JP2003132918A - Fuel cell generating system - Google Patents

Fuel cell generating system

Info

Publication number
JP2003132918A
JP2003132918A JP2001323928A JP2001323928A JP2003132918A JP 2003132918 A JP2003132918 A JP 2003132918A JP 2001323928 A JP2001323928 A JP 2001323928A JP 2001323928 A JP2001323928 A JP 2001323928A JP 2003132918 A JP2003132918 A JP 2003132918A
Authority
JP
Japan
Prior art keywords
gas
fuel
fuel cell
condensed water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001323928A
Other languages
Japanese (ja)
Inventor
Hideaki Yumoto
湯本  秀昭
Yoshihiro Nishikawa
西川  佳弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2001323928A priority Critical patent/JP2003132918A/en
Publication of JP2003132918A publication Critical patent/JP2003132918A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell generating system that enhances combustion efficiency in a combustion portion. SOLUTION: This fuel cell generating system has a reforming apparatus 7 that forms reformed gas G from fuel gas X, a feed water supply line 9 that supplies feed water Y required in water vapor reforming reaction to the reforming apparatus 7, a combustion portion 10 that heats the reforming apparatus 7 by the use of feed fuel gas F supplied through a feed fuel gas supply line 11, an electrolytic type fuel cell 1 that holds an electrolytic film between a pair of electrodes consisting of a fuel pole 3 and an oxidizer pole 2 and generates electricity by the use of reformed gas G supplied to the fuel pole 3 and oxidizer gas A supplied to the oxidizer pole 2, an off-gas discharge line 12 that joins off-gas g discharged from the fuel pole 3 in the electrolytic type fuel cell 1 into the feed fuel gas supply line 11, a trap 16 that is arranged in the off-gas discharge line 12 and drains condensed water D from off-gas g flow and a condensed water drainage line 35 that joins condensed water drained from the trap 16 into the feed water supply line 9.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、改質器と電解質型
燃料電池を備えた燃料電池発電システムにおいて、シス
テム内に発生する凝縮水の処置・対策を行った燃料電池
発電システムに関する。 【0002】 【従来の技術】従来の燃料電池発電システムは、例えば
特開2001−155748号公報に示されている。こ
こに開示の燃料電池発電システムを図4に示す。固体高
分子電解質型燃料電池1は、固体高分子電解質膜を挟ん
だ酸化剤極2及び燃料極3から構成される。酸化剤極2
には酸化剤供給路4を通して酸化剤ガスAとして例えば
空気が供給される。供給された空気は、酸化剤極2と接
する所定の通路を下流側へ流れるときに、空気中の酸素
が必要量だけ電極反応して消費され、残りのガスaは残
りのガス排出路5を通して外部へ排出される。 【0003】燃料極3の上流側は、改質ガス供給路6を
介して改質器7に連通される。改質器7には燃料ガス供
給路8を通して天然ガス等の燃料ガスX及び原料水供給
路9を通して水蒸気改質反応に必要な原料水Yが供給さ
れる。改質器7は、自身を加熱するための燃焼部10を
備え、燃焼部10には原燃料ガス供給路11を通して原
燃料ガスFが供給される。 【0004】燃焼部10で原燃料ガスFを燃焼させる
と、改質器7で燃料ガスXと原料水Yとの水蒸気改質反
応が起こり、水素リッチな改質ガスGが生成する。改質
器7で生成された改質ガスGは、改質ガス供給路6を介
して燃料極3に供給され、燃料極3と接する所定の通路
を下流側へ流れるときに、改質ガスG中の水素が必要量
だけ電極反応して消費され、残りのオフガスgはオフガ
ス排出路12を介して原燃料ガス供給路11の原燃料ガ
スF流に合流される。 【0005】上記従来技術の公報には開示されていない
が、改質ガス供給路6には改質ガスGの温度を下げるた
めの熱交換器が配される。熱交換器は、改質ガスの温度
を改質器4の高温の作動温度から電解質型燃料電池1の
低温の作動温度に低下させるものである。 【0006】 【発明が解決しようとする課題】上記従来の燃料電池発
電システムでは、オフガスと共に凝縮水が燃焼部に供給
されてしまう。そのため、燃焼部の燃焼効率が低いとい
う問題があった。従って、本発明の技術的課題は、燃焼
部の燃焼効率を高めた燃料電池発電システムを提供する
ことである。 【0007】 【課題を解決するための手段】上記の技術的課題を解決
するために講じた本発明の技術的手段は、燃料ガスから
改質ガスを生成する改質器と、水蒸気改質反応に必要な
原料水を改質器に供給する原料水供給路と、原燃料ガス
供給路を通して供給される原燃料ガスを用いて改質器を
加熱するための燃焼部と、燃料極及び酸化剤極からなる
一対の電極間に電解質膜を挟持させてなり、燃料極に供
給される改質ガスと酸化剤極に供給される酸化剤ガスと
を用いて発電を行う電解質型燃料電池と、電解質型燃料
電池の燃料極から排出されるオフガスを原燃料ガス供給
路に合流させるオフガス排出路と、オフガス排出路に配
され、オフガス流から凝縮水を排水するトラップと、ト
ラップから排水される凝縮水を原料水供給路に合流させ
る凝縮水排水路とを備えたことを特徴とする燃料電池発
電システムにある。 【0008】 【発明の実施の形態】本発明は、燃焼部に供給される原
燃料ガスに電解質型燃料電池の燃料極から排出されるオ
フガスを合流させるオフガス排出路に、オフガス流から
凝縮水を排水するトラップを配したものである。そのた
め、燃焼部にはトラップによって凝縮水の排除されたオ
フガスが供給され、燃焼部の燃焼効率が高められる。ま
た、本発明は、トラップから排水される凝縮水を、水蒸
気改質反応に必要な原料水を改質器に供給する原料水供
給路に合流させたものである。そのため、オフガス流か
ら分離された凝縮水が水蒸気改質反応に必要な原料水と
して再利用され、燃料電池発電システムの運転効率が高
められる。 【0009】 【実施例】上記の技術的手段の具体例を示す実施例を図
1乃至図3を参照して説明する。図1は本発明の実施例
の燃料電池発電システムの構成を示す図であり、図2は
図1のトラップの断面図であり、図3は図2のA−A断
面図である。なお、図1において、図4で示した従来技
術と同一の構成要素には同一の参照符号を付して詳細な
説明を省略する。 【0010】改質器7から電解質型燃料電池1の燃料極
3に改質ガスGを供給する改質ガス供給路6に、改質ガ
スGの温度を改質器7の作動温度である約700度Cか
ら電解質型燃料電池1の作動温度である約80度Cに冷
却するため熱交換器13が配される。熱交換器13は、
改質ガスGを冷却水Wで冷却する水熱交換器である。 【0011】熱交換器13の改質ガス出口14側に、改
質ガスG流から凝縮水Dを排水するトラップ15が配さ
れる。オフガス排出路12に、オフガスg流から凝縮水
