JP2003132951A - Manufacturing method of lithium polymer secondary battery - Google Patents

Manufacturing method of lithium polymer secondary battery

Info

Publication number
JP2003132951A
JP2003132951A JP2001327350A JP2001327350A JP2003132951A JP 2003132951 A JP2003132951 A JP 2003132951A JP 2001327350 A JP2001327350 A JP 2001327350A JP 2001327350 A JP2001327350 A JP 2001327350A JP 2003132951 A JP2003132951 A JP 2003132951A
Authority
JP
Japan
Prior art keywords
separator
negative electrode
positive electrode
electrode plate
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001327350A
Other languages
Japanese (ja)
Inventor
Noriki Muraoka
憲樹 村岡
Kunihiko Minetani
邦彦 峯谷
Yoshitama Furubayashi
義玲 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001327350A priority Critical patent/JP2003132951A/en
Publication of JP2003132951A publication Critical patent/JP2003132951A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a lithium polymer secondary battery which integrates a separator, a cathode plate and an anode plate even if a thin laminate sheet is used for an exterior case. SOLUTION: An electrode group, which winds around the separator having a cathode an anode, and an adhesive layer on its surface, is integrated by gelating the adhesive layer by injecting and warming organic electrolytic solution to keep a certain distance between the cathode and the anode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムポリマー
二次電池等の有機電解質電池の製造方法に関し、さらに
詳しくはセパレータを介して、正極板と負極板とを一体
化する製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing an organic electrolyte battery such as a lithium polymer secondary battery, and more particularly to a method for manufacturing a positive electrode plate and a negative electrode plate through a separator. .

【0002】[0002]

【従来の技術】携帯機器の小型軽量化および薄型化の要
求に対応して、これらに使用される電池の小型化、薄型
化が求められている。電池の薄型化を達成する手段の一
つとして、外装ケースにアルミニウムや鉄製の金属ケー
スの代わりに、中間の一層にアルミニウム等の金属箔を
用いたラミネートシートを用いる方法がある。
2. Description of the Related Art In response to the demand for smaller, lighter and thinner portable devices, the batteries used therein are required to be smaller and thinner. As one of means for achieving a thinner battery, there is a method of using a laminate sheet using a metal foil of aluminum or the like as an intermediate layer instead of a metal case made of aluminum or iron for the outer case.

【0003】しかし、ラミネートシートはアルミニウム
や鉄製の金属ケースに比べて電極群を押さえつける圧力
が低いため、正負極間距離が充放電サイクルや高温保存
によって大きくなり容量低下してしまう。
However, since the laminated sheet has a lower pressure for pressing the electrode group than a metal case made of aluminum or iron, the distance between the positive and negative electrodes becomes large due to charge / discharge cycles and high temperature storage, resulting in a decrease in capacity.

【0004】そこで、正負極とセパレータを一体化し、
正負極間距離を一定に維持することによって、サイクル
特性と保存特性に優れた電池が数多く提案されている。
Therefore, by integrating the positive and negative electrodes and the separator,
Many batteries have been proposed that have excellent cycle characteristics and storage characteristics by maintaining a constant distance between the positive and negative electrodes.

【0005】このような電池の一例として、米国特許5
607485号等に開示されている方法は、正極集電体
上に正極活物質層を形成した正極板、負極集電体上に負
極活物質層を形成した負極板、ポリマー材料として例え
ばフッ化ビニリデンと6フッ化プロピレンとの共重合体
により形成したセパレータをそれぞれ作製した後、前記
セパレータを介して正極板と負極板とを加熱および加圧
することにより一体化する方法である。この製造方法に
おいては、一体化の際の加熱温度を下げるため、正極
板、負極板、セパレータのいずれにもフタル酸n−ジブ
チル(DBP)等の可塑剤が含まれており、一体化後に
キシレン等の溶剤で可塑剤を抽出することが特徴となっ
ている。
As an example of such a battery, US Pat.
No. 607485 discloses a positive electrode plate having a positive electrode active material layer formed on a positive electrode current collector, a negative electrode plate having a negative electrode active material layer formed on a negative electrode current collector, and a polymer material such as vinylidene fluoride. In this method, a separator made of a copolymer of propylene and hexafluoropropylene is produced, and the positive electrode plate and the negative electrode plate are heated and pressed through the separator to integrate them. In this manufacturing method, in order to reduce the heating temperature at the time of integration, all of the positive electrode plate, the negative electrode plate, and the separator contain a plasticizer such as n-dibutyl phthalate (DBP), and xylene is used after integration. It is characterized by extracting the plasticizer with a solvent such as.

【0006】また、WO99/26307号公報には、
正極板および負極板のいずれか一方を2枚のセパレータ
間に挟んでポリフッ化ビニリデンを用いて接着したセパ
レータ付き電極群を予め作製した後、他方の電極とを巻
回して一体型の電極群を作製する方法が提案されてい
る。
Further, in WO99 / 26307,
One of the positive electrode plate and the negative electrode plate is sandwiched between two separators, and an electrode group with a separator is prepared in advance by adhering with polyvinylidene fluoride, and then the other electrode is wound to form an integrated electrode group. A method of making has been proposed.

