a soft magnetic material, and are arranged at two locations on one main surface of the movable plate 3 such that the longitudinal direction coincides with the moving direction of the movable plate. The yokes 5 and 5 and the movable plate 3 may be composed of independent members. When the pure iron, which is the soft magnetic material, is cut out, the yokes 5 and 5 are formed in a protruding shape so that the movable plate 3 You may comprise integrally with the same member.

上記ヨーク5、5の各々内側(対向面側)に複数のブロック状Nd−Fe−B系希土類焼結磁石を貼り付け、一対の磁石列4、4を構成する。各永久磁石の磁化方向は、図2において白抜き矢印にて示すように、一対の磁石列4、4対向方向に磁化されるとともに可動プレート3の移動方向に隣接する永久磁石の磁化の向きが交互に逆向きとなり、かつ間隙を介して対向位置に配置される永久磁石の磁化の向きが同じとなるように配置している。したがって、可動プレート3の移動方向と直角方向、すなわち可動プレート3主面と平行方向(水平方向)に磁束を発生する構成となる。   A plurality of block-shaped Nd—Fe—B rare earth sintered magnets are affixed to the insides (opposite surface sides) of the yokes 5 and 5 to form a pair of magnet arrays 4 and 4. The magnetization directions of the permanent magnets are magnetized in a direction opposite to the pair of magnet arrays 4 and 4 as indicated by white arrows in FIG. 2 and the magnetization directions of the permanent magnets adjacent to the moving direction of the movable plate 3 are the same. The permanent magnets are alternately arranged in opposite directions, and are arranged so that the magnetization directions of the permanent magnets arranged at opposite positions via the gap are the same. Therefore, the magnetic flux is generated in a direction perpendicular to the moving direction of the movable plate 3, that is, in a direction parallel to the main surface of the movable plate 3 (horizontal direction).

この薄型リニアモータに配置する永久磁石は、上記Nd−Fe−B系希土類焼結磁石に限定されず、Sm−Co系希土類焼結磁石、Sr系フェライト焼結磁石等、周知の永久磁石を採用することができるが、小型軽量化とともに高推力を実現するためには、上記Nd−Fe−B系希土類焼結磁石を用いるのが好ましい。   Permanent magnets arranged in this thin linear motor are not limited to the Nd-Fe-B rare earth sintered magnets, and well-known permanent magnets such as Sm-Co rare earth sintered magnets and Sr ferrite sintered magnets are employed. However, it is preferable to use the Nd-Fe-B rare earth sintered magnet in order to achieve a small thrust and light weight and high thrust.

固定子2は、図3及び図4にて示す励磁コイル6を巻回してなる軟質磁性材料からなる複数の電気子コア7を、可動プレート3の移動方向と同方向に配列するとともに当該励磁コイル6へ印加する励磁電流によって電気子コア7を前記一対の磁石列4、4対向方向に磁化可能な電気子列8と、当該電気子列8を支持するベースプレート9から構成される。   The stator 2 includes a plurality of electric cores 7 made of a soft magnetic material formed by winding the exciting coil 6 shown in FIGS. 3 and 4 arranged in the same direction as the moving direction of the movable plate 3 and the exciting coil. The pair of magnets 4 and 4 can be magnetized by an excitation current applied to 6 in the opposing direction of the pair of magnets 4, and the base plate 9 supports the electron array 8.

図示の実施態様において、電気子コア7は純鉄を削り出して図3に示す形状に加工した後、エナメル被覆導線(直径0.3mm)からなる励磁コイル6を中央部に50回整列捲きし、さらに接着剤にて固定した。次に、この励磁コイル6を巻回した電気子コア7にて三相駆動を行うべく3個を1組とした三相コイルを構成(それぞれu、v、w相と呼ぶ)し、図示の場合7組(合計21個)を可動プレート3の移動方向と同方向に配列した。   In the illustrated embodiment, the armature core 7 is cut out of pure iron and processed into the shape shown in FIG. 3, and then the excitation coil 6 made of enamel-coated conductor (diameter 0.3 mm) is aligned and wound 50 times in the center. Furthermore, it fixed with the adhesive agent. Next, in order to perform three-phase driving with the electric core 7 around which the exciting coil 6 is wound, three sets of three-phase coils are constructed (referred to as u, v, and w phases, respectively) Seven cases (21 in total) were arranged in the same direction as the movement direction of the movable plate 3.