Dを排水するトラップ16が配される。残りのガス排出
路5に、残りのガスa流から凝縮水Dを排水するトラッ
プ17が配される。トラップ15,16,17は気水分
離部を内蔵したフロート式トラップである。 【0012】トラップ15,16,17を図2及び図3
に示す。トラップのケーシングは、ステンレス製薄板を
円筒状に成形した上本体21と、同じくステンレス製薄
板を略半球状に成形した下本体22を、それぞれ合せ面
で溶接して形成される。上本体21の上部側面に、ガス
と凝縮水の混合流を導入する入口24が取り付けられ
る。上本体21の入口24と同軸上に、ガスの出口31
が取り付けられる。入口24と出口31の弁室23側端
部にはそれぞれ気水分離部としての円板状の気水分離板
32,33が取り付けられる。 【0013】ケーシングの内部に弁室23が形成され、
弁室23内に球形密閉フロート26が自由状態で配され
る。下本体22には、フロート26が降下した場合に着
座するためのフロート座25が設けられる。フロート座
25は、フロート26の浮上降下によって開閉される弁
口27の中心軸と平行に且つ平行方向を長手にして2条
に弁室23の内部に向かって凸状に形成される。下本体
22のフロート座25と対向する位置には、弁口27と
排水口28を設けた弁座部材29を、下本体22に取り
付けるための取付け部としての貫通孔30が設けられ
る。 【0014】入口24から弁室23内に流入するガスと
凝縮水の混合流は、入口側の気水分離板32にまず衝突
して第1段の気水分離が行われ、質量の大きな凝縮水は
下方に滴下し、一方質量の小さいガスは滴下することな
く出口31側の気水分離板33に再度衝突して第2段の
気水分離が行われる。2段階の気水分離によって凝縮水
の分離されたガスは出口31から排気される。 【0015】下方に滴下した液体は弁室23内に溜り、
その液位が徐々に上昇してフロート26をその浮力によ
って上昇させ(図2において破線で示す位置)、フロー
ト座25と弁口27から離座させることにより、弁室2
3内の凝縮水が排水口28から排水される。凝縮水が排
水されて弁室23内の液位が低下すると、フロート26
が降下してフロート座25と弁口27上に着座し、ガス
の排水口28からの漏出が防止される。 【0016】トラップ15の排水口28から排水される
凝縮水Dは凝縮水排水路34を介して、トラップ16の
排水口28から排水される凝縮水Dは凝縮水排水路35
を介して、トラップ17の排水口28から排水される凝
縮水Dは凝縮水排水路36を介して、原料水供給路9の
原料水Y流に合流される。トラップ16の出口31から
は凝縮水の排除されたオフガスgが排気されるので、燃
焼部10の燃焼効率を高めることができる。トラップ1
6の排水口28から排水される凝縮水Dは原料水Y流に
合流されて再利用されるので、燃料電池発電システムの
運転効率を高めることができる。トラップ15とトラッ
プ17の排水口28から排水される凝縮水Dはシステム
外に排水してもよいが、原料水Y流に合流させることに
より、再利用することができる。トラップ15の出口3
1からは凝縮水の排除された改質ガスGが排気されるの
で、電解質型燃料電池1の発電効率を高めることができ
る。 【0017】 【発明の効果】上記のように本発明によれば、オフガス
流から凝縮水を排水して凝縮水の排除されたオフガスを
燃焼部に供給することにより、燃焼部の燃焼効率を高め
ることができ、また、オフガス流から分離された凝縮水
を原料水供給路に合流させて再利用することにより、燃
料電池発電システムの運転効率を高めることができると
いう優れた効果を生じる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment and countermeasure for condensed water generated in a fuel cell power generation system including a reformer and an electrolyte fuel cell. Related to the fuel cell power generation system performed. 2. Description of the Related Art A conventional fuel cell power generation system is disclosed, for example, in Japanese Patent Application Laid-Open No. 2001-155748. FIG. 4 shows the fuel cell power generation system disclosed herein. The solid polymer electrolyte fuel cell 1 includes an oxidizer electrode 2 and a fuel electrode 3 with a solid polymer electrolyte membrane interposed therebetween. Oxidizer electrode 2
For example, air is supplied as the oxidant gas A through the oxidant supply path 4. When the supplied air flows downstream through a predetermined passage in contact with the oxidant electrode 2, a necessary amount of oxygen in the air undergoes an electrode reaction and is consumed, and the remaining gas a passes through the remaining gas discharge passage 5. It is discharged outside. [0003] The upstream side of the fuel electrode 3 is connected to a reformer 7 via a reformed gas supply path 6. The reformer 7 is supplied with a fuel gas X such as natural gas through a fuel gas supply passage 8 and a raw water Y required for a steam reforming reaction through a raw water supply passage 9. The reformer 7 includes a combustion unit 10 for heating itself. The raw fuel gas F is supplied to the combustion unit 10 through a raw fuel gas supply path 11. When the raw fuel gas F is burned in the combustion section 10, a steam reforming reaction between the fuel gas X and the raw water Y occurs in the reformer 7, and a hydrogen-rich reformed gas G is generated. The reformed gas G generated by the reformer 7 is supplied to the fuel electrode 3 via the reformed gas supply passage 6 and flows downstream through a predetermined passage in contact with the fuel electrode 3 when the reformed gas G is generated. The required amount of hydrogen in the electrode reacts and is consumed, and the remaining off-gas g is combined with the raw fuel gas F flow in the raw fuel gas supply path 11 via the off-gas discharge path 12. Although not disclosed in the above-mentioned prior art publication, a heat exchanger for lowering the temperature of the reformed gas G is disposed in the reformed gas supply passage 6. The heat exchanger lowers the temperature of the reformed gas from the high operating