【0007】[0007]

【発明が解決しようとする課題】正負極とセパレータを
一体化し、正負極間距離を一定に維持することによっ
て、薄型のラミネートシートを外装ケースに用いても高
いサイクル特性と保存特性を達成することはできるが、
その製造方法はこれまでのリチウムイオン電池と比較し
て複雑で、材料コスト、製造コストの大幅な上昇はさけ
られない。
By integrating the positive and negative electrodes and the separator and maintaining the distance between the positive and negative electrodes constant, it is possible to achieve high cycle characteristics and storage characteristics even when a thin laminated sheet is used as an outer case. Can, but
The manufacturing method is more complicated than the conventional lithium-ion batteries, and the material cost and the manufacturing cost are unavoidably increased.

【0008】例えば前述の米国特許5607485号等
の製造方法の場合、電極群作製後に可塑剤をキシレン等
の溶剤で抽出しなければならない。またこの抽出溶剤を
一体化した電極群全体に均一に浸透させ可塑剤を抽出す
るには、正負極のいずれかもしくは望ましくは両方の金
属集電体が、安価な金属箔ではなく貫通孔を有する例え
ばエキスパンドメタル、ラスメタル等でなくてはならな
い。
For example, in the case of the manufacturing method of the above-mentioned US Pat. No. 5,607,485, the plasticizer must be extracted with a solvent such as xylene after the electrode group is manufactured. Further, in order to uniformly permeate the entire extraction electrode group with this extraction solvent to extract the plasticizer, either or both of the positive and negative electrode metal current collectors have through holes instead of inexpensive metal foils. For example, it must be expanded metal, lath metal, etc.

【0009】WO99/26307号公報では、例えば
予め負極両面にポリフッ化ビニリデンを用いてセパレー
タを接着し、次に正極と共に巻回して一体型の電極群を
作製するが、この方法では負極両側に接着したセパレー
タが巻回時に内外周差が生じ、特に負極外側のセパレー
タは引き延ばされて、極端な場合にはセパレータが破断
し工程での歩留まりが低下する。
[0009] In WO99 / 26307, for example, a separator is preliminarily adhered to both surfaces of a negative electrode by using polyvinylidene fluoride, and then wound together with a positive electrode to prepare an integrated electrode group. In this method, the separator is adhered to both sides of the negative electrode. When the above separator is wound, a difference in inner and outer circumferences occurs, and particularly, the separator outside the negative electrode is stretched, and in an extreme case, the separator is broken and the yield in the process is reduced.

【0010】さらに上記二つの製造方法に共通する課題
は、電極群を一体化した後に有機電解液を注液するた
め、有機電解液の電極群全体への浸透に極端に時間がか
かるということである。
Further, a problem common to the above two manufacturing methods is that it takes an extremely long time to permeate the organic electrolytic solution into the entire electrode group because the organic electrolytic solution is injected after the electrode groups are integrated. is there.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の請求項1の発明は、正極集電体上に正極活物質層が形
成されている正極板と、負極集電体上に負極活物質層が
形成されている負極板とが接着層を表面に有する多孔性
のポリオレフィン製セパレータを介して巻回した電極群
を外装ケースに収納した後、有機電解液を注液し、密閉
するリチウムポリマー二次電池の製造方法において、前
記電極群に有機電解液を注液し加温することにより前記
セパレータ表面の接着層をゲル化させることによって、
前記セパレータと前記正極板および前記負極板とを一体
化することを特徴とするリチウムポリマー二次電池の製
造方法である。
In order to achieve the above object, the invention of claim 1 is a positive electrode plate having a positive electrode active material layer formed on a positive electrode current collector, and a negative electrode active material on a negative electrode current collector. The negative electrode plate on which the material layer is formed and the electrode group wound via a porous polyolefin separator having an adhesive layer on the surface are housed in an outer case, and then an organic electrolyte is injected and sealed lithium In the method for producing a polymer secondary battery, by gelling the adhesive layer on the separator surface by injecting and heating an organic electrolyte solution into the electrode group,
In the method for manufacturing a lithium polymer secondary battery, the separator is integrated with the positive electrode plate and the negative electrode plate.

【0012】請求項1の発明によれば、電極群を一体化
せずに有機電解液を注液するため、電極群全体への浸透
の時間が大幅に短縮できる。また巻回型電極群作製時
に、セパレータはいずれも正負極板と一体化していない
ため、内外周差によるセパレータの破断による歩留まり
低下のない電池を得ることができる。
According to the first aspect of the invention, since the organic electrolytic solution is injected without integrating the electrode group, the time required for permeation into the entire electrode group can be greatly shortened. Further, when the wound electrode group is manufactured, neither of the separators is integrated with the positive and negative electrode plates, so that it is possible to obtain a battery in which the yield is not reduced due to the breakage of the separator due to the difference between the inner and outer circumferences.

【0013】請求項2の発明は、接着層にフッ化ビニリ
デンとヘキサフルオロプロピレンの共重合体(以下P
(VdF−HFP)と略する)を用い、有機電解液との
共存下で加温することによって、接着層をゲル化させ、
正負極板とセパレータとを接着させることを特徴とす
る。これによってDBP等の可塑剤を用いる必要がな
く、可塑剤抽出工程やエキスパンドメタル等の貫通孔を
有する金属集電体を用いる必要がないので、安価な電池
を得ることができる。
According to a second aspect of the present invention, a vinylidene fluoride / hexafluoropropylene copolymer (hereinafter referred to as P
(Abbreviated as VdF-HFP)), and by heating in the presence of an organic electrolyte, the adhesive layer is gelled,
The positive and negative electrode plates and the separator are bonded together. Thus, it is not necessary to use a plasticizer such as DBP, and it is not necessary to use a plasticizer extraction step or a metal current collector having a through hole such as expanded metal, so that an inexpensive battery can be obtained.