さらに詳述すると、ステンレス(SUS316L)を削り出しにて加工した非磁性材料からなるベースプレート9の略中央部に前記電気子列8をエポキシ樹脂接着剤にて固定し、さらに、u相、v相、w相をそれぞれで直列に接続した。また、直列接続した両端のうちの片方は、u相、v相、w相を1点に接続し、中性点とした。   More specifically, the electronic element array 8 is fixed with an epoxy resin adhesive at a substantially central part of a base plate 9 made of nonmagnetic material obtained by machining stainless steel (SUS316L), and further, u phase, v phase The w phase was connected in series with each other. In addition, one of the two ends connected in series was a neutral point by connecting the u-phase, v-phase, and w-phase to one point.

各磁石列4、4と電気子コア7との配置関係は、図2から明らかなように、電気子コア7が3個(一周期分の長さ)に対して、永久磁石が2個(一対のS極とN極)対向するように配置される。したがって、電気子コア一組(3個)に対し、前記ヨーク5、5を通して磁気回路が閉じる構造となり、磁気抵抗が小さいため電気子コア7を効率良く磁化できる。   As is apparent from FIG. 2, the arrangement relationship between each of the magnet arrays 4 and 4 and the electric core 7 is two permanent magnets (three lengths for one cycle) (two permanent magnets). A pair of S poles and N poles) are arranged to face each other. Therefore, the magnetic circuit is closed through the yokes 5 and 5 with respect to a set (three pieces) of the cores, and since the magnetic resistance is small, the armature core 7 can be efficiently magnetized.

さらに、配列された電気子コア7を各相ごとにすべて直列接続した構造にすることで、永久磁石と直接対向する位置にある電気子コア7は磁気回路が閉じた構造となるためインダクタンスは大きくなるが、永久磁石と直接対向しない電気子コア7は磁気回路がオープンであるためインダクタンスが小さい。このため、可動子の移動位置によらず、永久磁石と直接対向する位置にある電気子コア7にほとんど印加電圧が集中し、永久磁石と直接対向しない電気子コア7はほとんど電力を消費せず、高い変換効率が得られる。特に、電気子コア7が特許文献2のように互いに接続されることなく独立していることから、電気子コア間での磁束の干渉が起こらず、効率の良い推力発生が行える。   Furthermore, by arranging all the arranged cores 7 in series for each phase, the core 7 located directly opposite the permanent magnet has a closed magnetic circuit, so the inductance is large. However, the electric core 7 that does not directly face the permanent magnet has a small inductance because the magnetic circuit is open. For this reason, the applied voltage is almost concentrated on the electric core 7 that is directly opposed to the permanent magnet regardless of the moving position of the mover, and the electric core 7 that is not directly opposed to the permanent magnet consumes little power. High conversion efficiency can be obtained. In particular, since the armature cores 7 are independent without being connected to each other as in Patent Document 2, magnetic flux interference does not occur between the armature cores, and efficient thrust generation can be performed.

上記実施態様においては三相駆動の場合にて説明したが、この駆動方法に限定されることなく本発明の効果を発現することが出来る。しかし、コキング推力や推力リップルの発生を低減し円滑な可動を実現するためには、三相駆動が好ましい。   In the above embodiment, the case of three-phase driving has been described, but the effect of the present invention can be exhibited without being limited to this driving method. However, in order to reduce the occurrence of coking thrust and thrust ripple and realize smooth movement, three-phase driving is preferable.

なお、電気子コア7は磁気効率の観点から飽和磁束密度が高い材料が好ましく(特に、飽和磁束密度Bs≧2.0T)、上記純鉄のほか、例えば、Fe-Co合金、Fe-Si合金等を用いるのが好ましい。   The electron core 7 is preferably made of a material having a high saturation magnetic flux density from the viewpoint of magnetic efficiency (particularly, the saturation magnetic flux density Bs ≧ 2.0T). In addition to the above pure iron, for example, Fe—Co alloy, Fe—Si alloy, etc. Is preferably used.

この発明の薄型リニアモータは、図示の如く可動プレート3の移動方向における電気子列8の長さを磁石列4、4の長さに対して十分に長い(電気子列の長さ≧磁石列の長さ+可動プレートの可動範囲)構造とすることによって、可動プレート3の全可動範囲(移動範囲)を通して永久磁石から発生する磁束を有効に使用することができ磁石重量あたりの推力比を大きくとることができる。   In the thin linear motor of the present invention, as shown in the figure, the length of the electric element array 8 in the moving direction of the movable plate 3 is sufficiently longer than the length of the magnet arrays 4 and 4 (length of the electric element array ≧ magnet array). Length + movable range of movable plate), the magnetic flux generated from the permanent magnet can be used effectively throughout the entire movable range (moving range) of movable plate 3, and the thrust ratio per magnet weight is increased. Can take.