temperature of the reformer 4 to the low operating temperature of the electrolyte fuel cell 1. In the above conventional fuel cell power generation system, condensed water is supplied to the combustion section together with off-gas. Therefore, there is a problem that the combustion efficiency of the combustion section is low. Therefore, a technical problem of the present invention is to provide a fuel cell power generation system in which the combustion efficiency of a combustion section is increased. [0007] The technical means of the present invention taken to solve the above-mentioned technical problems is to provide a reformer for generating a reformed gas from a fuel gas, and a steam reforming reaction. Water supply path for supplying raw water necessary for the reformer to the reformer, a combustion section for heating the reformer using raw fuel gas supplied through the raw fuel gas supply path, a fuel electrode and an oxidizer An electrolyte type fuel cell in which an electrolyte membrane is sandwiched between a pair of electrodes composed of electrodes, and generates electricity using a reformed gas supplied to a fuel electrode and an oxidizing gas supplied to an oxidizing electrode, and an electrolyte. Exhaust gas that joins the off-gas discharged from the fuel electrode of the fuel cell to the raw fuel gas supply path, a trap that is arranged in the off-gas discharge path and drains condensed water from the off-gas stream, and condensed water that is drained from the trap Into the feed water supply channel A fuel cell power generation system comprising: a drainage drainage channel; DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an off-gas discharge passage for combining an off-gas discharged from a fuel electrode of an electrolyte fuel cell with a raw fuel gas supplied to a combustion section, and condensed water from the off-gas stream. It has a trap to drain. Therefore, off-gas from which condensed water has been removed by the trap is supplied to the combustion section, and the combustion efficiency of the combustion section is increased. Further, in the present invention, the condensed water discharged from the trap is joined to a raw water supply passage for supplying raw water necessary for the steam reforming reaction to the reformer. Therefore, the condensed water separated from the off-gas stream is reused as raw water necessary for the steam reforming reaction, and the operation efficiency of the fuel cell power generation system is improved. An embodiment showing a specific example of the above technical means will be described with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing a configuration of a fuel cell power generation system according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the trap of FIG. 1, and FIG. 3 is a cross-sectional view of FIG. In FIG. 1, the same components as those of the prior art shown in FIG. 4 are denoted by the same reference numerals, and detailed description will be omitted. The temperature of the reformed gas G is supplied to a reformed gas supply path 6 for supplying the reformed gas G from the reformer 7 to the fuel electrode 3 of the electrolyte fuel cell 1. A heat exchanger 13 is provided for cooling from 700 ° C. to about 80 ° C., which is the operating temperature of the electrolyte fuel cell 1. The heat exchanger 13
This is a water heat exchanger that cools the reformed gas G with the cooling water W. A trap 15 for discharging condensed water D from the reformed gas G flow is disposed on the reformed gas outlet 14 side of the heat exchanger 13. A trap 16 for draining condensed water D from the off-gas g flow is disposed in the off-gas discharge path 12. A trap 17 for draining condensed water D from the remaining gas a stream is provided in the remaining gas discharge path 5. The traps 15, 16, 17 are float traps having a built-in steam-water separation unit. The traps 15, 16, and 17 are shown in FIGS.