【0014】請求項3及び請求項4の発明は、加圧プレ
スしながら加温することによって、接着層をゲル化させ
た後、加圧プレスした状態で電極群を冷却することを特
徴とする。
The inventions of claims 3 and 4 are characterized in that the adhesive layer is gelated by heating while pressurizing and pressing, and then the electrode group is cooled in the pressurized state. .

【0015】これによって、加温してゲル化した接着層
をセパレータと正極、負極の間から流動によって損失す
ることがないので、均一でかつ強固なゲル層を作製する
ことができる。
As a result, the adhesive layer which has been gelled by heating is not lost due to the flow between the separator and the positive electrode or the negative electrode, so that a uniform and strong gel layer can be produced.

【0016】請求項5の発明は、上記請求項1〜請求項
4をすべて組み合わせた発明である。
The invention of claim 5 is an invention in which all of claims 1 to 4 are combined.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明電池の巻回型電極群の断面
概略図である。
FIG. 1 is a schematic sectional view of a wound electrode group of the battery of the present invention.

【0019】1bはアルミニウム製の箔からなる集電体
で、この片側または両面に正極活物質と結着剤、必要に
応じて導電剤を溶剤に混錬分散させたペーストを塗着、
乾燥、圧延して活物質層1aを作製したのが正極板1で
ある。
Reference numeral 1b is a collector made of aluminum foil, on one or both sides of which a positive electrode active material and a binder, and if necessary, a paste prepared by kneading and dispersing a conductive agent in a solvent,
It is the positive electrode plate 1 that is dried and rolled to form the active material layer 1a.

【0020】正極活物質としては、例えば、リチウムイ
オンをゲストとして受け入れ得るリチウム含有遷移金属
化合物が使用される。例えば、コバルト、マンガン、ニ
ッケル、クロム、鉄およびバナジウムから選ばれる少な
くとも一種類の金属とリチウムとの複合金属酸化物、L
iCoO2、LiMnO2、LiNiO2、LiCoxNi
(1-x)2(0<x<1)、LiCrO2、αLiFe
2、LiVO2等が好ましい。
As the positive electrode active material, for example, a lithium-containing transition metal compound capable of accepting lithium ions as a guest is used. For example, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron and vanadium and lithium, L
iCoO 2 , LiMnO 2 , LiNiO 2 , LiCo x Ni
(1-x) O 2 (0 <x <1), LiCrO 2 , αLiFe
O 2 , LiVO 2 and the like are preferable.

【0021】結着剤としては、活物質間の密着性を保つ
フッ素系樹脂材料、ポリアルキレンオキサイド骨格を持
つ高分子材料、またはスチレン−ブタジエン共重合体な
どがある。フッ素系樹脂材料として、ポリフッ化ビニリ
デン(PVdF)、フッ化ビニリデン(VdF)とヘキ
サフルオロプロピレン(HFP)との共重合体P(Vd
F−HFP)が好ましい。
Examples of the binder include a fluororesin material that maintains the adhesion between the active materials, a polymer material having a polyalkylene oxide skeleton, and a styrene-butadiene copolymer. As the fluorine-based resin material, polyvinylidene fluoride (PVdF), a copolymer P (Vd) of vinylidene fluoride (VdF) and hexafluoropropylene (HFP) is used.
F-HFP) is preferred.

【0022】必要に応じて加える導電剤としてはアセチ
レンブラック、グラファイト、炭素繊維等の炭素系導電
剤が好ましい。
As the conductive agent added as required, carbon-based conductive agents such as acetylene black, graphite and carbon fiber are preferable.

【0023】溶剤としては、結着剤が溶解可能な溶剤が
適切で、有機系結着剤の場合は、アセトン、シクロヘキ
サノン、N−メチル−2−ピロリドン(NMP)、メチ
ルエチルケトン(MEK)等の有機溶剤を単独またはこ
れらを混合した混合溶剤が好ましく、水系結着剤の場合
は水が好ましい。
As the solvent, a solvent capable of dissolving the binder is suitable. In the case of an organic binder, an organic solvent such as acetone, cyclohexanone, N-methyl-2-pyrrolidone (NMP), methyl ethyl ketone (MEK), etc. A single solvent or a mixed solvent obtained by mixing these is preferable, and water is preferable in the case of an aqueous binder.

【0024】2bは銅製の箔からなる集電体で、この片
側または両面に負極活物質と結着剤、必要に応じて導電
剤を溶剤に混錬分散させたペーストを塗布、乾燥、圧延
して活物質層2aを作製したのが負極板2である。
Reference numeral 2b is a collector made of a copper foil, on one side or both sides of which a negative electrode active material and a binder, and if necessary, a paste prepared by kneading and dispersing a conductive agent in a solvent, dried and rolled. It is the negative electrode plate 2 that the active material layer 2 a is produced by the above.

【0025】ここで負極活物質としては、例えば、リチ
ウムイオンを吸蔵、脱離し得る黒鉛型結晶構造を有する
グラファイトを含む材料、例えば天然黒鉛や人造黒鉛が
使用される。特に、格子面(002)の面間隔
(d002)が3.350〜3.400Åである黒鉛型結
晶構造を有する炭素材料を使用することが好ましい。
Here, as the negative electrode active material, for example, a material containing graphite having a graphite type crystal structure capable of inserting and extracting lithium ions, such as natural graphite or artificial graphite is used. In particular, it is preferable to use a carbon material having a graphite type crystal structure in which the lattice spacing (d 002 ) of the lattice plane (002) is 3.350 to 3.400 Å.