図中10、10は可動プレート3を所定の一軸方向に移動自在に支持するリニアガイドであり、固定子2を構成するベースプレート9上に固定される案内レール11、11と、当該案内レール11、11を介して所定の一軸方向に摺動する摺動部12、12からなる。この摺動部12、12に前記一対の磁石列4、4及びヨーク5、5を配置した可動プレート3を、各磁石列4、4と電気子列8との隙間を調整しながらねじ等にて固定することによって可動子1を構成する。   In the figure, 10 and 10 are linear guides that support the movable plate 3 so as to be movable in a predetermined uniaxial direction, guide rails 11 and 11 fixed on the base plate 9 constituting the stator 2, and the guide rails 11, 11 includes sliding portions 12 and 12 that slide in a predetermined uniaxial direction via 11. The movable plate 3 in which the pair of magnet rows 4 and 4 and the yokes 5 and 5 are arranged on the sliding portions 12 and 12 is attached to a screw or the like while adjusting the gap between the magnet rows 4 and 4 and the electric element row 8. The movable element 1 is configured by fixing the two.

上記のように、この発明の薄型リニアモータは、可動子1側に永久磁石が配置される所謂磁石可動型のため、可動ハーネスがなくシンプルな構成となり、各種装置への組み込みや、日常作業における取扱いも容易となる。   As described above, the thin linear motor of the present invention is a so-called magnet movable type in which a permanent magnet is arranged on the movable element 1 side, and therefore has a simple configuration without a movable harness, and can be incorporated into various devices and used in daily work. Handling is also easy.

図中13は、可動プレート3の位置を検出するため、ベースプレート9に実装した光学式リニアエンコーダである。また、図中14は、可動プレート3に接着固定したガラス製リニアスケールであり、光学式リニアエンコーダ13と対向する位置に配置される。このような位置検出機器を併設することによって高精度の位置決めが可能となり、本発明の特徴をより一層効果的に実現することが可能となる。    In the figure, reference numeral 13 denotes an optical linear encoder mounted on the base plate 9 in order to detect the position of the movable plate 3. Reference numeral 14 in the figure denotes a glass linear scale that is bonded and fixed to the movable plate 3, and is disposed at a position facing the optical linear encoder 13. By providing such a position detection device, highly accurate positioning is possible, and the features of the present invention can be realized more effectively.

以上の構成からなる薄型リニアモータにおいて、励磁コイル6に励磁電流を印加すると、その励磁電流によって電気子コア7が一対の磁石列4、4対向方向に磁化され、当該電気子コア7に発生する磁束と永久磁石から発生される磁束との相互作用により、可動子1と固定子2との間に相対的な推力が作用し、可動プレート3がリニアガイド10を介して所定の一軸方向に移動することとなる。励磁電流の方向を切り替えることによって、可動プレート3の移動方向を切り替えることができる。   In the thin linear motor having the above configuration, when an exciting current is applied to the exciting coil 6, the electric core 7 is magnetized by the exciting current in a direction opposite to the pair of magnets 4 and 4, and is generated in the electric core 7. Due to the interaction between the magnetic flux and the magnetic flux generated from the permanent magnet, a relative thrust acts between the mover 1 and the stator 2, and the movable plate 3 moves in a predetermined uniaxial direction via the linear guide 10. Will be. The moving direction of the movable plate 3 can be switched by switching the direction of the excitation current.

本発明者は、上記実施態様の構造にて、幅55mm、長さ90mm、厚さ7mmからなる超薄型リニアモータを提供することを可能とした。可動プレートの寸法が幅55mm、長さ60mmであり、ストローク20mmとした場合、最大10N以上の高推力を実現することができた。従来からこのような高推力を可能とする構造においては不可能とされていた厚さ10mm以下のリニアモータの提供を可能とした。   The present inventor made it possible to provide an ultra-thin linear motor having a width of 55 mm, a length of 90 mm, and a thickness of 7 mm with the structure of the above embodiment. When the dimensions of the movable plate were 55 mm wide and 60 mm long, and the stroke was 20 mm, a high thrust of 10 N or more could be realized. It has become possible to provide a linear motor with a thickness of 10 mm or less, which has been impossible with conventional structures that enable such high thrust.