Shown in The casing of the trap is formed by welding an upper body 21 made of a stainless steel thin plate into a cylindrical shape and a lower body 22 made of a stainless steel thin plate into a substantially hemispherical shape at the mating surfaces. An inlet 24 for introducing a mixed flow of gas and condensed water is attached to an upper side surface of the upper body 21. The gas outlet 31 is coaxial with the inlet 24 of the upper body 21.
Is attached. Disc-shaped water / water separation plates 32 and 33 as a water / water separation unit are respectively attached to the inlet 24 and the outlet 31 on the valve chamber 23 end. A valve chamber 23 is formed inside the casing,
A spherical closed float 26 is arranged in the valve chamber 23 in a free state. The lower body 22 is provided with a float seat 25 for sitting when the float 26 descends. The float seat 25 is formed in two protruding shapes toward the inside of the valve chamber 23 in parallel with the central axis of the valve port 27 which is opened and closed by the floating movement of the float 26 and extending in the parallel direction. At a position facing the float seat 25 of the lower main body 22, a through hole 30 is provided as a mounting portion for mounting a valve seat member 29 provided with a valve port 27 and a drain port 28 to the lower main body 22. The mixed flow of the gas and the condensed water flowing into the valve chamber 23 from the inlet 24 first collides with the steam-water separating plate 32 on the inlet side to perform the first-stage steam-water separation. The water drops downward, while the gas having a small mass does not drop, but again collides with the steam-water separator 33 on the outlet 31 side to perform the second-stage steam-water separation. The gas separated from the condensed water by the two-stage steam-water separation is exhausted from the outlet 31. The liquid that has dropped downward accumulates in the valve chamber 23,
The liquid level gradually rises to raise the float 26 by its buoyancy (the position shown by the broken line in FIG. 2), and the float 26 is separated from the float seat 25 and the valve port 27 to thereby provide the valve chamber 2
The condensed water in 3 is drained from the drain 28. When the condensed water is drained and the liquid level in the valve chamber 23 drops, the float 26
Descends and sits on the float seat 25 and the valve port 27, thereby preventing gas from leaking from the drain port 28. The condensed water D drained from the drain port 28 of the trap 15 passes through a condensed water drain channel 34, and the condensed water D drained from the drain port 28 of the trap 16 is condensed water drain channel 35.
, The condensed water D drained from the drain port 28 of the trap 17 is joined to the raw water Y flow in the raw water supply passage 9 via the condensed water drain passage 36. Since the off gas g from which the condensed water has been removed is exhausted from the outlet 31 of the trap 16, the combustion efficiency of the combustion unit 10 can be increased. Trap 1
Since the condensed water D drained from the drain port 28 of No. 6 is combined with the raw material water Y and reused, the operation efficiency of the fuel cell power generation system can be improved. The condensed water D drained from the drain ports 28 of the traps 15 and 17 may be drained out of the system, but can be reused by being combined with the raw material water Y flow. Exit 3 of trap 15
Since the reformed gas G from which condensed water is removed is exhausted from the fuel cell 1, the power generation efficiency of the electrolyte fuel cell 1 can be increased. According to the present invention, as described above, the condensed water is drained from the off-gas stream, and the off-gas from which the condensed water has been removed is supplied to the combustion section, thereby improving the combustion efficiency of the combustion section. In addition, the condensed water separated from the off-gas stream is combined with the raw water supply path and reused, thereby providing an excellent effect that the operation efficiency of the fuel cell power generation system can be improved.