【0026】結着剤、溶剤および必要に応じて加えるこ
とができる導電剤は正極板と同様のものを使用すること
ができる。
As the binder, the solvent, and the conductive agent which can be added if necessary, the same materials as those for the positive electrode plate can be used.

【0027】4はセパレータで、ポリエチレン樹脂、ポ
リプロピレン樹脂などの微多孔性ポリオレフィン系樹脂
が好ましい。
Reference numeral 4 denotes a separator, which is preferably a microporous polyolefin resin such as polyethylene resin or polypropylene resin.

【0028】接着層3に用いる高分子材料としては、有
機電解液に対して膨潤し容易にゲル化するフッ化ビニリ
デンとヘキサフルオロプロピレンの共重合体P(VdF
−HFP)が好ましく、ヘキサフルオロプロピレンの重
量%は、2%〜15%の範囲が、有機電解液に対する膨
潤性と正負極間との接着性の観点から好ましい。
The polymer material used for the adhesive layer 3 is a copolymer P (VdF) of vinylidene fluoride and hexafluoropropylene which swells in an organic electrolyte and easily gels.
-HFP) is preferable, and the weight% of hexafluoropropylene is preferably in the range of 2% to 15% from the viewpoint of swelling property with respect to organic electrolyte and adhesiveness between positive and negative electrodes.

【0029】巻回型電極群を一体化する好ましい製造方
法は以下の通りである。まず前記高分子材料をアセト
ン、シクロヘキサノン、N−メチル−2−ピロリドン
(NMP)、メチルエチルケトン(MEK)等の有機溶
剤を単独またはこれらを混合した混合溶剤に溶解し、こ
の溶液を前記セパレータの両面に塗布、乾燥し予めセパ
レータに接着層を設ける。
A preferred manufacturing method for integrating the wound electrode group is as follows. First, the polymer material is dissolved in an organic solvent such as acetone, cyclohexanone, N-methyl-2-pyrrolidone (NMP), or methyl ethyl ketone (MEK) alone or in a mixed solvent thereof, and this solution is applied to both surfaces of the separator. After coating and drying, an adhesive layer is provided on the separator in advance.

【0030】このときの接着層の厚みは、1μm〜8μ
mの範囲が好ましい。
The thickness of the adhesive layer at this time is 1 μm to 8 μm.
A range of m is preferred.

【0031】このセパレータを間に挟んで前記正極と負
極を巻回し電極群を作製する。この段階ではセパレータ
の接着層は正極、負極いずれとも接着していない。さら
にこの巻回型電極群を中間の一層にアルミニウム等の金
属箔を用いたラミネートシートからなる外装ケースに挿
入し、有機電解液を所定量注液後、熱シール等で密封す
る。この状態で電池全体を加圧プレスしながら加温する
ことで、セパレータ表面の接着層を有機電解液で膨潤さ
せゲル化することによって一体化を行うことが好まし
い。ゲル化を促進させるためには、60℃以上に加温す
ることが好ましく、60℃〜90℃の範囲が好ましく、
その時の時間は3時間〜30分の範囲が好ましい。
The positive electrode and the negative electrode are wound with this separator interposed therebetween to produce an electrode group. At this stage, the adhesive layer of the separator does not adhere to either the positive electrode or the negative electrode. Further, this wound electrode group is inserted into an outer case made of a laminate sheet using a metal foil such as aluminum in the middle layer, and after pouring a predetermined amount of the organic electrolytic solution, it is sealed by heat sealing or the like. In this state, it is preferable that the entire battery is heated while being pressed and pressed to swell the adhesive layer on the surface of the separator with the organic electrolytic solution and gelate the same to integrate them. In order to promote gelation, it is preferable to heat to 60 ° C. or higher, preferably in the range of 60 ° C. to 90 ° C.,
The time at that time is preferably in the range of 3 hours to 30 minutes.

【0032】また、加圧プレスする圧力としては、0.
01MPa〜20MPaの圧力範囲が、接着層を均一に
正極、負極と溶着させるために好ましい。さらにこの加
圧プレスした状態で室温まで冷却することによって、ゲ
ル化した接着層がセパレータと正極、負極の間から流動
によって損失しないようにする。
The pressure for pressurizing is 0.
The pressure range of 01 MPa to 20 MPa is preferable in order to uniformly weld the adhesive layer to the positive electrode and the negative electrode. Further, the pressure-pressed state is cooled to room temperature to prevent the gelled adhesive layer from being lost due to flow between the separator and the positive electrode or the negative electrode.

【0033】なお、外装ケースは、電解液、水のバリア
ー性や光遮断性が要求されるために20〜50μmのア
ルミニウム製箔からなる金属箔層を中央に配してその外
側に、耐電解液性、機械的強度が要求されるために厚さ
が10μm〜50μmのポリエチレンテレフタレート、
熱溶着性ポリイミド、ポリメタクリル酸メチル、伸延処
理したポリアミド(ナイロン)等の樹脂、あるいはこれ
らの2種以上の樹脂を共重合させた樹脂層、内側に熱溶
着性とリードとの短絡防止性が要求されるために厚さ2
0μm〜50μmのポリエチレン樹脂やポリプロピレン
樹脂等のポリオレフィン樹脂、これらの共重合体や酸変
性された樹脂層からなる外装ケースが好ましい。
Since the outer case is required to have a barrier property and a light blocking property for an electrolytic solution and water, a metal foil layer made of an aluminum foil having a thickness of 20 to 50 μm is arranged in the center, and an outer side is provided with an electrolytic resistance. Polyethylene terephthalate having a thickness of 10 μm to 50 μm, because liquidity and mechanical strength are required,
Resin such as heat-welding polyimide, polymethylmethacrylate, and stretch-treated polyamide (nylon), or a resin layer obtained by copolymerizing two or more kinds of these resins, heat-welding property inside and short-circuit preventing property with leads. Thickness 2 to be required
An outer case made of a polyolefin resin such as a polyethylene resin or a polypropylene resin having a thickness of 0 μm to 50 μm, a copolymer thereof, or an acid-modified resin layer is preferable.