図5は、上記超薄型リニアモータの繰り返し位置決め精度を表す。この繰り返し位置決め精度とは、可動プレート3を特定位置から所定量移動させ、元の位置に戻るように指令を出し、元の位置に戻った時点でその位置のずれ(変位)を測定したものでる。図5では、最初の特定位置から移動して元の位置に戻るまでの動作を1セットとし、これを繰り返し、その都度変位を測定してグラフ化したもので、横軸に繰り返し数、縦軸に変位を示している。図中には最初の特定位置をベースプレート9の中央位置とした場合、及び各々左右に10mmずらした位置とした場合を、中央部、端部(+10mm、-10mm)として記載している。   FIG. 5 shows the repeat positioning accuracy of the ultra-thin linear motor. This repeated positioning accuracy is obtained by moving the movable plate 3 from the specific position by a predetermined amount, issuing a command to return to the original position, and measuring the displacement (displacement) of the position when returning to the original position. . In Fig. 5, the movement from the first specific position to return to the original position is set as one set, this is repeated, the displacement is measured each time and graphed, the horizontal axis indicates the number of repetitions, the vertical axis Shows the displacement. In the figure, the case where the first specific position is the center position of the base plate 9 and the case where each position is shifted by 10 mm to the left and right are described as the center part and the end part (+10 mm, -10 mm).

図5から、前記超薄型リニアモータの位置決め精度が高いことが解る。   FIG. 5 shows that the positioning accuracy of the ultra-thin linear motor is high.

(a)本発明の実施形態を示す正面図、(b)本発明の実施形態を示す平面図、(c)本発明の実施形態を示す側面図(A) Front view showing an embodiment of the present invention, (b) Plan view showing an embodiment of the present invention, (c) Side view showing an embodiment of the present invention 図1の一部分解平面図Partially exploded plan view of FIG. 本発明で使用される電気子コアを示す正面図及び平面図Front view and plan view showing an electric core used in the present invention 本発明で使用される電気子列の示す平面図The top view which shows the electric element row | line | column used by this invention 本発明の実施形態である超薄型リニアモータの繰り返し位置決め精度を示すグラフThe graph which shows the repeat positioning accuracy of the ultra-thin linear motor which is embodiment of this invention 従来のリニアモータConventional linear motor その他の従来のリニアモータOther conventional linear motors

符号の説明Explanation of symbols

1 可動子
2 固定子
3 可動プレート
4 磁石列
5 ヨーク
6 励磁コイル
7 電気子コイル
8 電気子列
9 ベースプレート
10 リニアガイド
11 案内レール
12 摺動部
13 光学式リニアエンコーダ
14 リニアスケール
111 板状ヨーク
112 永久磁石
113 固定子
114 電機子コア
115 電機子コイル
116 可動子
201、202 ヨーク
203 永久磁石
204 界磁極
206 磁性体
1 Mover
2 Stator
3 Movable plate
4 Magnet row
5 York
6 Excitation coil
7 Electron coil
8 Electron train
9 Base plate
10 Linear guide
11 Guide rail
12 Sliding part
13 Optical linear encoder
14 Linear scale
111 Plate-shaped yoke
112 Permanent magnet
113 Stator
114 Armature core
115 Armature coil
116 Mover
201, 202 York
203 Permanent magnet
204 Field pole
206 Magnetic material

Claims (2)

一軸方向に移動自在に支持される可動プレートと、可動プレートの一方主面に複数の永久磁石を可動プレートの移動方向と同方向に配列してなる一対の磁石列を可動プレートの移動方向と直角方向に所定の間隙を形成して対向配置し、各永久磁石が一対の磁石列対向方向に磁化されるとともに可動プレートの移動方向に隣接する永久磁石の磁化の向きが交互に逆向きとなり、かつ前記間隙を介して対向位置に配置される永久磁石の磁化の向きが同じである可動磁石列と、各磁石列の対向面の反対側側面に配置されるヨークとを有する可動子と、前記一対の磁石列にて形成される間隙内に配置され、励磁コイルを巻回してなる軟質磁性材料からなる複数の電気子コアを可動プレートの移動方向と同方向に配列するとともに当該励磁コイルへ印加する励磁電流によって電気子コアを前記一対の磁石列対向方向に磁化可能な電気子列と、当該電気子列を支持するベースプレートとを有する固定子からなる薄型リニアモータ。 A movable plate supported so as to be movable in one axial direction, and a pair of magnet arrays formed by arranging a plurality of permanent magnets on one main surface of the movable plate in the same direction as the moving direction of the movable plate are perpendicular to the moving direction of the movable plate. Forming a predetermined gap in the direction and facing each other, each permanent magnet is magnetized in the direction opposite to the pair of magnet rows, and the magnetization directions of the permanent magnets adjacent to the moving direction of the movable plate are alternately reversed, and A movable element having a movable magnet array in which the directions of magnetization of the permanent magnets arranged at opposing positions through the gap are the same, and a yoke arranged on the side surface opposite to the opposing surface of each magnet array; Arranged in the gap formed by the magnet array, a plurality of cores made of a soft magnetic material formed by winding an exciting coil are arranged in the same direction as the moving plate and applied to the exciting coil. Thin linear motor comprising a stator having a armature core by the excitation current and the magnetizable electric element row to the pair of magnet rows opposite direction, a base plate for supporting the electrical terminal sequence that. 前記可動プレートが軟質磁性材料からなり、ベースプレートが非磁性材料からなる請求項1に記載の薄型リニアモータ。 2. The thin linear motor according to claim 1, wherein the movable plate is made of a soft magnetic material and the base plate is made of a nonmagnetic material.
JP2006276065A 2006-10-10 2006-10-10 Low-profile linear motor Pending JP2008099379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276065A JP2008099379A (en) 2006-10-10 2006-10-10 Low-profile linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276065A JP2008099379A (en) 2006-10-10 2006-10-10 Low-profile linear motor