【図面の簡単な説明】 【図1】本発明の実施例の燃料電池発電システムの構成
を示す図である。 【図2】図1のトラップの断面図である。 【図3】図2のA−A断面図である。 【図4】従来の燃料電池発電システムの構成を示す図で
ある。 【符号の説明】 1 高分子電解質型燃料電池 2 酸化剤極 3 燃料極 4 酸化剤ガス供給路 5 残りのガス排出路 6 改質ガス供給路 7 改質器 8 燃料ガス供給路 9 原料水供給路 10 燃焼部 11 原燃料ガス供給路 12 オフガス排出路 13 熱交換器 14 改質ガス出口 15,16,17 トラップ 23 弁室 24 入口 25 フロート座 26 フロート 27 弁口 28 排水口 31 出口 32 気水分離板 33 気水分離板 34,35,36 凝縮水排水路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of a fuel cell power generation system according to an embodiment of the present invention. FIG. 2 is a sectional view of the trap of FIG. 1; FIG. 3 is a sectional view taken along line AA of FIG. 2; FIG. 4 is a diagram showing a configuration of a conventional fuel cell power generation system. [Description of Signs] 1 polymer electrolyte fuel cell 2 oxidant electrode 3 fuel electrode 4 oxidant gas supply path 5 remaining gas discharge path 6 reformed gas supply path 7 reformer 8 fuel gas supply path 9 feed water Passage 10 Combustion unit 11 Raw fuel gas supply passage 12 Off gas discharge passage 13 Heat exchanger 14 Reformed gas outlets 15, 16, 17 Trap 23 Valve chamber 24 Inlet 25 Float seat 26 Float 27 Valve outlet 28 Drain outlet 31 Exit 32 Steam Separation plate 33 Steam-water separation plates 34, 35, 36 Condensate drainage channel