【0034】また、ここで用いる有機電解液としては、
非水溶媒と電解質からなり、非水溶媒としては、主成分
として環状カーボネートおよび鎖状カーボネートが含有
される。前記環状カーボネートとしては、エチレンカー
ボネート(EC)、プロピレンカーボネート(PC)、
およびブチレンカーボネート(BC)から選ばれる少な
くとも一種であることが好ましい。また、前記鎖状カー
ボネートとしては、ジメチルカーボネート(DMC)、
ジエチルカーボネート(DEC)、およびエチルメチル
カーボネート(EMC)等から選ばれる少なくとも一種
であることが好ましい。
The organic electrolyte used here is
It is composed of a non-aqueous solvent and an electrolyte. As the non-aqueous solvent, a cyclic carbonate and a chain carbonate are contained as main components. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC),
And at least one selected from butylene carbonate (BC). The chain carbonate may be dimethyl carbonate (DMC),
It is preferably at least one selected from diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and the like.

【0035】電解質としては、例えば、電子吸引性の強
いリチウム塩を使用し、例えば、LiPF6、LiB
4、LiClO4、LiAsF6、LiCF3SO3、L
iN(SO2CF32、LiN(SO2252、Li
C(SO2CF33等が挙げられる。これらの電解質
は、一種類で使用しても良く、二種類以上組み合わせて
使用しても良い。これらの電解質は、前記非水溶媒に対
して0.5〜1.5Mの濃度で溶解させることが好まし
い。
As the electrolyte, for example, a lithium salt having a strong electron-withdrawing property is used. For example, LiPF 6 or LiB is used.
F 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , L
iN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , Li
C (SO 2 CF 3) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are preferably dissolved in the non-aqueous solvent at a concentration of 0.5 to 1.5M.

【0036】[0036]

【実施例】本発明を実施例および比較例を用いて、詳細
に説明するが、これらは本発明を何ら限定するものでは
ない。
EXAMPLES The present invention will be described in detail with reference to Examples and Comparative Examples, but these do not limit the present invention in any way.

【0037】(実施例1)まず、正極活物質としてコバ
ルト酸リチウムを100重量部、導電剤としてアセチレ
ンブラックを3重量部、結着剤としてポリフッ化ビニリ
デンのN−メチル−2−ピロリドン(NMP)溶液(固
形分12%)を33重量部、有機溶剤としてNMPを1
3重量部それぞれ用い、混錬分散させてペースト状合剤
を作製した。このペースト状合剤を、厚さ20μmの帯
状のアルミニウム箔からなる集電体1bに塗着した後、
乾燥させることにより、正極活物質層1aを有する正極
板1を作製した。
Example 1 First, 100 parts by weight of lithium cobalt oxide as a positive electrode active material, 3 parts by weight of acetylene black as a conductive agent, and N-methyl-2-pyrrolidone (NMP) of polyvinylidene fluoride as a binder. 33 parts by weight of solution (solid content 12%), 1 NMP as organic solvent
3 parts by weight were each used and kneaded and dispersed to prepare a pasty mixture. After applying this paste mixture to the current collector 1b made of a strip-shaped aluminum foil having a thickness of 20 μm,
By drying, the positive electrode plate 1 having the positive electrode active material layer 1a was produced.

【0038】次に、負極活物質として鱗片状黒鉛を10
0重量部、結着剤としてポリフッ化ビニリデンのN−メ
チル−2−ピロリドン(NMP)溶液(固形分12%)
を66重量部、有機溶剤としてNMPを13重量部をそ
れぞれ用い、混錬分散させてペースト状合剤を作製し
た。このペースト状合剤を、厚さ14μmの帯状の銅箔
からなる集電体2bに塗着した後、乾燥させることによ
り、負極活物質層2aを有する負極板2を作製した。
Next, flake graphite was used as the negative electrode active material 10 times.
0 parts by weight, N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride as a binder (solid content 12%)
And 66 parts by weight of NMP and 13 parts by weight of NMP as an organic solvent were kneaded and dispersed to prepare a paste mixture. The paste mixture was applied to a current collector 2b made of a strip-shaped copper foil having a thickness of 14 μm and then dried to prepare a negative electrode plate 2 having a negative electrode active material layer 2a.

【0039】そして、P(VdF−HFP)をアセトン
とシクロヘキサノンを重量比3:1の混合溶剤に溶解さ
せた10重量%溶液に、厚さが25μmの多孔性ポリエ
チレン樹脂製のセパレータ4を塗布し、乾燥させること
によって、セパレータの両面に厚さ3μmの接着層3を
設けた。
Then, a 10 wt% solution of P (VdF-HFP) dissolved in a mixed solvent of acetone and cyclohexanone in a weight ratio of 3: 1 was coated with a separator 4 made of porous polyethylene resin having a thickness of 25 μm. Then, the adhesive layers 3 having a thickness of 3 μm were provided on both surfaces of the separator by drying.