Publications (1)

Publication Number Publication Date
JP2008099379A true JP2008099379A (en) 2008-04-24

Family

ID=39381638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276065A Pending JP2008099379A (en) 2006-10-10 2006-10-10 Low-profile linear motor

Country Status (1)

Country Link
JP (1) JP2008099379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253850A (en) * 2011-05-31 2012-12-20 Sumitomo Heavy Ind Ltd Linear motor with core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134790A (en) * 2001-10-16 2003-05-09 Yaskawa Electric Corp Linear motor
JP2004215419A (en) * 2003-01-06 2004-07-29 Nikon Corp Linear motor, cooling method and stage device for linear motor, and aligner
JP2005117831A (en) * 2003-10-09 2005-04-28 Yaskawa Electric Corp Moving magnet linear actuator
JP2005253194A (en) * 2004-03-04 2005-09-15 Yaskawa Electric Corp Stator, moving table, and moving magnet type linear motor comprising them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134790A (en) * 2001-10-16 2003-05-09 Yaskawa Electric Corp Linear motor
JP2004215419A (en) * 2003-01-06 2004-07-29 Nikon Corp Linear motor, cooling method and stage device for linear motor, and aligner
JP2005117831A (en) * 2003-10-09 2005-04-28 Yaskawa Electric Corp Moving magnet linear actuator
JP2005253194A (en) * 2004-03-04 2005-09-15 Yaskawa Electric Corp Stator, moving table, and moving magnet type linear motor comprising them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253850A (en) * 2011-05-31 2012-12-20 Sumitomo Heavy Ind Ltd Linear motor with core

Similar Documents

Publication Publication Date Title
JP5240543B2 (en) Assembly method of moving coil type linear motor
KR101652842B1 (en) Moving member and linear motor
JP4811785B2 (en) Periodic magnetic field generator and linear motor using the same
US8198760B2 (en) Linear motor
WO2005124979A1 (en) Linear motor and method of producing linear motor
KR20030005038A (en) Forcer and associated three phase linear motor system
US8884473B2 (en) Mover, armature, and linear motor
JP2010130871A (en) Linear motor
KR20010006239A (en) Improved linear actuator
JP2014516236A (en) Method for locally improving the coercivity of a permanent magnet in a linear motor
JP5931179B2 (en) Cogging force ripple reduction of moving magnet linear motor
JP2008099379A (en) Low-profile linear motor
JP5088536B2 (en) Assembly method of moving coil type linear motor
JP2008206356A (en) Moving magnet linear actuator
CN221509374U (en) Precise bilateral linear motor
EP3806300A1 (en) Linear motor and lens barrel equipped with same, and image capturing device
JP2001197717A (en) Field component of linear motor and method of magnetizing permanent magnet for field
JP2011120405A (en) Linear motor
US20120248898A1 (en) Moving Magnet Actuator Magnet Carrier
JP2006174700A (en) Linear motor
Hahn et al. Evaluation of a linear hybrid microstep motor by means of magnetic flux measurements
JP2024042354A (en) Moving coil type linear motor
JP2017118803A (en) Linear motor and armature
JP2024004489A (en) linear motor
JP5201161B2 (en) Linear motor and table feeder using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091001

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A977 Report on retrieval

Effective date: 20111124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120323