Claims (1)

【特許請求の範囲】 【請求項1】 燃料ガスから改質ガスを生成する改質器
と、水蒸気改質反応に必要な原料水を改質器に供給する
原料水供給路と、原燃料ガス供給路を通して供給される
原燃料ガスを用いて改質器を加熱するための燃焼部と、
燃料極及び酸化剤極からなる一対の電極間に電解質膜を
挟持させてなり、燃料極に供給される改質ガスと酸化剤
極に供給される酸化剤ガスとを用いて発電を行う電解質
型燃料電池と、電解質型燃料電池の燃料極から排出され
るオフガスを原燃料ガス供給路に合流させるオフガス排
出路と、オフガス排出路に配され、オフガス流から凝縮
水を排水するトラップと、トラップから排水される凝縮
水を原料水供給路に合流させる凝縮水排水路とを備えた
ことを特徴とする燃料電池発電システム。
Claims: 1. A reformer for producing a reformed gas from a fuel gas, a raw water supply path for supplying raw water required for a steam reforming reaction to the reformer, and a raw fuel gas. A combustion unit for heating the reformer using the raw fuel gas supplied through the supply path,
An electrolyte type in which an electrolyte membrane is sandwiched between a pair of electrodes consisting of a fuel electrode and an oxidant electrode, and generates power using a reformed gas supplied to the fuel electrode and an oxidant gas supplied to the oxidant electrode. A fuel cell, an off-gas discharge path that joins the off-gas discharged from the fuel electrode of the electrolyte fuel cell to the raw fuel gas supply path, a trap that is disposed in the off-gas discharge path, and that drains condensed water from the off-gas flow; A fuel cell power generation system, comprising: a condensed water drainage passage for joining condensed water discharged to a raw water supply passage.
JP2001323928A 2001-10-22 2001-10-22 Fuel cell generating system Pending JP2003132918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323928A JP2003132918A (en) 2001-10-22 2001-10-22 Fuel cell generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323928A JP2003132918A (en) 2001-10-22 2001-10-22 Fuel cell generating system

Publications (1)

Publication Number Publication Date
JP2003132918A true JP2003132918A (en) 2003-05-09

Family

ID=19140743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323928A Pending JP2003132918A (en) 2001-10-22 2001-10-22 Fuel cell generating system

Country Status (1)

Country Link
JP (1) JP2003132918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187110A1 (en) * 2012-06-13 2013-12-19 日産自動車株式会社 Fuel cell system and method for controlling fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187110A1 (en) * 2012-06-13 2013-12-19 日産自動車株式会社 Fuel cell system and method for controlling fuel cell system
JP2013258061A (en) * 2012-06-13 2013-12-26 Nissan Motor Co Ltd Fuel cell system
CN104364953A (en) * 2012-06-13 2015-02-18 日产自动车株式会社 Fuel cell system and method for controlling fuel cell system

Similar Documents

Publication Publication Date Title
JP5017255B2 (en) Fuel cell stack
US8062807B2 (en) Fuel cell
JP4295847B2 (en) Polymer electrolyte fuel cell system
KR20080000674A (en) Fuel cell system
JP5804103B2 (en) Fuel cell system
JP2003142132A (en) Fuel cell system
JP2009064619A (en) Fuel cell system
JP2003132918A (en) Fuel cell generating system
JP4361232B2 (en) Fuel cell power generation system
JP2003059522A (en) Fuel cell power generation system
JP2003051326A (en) Fuel cell power generation system
JP2003051327A (en) Fuel cell power generation system
JP2009016151A (en) Drain recovery apparatus of fuel cell power generating device
JPH1167258A (en) Fuel cell
JP2012521070A (en) Fuel cell with purge manifold
JP3854117B2 (en) Fuel cell system
KR100864654B1 (en) Fuel tank structure of fuel cell
JP2006059549A (en) Fuel cell power generator
JP3561659B2 (en) Fuel cell system
JP2004171974A (en) Fuel cell system
JP2010160995A (en) Fuel cell system and fuel cell
JP2008251240A (en) Fuel cell system
JPH11233130A (en) Fuel cell power generating facility
JP2009026692A (en) Fuel cell system
JP4547868B2 (en) Solid polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603