【0040】このようにして作製した正極板1と負極板
2とを表面に接着層3を有するセパレータ4を介して長
円状に巻回し、一体化していない電極群を外装ケースに
収納した。なお、外装ケースは、中間の一層に厚さ40
μmのアルミニウム製箔からなる金属箔層を中央に配し
てその外側に、厚さが20μmのポリアミド樹脂層、内
側に厚さ30μmのマレイン酸変性したポリプロピレン
樹脂層からなる外装ケースを用いた。
The positive electrode plate 1 and the negative electrode plate 2 thus produced were wound into an elliptical shape with a separator 4 having an adhesive layer 3 on the surface, and the non-integrated electrode group was housed in an outer case. The outer case has a thickness of 40
A metal foil layer made of aluminum foil having a thickness of μm was arranged in the center, and an outer case made of a polyamide resin layer having a thickness of 20 μm on the outer side and a maleic acid-modified polypropylene resin layer having a thickness of 30 μm on the inner side was used.

【0041】次に、外装ケース1の開口部よりエチレン
カーボネートとエチルメチルカーボネートを体積比1:
3の混合溶媒にLiPF6を1.0モル/l溶解した電
解液を所定量注入した後に、温度200℃、圧力0.1
MPaを加えた状態を30秒間維持して封口した。
Next, ethylene carbonate and ethyl methyl carbonate were mixed in a volume ratio of 1: from the opening of the outer case 1.
After injecting a predetermined amount of an electrolyte solution in which 1.0 mol / l of LiPF 6 was dissolved in the mixed solvent of No. 3, the temperature was 200 ° C. and the pressure was 0.1.
The state in which MPa was added was maintained for 30 seconds and sealed.

【0042】さらに、1.0MPaの圧力にて加圧プレ
スした状態で、温度90℃で30分間加温することによ
って、セパレータ表面の接着層を有機電解液でゲル化さ
せ、この加圧プレスした状態で20℃(室温)まで冷却
することによって正極板、負極板、セパレータを一体化
したリチウムポリマー二次電池を作製し、電池Aとし
た。
Further, in a state of being pressure-pressed at a pressure of 1.0 MPa, by heating at a temperature of 90 ° C. for 30 minutes, the adhesive layer on the surface of the separator was gelated with an organic electrolytic solution, and this pressure-pressed. By cooling to 20 ° C. (room temperature) in this state, a lithium polymer secondary battery in which a positive electrode plate, a negative electrode plate, and a separator were integrated was produced, and was named battery A.

【0043】(実施例2)接着層3の厚み、加圧したと
きの圧力、ゲル化温度と時間を表1に示すような条件で
作製した以外は実施例1と同様にして作製したリチウム
ポリマー二次電池を電池B〜電池Gとした。
Example 2 A lithium polymer produced in the same manner as in Example 1 except that the thickness of the adhesive layer 3, the pressure applied, the gelling temperature and the time were set as shown in Table 1. The secondary batteries were batteries B to G.

【0044】[0044]

【表1】 [Table 1]

【0045】(比較例1)実施例1と同様にして作製し
た正極板1の両面に接着層のない厚さ20μmのセパレ
ータ4をポリフッ化ビニリデンをアセトンとシクロヘキ
サノンを重量比3:1の混合溶剤に溶解させた10重量
%溶液を用いて接着させたセパレータ付き正極板と、実
施例1と同様にして作製した負極板とを長円状に巻回し
た以外は、実施例1と同様にして作製したリチウムポリ
マー二次電池を電池Lとした。
Comparative Example 1 A positive electrode plate 1 produced in the same manner as in Example 1 was provided with a separator 4 having no adhesive layer on both sides and a thickness of 20 μm, a polyvinylidene fluoride, acetone and cyclohexanone mixed solvent in a weight ratio of 3: 1. In the same manner as in Example 1 except that a positive electrode plate with a separator adhered using a 10 wt% solution dissolved in and a negative electrode plate prepared in the same manner as in Example 1 were wound into an elliptical shape. The prepared lithium polymer secondary battery was used as a battery L.

【0046】(比較例2)圧力をかけずに冷却した以外
は、実施例1と同様にして作製したリチウムポリマー二
次電池を電池Mとした。
(Comparative Example 2) A lithium polymer secondary battery manufactured in the same manner as in Example 1 was used as a battery M except that it was cooled without applying pressure.

【0047】[0047]

【発明の効果】以上に説明したように本発明によれば、
正極、負極及び接着層を表面に有するセパレータを巻回
し、一体化していない電極群作製後に、有機電解液を注
液し加温することで接着層をゲル化させることによって
電極群を一体化でき、信頼性が高く、生産性に優れたリ
チウムポリマー二次電池の製造方法を提供することがで
きる。
As described above, according to the present invention,
The electrode group can be integrated by winding a separator having a positive electrode, a negative electrode, and an adhesive layer on the surface and producing an electrode group that is not integrated, and then pouring an organic electrolyte solution and heating to gel the adhesive layer. A highly reliable and highly productive method for manufacturing a lithium polymer secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態における断面図FIG. 1 is a sectional view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極板 1a 正極活物質層 1b 正極集電体 2 負極板 2a 負極活物質層 2b 負極集電体 3 接着層 4 セパレータ 1 Positive plate 1a Positive electrode active material layer 1b Positive electrode current collector 2 Negative electrode plate 2a Negative electrode active material layer 2b Negative electrode current collector 3 adhesive layer 4 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古林 義玲 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H021 AA06 BB01 BB02 BB12 BB17 CC04 CC08 EE04 EE10 EE15 EE25 EE32 EE33 5H029 AJ14 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ02 CJ03 CJ06 CJ07 CJ13 HJ12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshibayashi Furubayashi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 5H021 AA06 BB01 BB02 BB12 BB17                       CC04 CC08 EE04 EE10 EE15                       EE25 EE32 EE33                 5H029 AJ14 AK03 AL07 AM03 AM05                       AM07 BJ02 BJ14 CJ02 CJ03                       CJ06 CJ07 CJ13 HJ12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体上に正極活物質層が形成され
ている正極板と、負極集電体上に負極活物質層が形成さ
れている負極板とが接着層を表面に有する多孔性のポリ
オレフィン製セパレータを介して巻回した電極群を外装
ケースに収納した後、有機電解液を注液し、密閉するリ
チウムポリマー二次電池の製造方法において、前記電極
群に有機電解液を注液し加温することにより前記セパレ
ータ表面の接着層をゲル化させることによって、前記セ
パレータと前記正極板および前記負極板とを一体化する
ことを特徴とするリチウムポリマー二次電池の製造方
法。
1. A positive electrode plate having a positive electrode active material layer formed on a positive electrode current collector and a negative electrode plate having a negative electrode active material layer formed on a negative electrode current collector are porous having an adhesive layer on the surface. In a method for manufacturing a lithium polymer secondary battery, in which an electrode group wound through a transparent polyolefin separator is housed in an outer case, an organic electrolytic solution is then injected, and an organic electrolytic solution is injected into the electrode group. A method for manufacturing a lithium polymer secondary battery, characterized in that the separator is integrated with the positive electrode plate and the negative electrode plate by gelling the adhesive layer on the surface of the separator by liquefying and heating.
【請求項2】 前記接着層がフッ化ビニリデンとヘキサ
フルオロプロピレンの共重合体であることを特徴とする
請求項1に記載のリチウムポリマー二次電池の製造方
法。
2. The method for producing a lithium polymer secondary battery according to claim 1, wherein the adhesive layer is a copolymer of vinylidene fluoride and hexafluoropropylene.
【請求項3】 前記加温する際に、加圧プレスしながら
加温することによって、前記セパレータと前記正極板お
よび前記負極板とを均一に一体化させることを特徴とす
る請求項1に記載のリチウムポリマー二次電池の製造方
法。
3. The separator according to claim 1, wherein the separator is uniformly integrated with the positive electrode plate and the negative electrode plate by heating while pressurizing and pressing. Manufacturing method of lithium polymer secondary battery of.
【請求項4】 前記加圧プレスが、加圧プレスした状態
で冷却する加圧プレスであることを特徴とする請求項3
に記載のリチウムポリマー二次電池の製造方法。
4. The pressure press is a pressure press that cools in a pressure-pressed state.
The method for producing the lithium polymer secondary battery according to 1.
【請求項5】 正極集電体上に正極活物質層が形成され
ている正極板と、負極集電体上に負極活物質層が形成さ
れている負極板とが接着層を表面に有する多孔性のポリ
オレフィン製セパレータを介して巻回した電極群を外装
ケースに収納した後、有機電解液を注液し、密閉するリ
チウムポリマー二次電池の製造方法において、前記電極
群に有機電解液を注液し、加圧プレスしながら加温する
ことにより前記セパレータ表面のフッ化ビニリデンとヘ
キサフルオロプロピレンの共重合体からなる接着層をゲ
ル化させた後、加圧プレスした状態で冷却することによ
って、前記セパレータと前記正極板および前記負極板と
を均一に一体化することを特徴とするリチウムポリマー
二次電池の製造方法。
5. A positive electrode plate having a positive electrode active material layer formed on a positive electrode current collector and a negative electrode plate having a negative electrode active material layer formed on a negative electrode current collector are porous having an adhesive layer on the surface. In a method for manufacturing a lithium polymer secondary battery in which an electrode group wound through a hydrophilic polyolefin separator is housed in an outer case, an organic electrolytic solution is injected and sealed, the organic electrolytic solution is injected into the electrode group. Liquid, after gelling the adhesive layer made of a copolymer of vinylidene fluoride and hexafluoropropylene on the surface of the separator by heating while heating under pressure, by cooling in a pressed state, A method for producing a lithium polymer secondary battery, wherein the separator, the positive electrode plate and the negative electrode plate are uniformly integrated.
JP2001327350A 2001-10-25 2001-10-25 Manufacturing method of lithium polymer secondary battery Pending JP2003132951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327350A JP2003132951A (en) 2001-10-25 2001-10-25 Manufacturing method of lithium polymer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327350A JP2003132951A (en) 2001-10-25 2001-10-25 Manufacturing method of lithium polymer secondary battery

Publications (1)

Publication Number Publication Date
JP2003132951A true JP2003132951A (en) 2003-05-09

Family

ID=19143594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327350A Pending JP2003132951A (en) 2001-10-25 2001-10-25 Manufacturing method of lithium polymer secondary battery

Country Status (1)

Country Link
JP (1) JP2003132951A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047400A (en) * 2006-08-14 2008-02-28 Sony Corp Nonaqueous electrolyte secondary battery
CN100401565C (en) * 2005-04-27 2008-07-09 剩沅科技股份有限公司 Lithium polymer batteries
JP2011054502A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Lithium secondary cell and manufacturing method thereof
CN102097611A (en) * 2009-12-15 2011-06-15 三星Sdi株式会社 Secondary battery
JP2012074367A (en) * 2010-08-30 2012-04-12 Sony Corp Nonaqueous electrolyte battery and manufacturing method thereof, insulation material and manufacturing method thereof, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
JP2012209118A (en) * 2011-03-29 2012-10-25 Asahi Kasei E-Materials Corp Lithium ion secondary battery and manufacturing method thereof
JP2014026986A (en) * 2013-10-04 2014-02-06 Hitachi Maxell Ltd Separator for lithium secondary battery, and lithium secondary battery and manufacturing method therefor
JP2014527266A (en) * 2011-08-08 2014-10-09 ビーエーエスエフ ソシエタス・ヨーロピア Electrochemical cell
CN108963188A (en) * 2018-09-17 2018-12-07 深圳市心版图科技有限公司 A kind of cathode of lithium battery and preparation method thereof and lithium battery
JP2019079822A (en) * 2006-04-28 2019-05-23 エルジー・ケム・リミテッド Separation film for battery including gel polymer layer
CN109872879A (en) * 2017-12-01 2019-06-11 中国科学院大连化学物理研究所 A kind of lithium-ion capacitor electrode and its application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260341A (en) * 1998-01-30 1999-09-24 Celgard Llc Separator for gel electrolyte battery
JP2003077530A (en) * 2001-06-18 2003-03-14 Japan Storage Battery Co Ltd Method of manufacturing nonaqueous electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260341A (en) * 1998-01-30 1999-09-24 Celgard Llc Separator for gel electrolyte battery
JP2003077530A (en) * 2001-06-18 2003-03-14 Japan Storage Battery Co Ltd Method of manufacturing nonaqueous electrolyte battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401565C (en) * 2005-04-27 2008-07-09 剩沅科技股份有限公司 Lithium polymer batteries
JP2019079822A (en) * 2006-04-28 2019-05-23 エルジー・ケム・リミテッド Separation film for battery including gel polymer layer
JP7109384B2 (en) 2006-04-28 2022-07-29 エルジー エナジー ソリューション リミテッド Separation membrane for battery containing gel polymer layer
JP2008047400A (en) * 2006-08-14 2008-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2011054502A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Lithium secondary cell and manufacturing method thereof
JP2011129497A (en) * 2009-12-15 2011-06-30 Samsung Sdi Co Ltd Secondary battery
US8999559B2 (en) 2009-12-15 2015-04-07 Samsung Sdi Co., Ltd. Secondary battery
CN102097611A (en) * 2009-12-15 2011-06-15 三星Sdi株式会社 Secondary battery
US9350005B2 (en) 2010-08-30 2016-05-24 Sony Corporation Non-aqueous electrolyte battery, separator, battery pack, electronic device, electromotive vehicle, power storage apparatus, and electric power system
JP2012074367A (en) * 2010-08-30 2012-04-12 Sony Corp Nonaqueous electrolyte battery and manufacturing method thereof, insulation material and manufacturing method thereof, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
US10637027B2 (en) 2010-08-30 2020-04-28 Murata Manufacturing Co., Ltd. Battery, separator, battery pack, electronic device, electromotive vehicle, power storage apparatus, and electric power system
JP2012209118A (en) * 2011-03-29 2012-10-25 Asahi Kasei E-Materials Corp Lithium ion secondary battery and manufacturing method thereof
JP2014527266A (en) * 2011-08-08 2014-10-09 ビーエーエスエフ ソシエタス・ヨーロピア Electrochemical cell
JP2014026986A (en) * 2013-10-04 2014-02-06 Hitachi Maxell Ltd Separator for lithium secondary battery, and lithium secondary battery and manufacturing method therefor
CN109872879A (en) * 2017-12-01 2019-06-11 中国科学院大连化学物理研究所 A kind of lithium-ion capacitor electrode and its application
CN108963188A (en) * 2018-09-17 2018-12-07 深圳市心版图科技有限公司 A kind of cathode of lithium battery and preparation method thereof and lithium battery

Similar Documents

Publication Publication Date Title
KR100536431B1 (en) Nonaqueous electrolyte secondary battery, its producing method and battery aggregate
EP1041658B1 (en) Method for producing nonaqueous gel electrolyte battery
KR100587437B1 (en) Nonaqueous Secondary Battery
US6534219B1 (en) Secondary battery
JP2004079327A (en) Non-aqueous secondary battery, positive electrode for secondary battery, and its manufacturing method
WO2022001235A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
KR100837647B1 (en) Non-aqueous electrolytic secondary battery
JP2004362859A (en) Lithium-ion secondary battery
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JP2006202680A (en) Polymer battery
JP4670275B2 (en) Bipolar battery and battery pack
JP2003132951A (en) Manufacturing method of lithium polymer secondary battery
JP7255079B2 (en) Bipolar battery unit and bipolar battery
JP3297034B2 (en) Secondary battery and method of manufacturing the same
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
JP2017084533A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2003151638A (en) Lithium-ion secondary battery
JP2000306556A (en) Framed battery
JP2004327362A (en) Non-aqueous electrolyte secondary battery
JP4940498B2 (en) Non-aqueous secondary battery
JP4563555B2 (en) Lithium secondary battery
JP4135353B2 (en) Non-aqueous electrolyte secondary battery using laminate sheet for exterior case and device incorporating the same
JP2003297337A (en) Electrode structure, its manufacturing method, and secondary battery
JP4005789B2 (en) Secondary battery
JP2002134173A (en) Method for manufacturing nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729