JP2003051326A - Fuel cell power generation system - Google Patents
Fuel cell power generation systemInfo
- Publication number
- JP2003051326A JP2003051326A JP2001237044A JP2001237044A JP2003051326A JP 2003051326 A JP2003051326 A JP 2003051326A JP 2001237044 A JP2001237044 A JP 2001237044A JP 2001237044 A JP2001237044 A JP 2001237044A JP 2003051326 A JP2003051326 A JP 2003051326A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- reformed gas
- gas
- power generation
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、改質器と電解質型
燃料電池を備えた燃料電池発電システムにおいて、シス
テム内に発生する凝縮水の処置・対策を行った燃料電池
発電システムに関する。
【0002】
【従来の技術】従来の燃料電池発電システムは、例えば
特開2001−155748号公報に示されている。こ
こに開示の燃料電池発電システムを図4に示す。固体高
分子電解質型燃料電池1は、固体高分子電解質膜を挟ん
だ酸化剤極2及び燃料極3から構成される。酸化剤極2
には酸化剤供給路4を通して酸化剤ガスAとして例えば
空気が供給される。供給された空気は、酸化剤極2と接
する所定の通路を下流側へ流れるときに、空気中の酸素
が必要量だけ電極反応して消費され、残りのガスaは残
りのガス排出路5を通して外部へ排出される。
【0003】燃料極3の上流側は、改質ガス供給路6を
介して改質器7に連通される。改質器7には燃料ガス供
給路8を通して天然ガス等の燃料ガスX及び原料水供給
路9を通して水蒸気改質反応に必要な原料水Yが供給さ
れる。改質器7は、自身を加熱するための燃焼部10を
備え、燃焼部10には原燃料ガス供給路11を通して原
燃料ガスFが供給される。
【0004】燃焼部10で原燃料ガスFを燃焼させる
と、改質器7で燃料ガスXと原料水Yとの水蒸気改質反
応が起こり、水素リッチな改質ガスGが生成する。改質
器7で生成された改質ガスGは、改質ガス供給路6を介
して燃料極3に供給され、燃料極3と接する所定の通路
を下流側へ流れるときに、改質ガスG中の水素が必要量
だけ電極反応して消費され、残りのオフガスgはオフガ
ス排出路12を介して原燃料ガス供給路11の原燃料ガ
スF流に合流される。
【0005】上記従来技術の公報には開示されていない
が、改質ガス供給路6には改質ガスGの温度を下げるた
めの熱交換器が配される。熱交換器は、改質ガスの温度
を改質器4の高温の作動温度から電解質型燃料電池1の
低温の作動温度に低下させるものである。
【0006】
【発明が解決しようとする課題】上記従来の燃料電池発
電システムでは、改質ガスと共に凝縮水が電解質型燃料
電池の燃料極に供給されてしまう。そのため、電解質型
燃料電池の発電効率が低いという問題があった。従っ
て、本発明の技術的課題は、電解質型燃料電池の発電効
率を高めた燃料電池発電システムを提供することであ
る。
【0007】
【課題を解決するための手段】上記の技術的課題を解決
するために講じた本発明の技術的手段は、燃料ガスから
改質ガスを生成する改質器と、燃料極及び酸化剤極から
なる一対の電極間に電解質膜を挟持させてなり、燃料極
に供給される改質ガスと酸化剤極に供給される酸化剤ガ
スとを用いて発電を行う電解質型燃料電池と、改質器か
ら電解質型燃料電池の燃料極に改質ガスを供給する改質
ガス供給路に配され、改質ガスを冷却する熱交換器と、
熱交換器の改質ガス出口側に配され、改質ガス流から凝
縮水を排水するトラップとを備えたことを特徴とする燃
料電池発電システムにある。
【0008】
【発明の実施の形態】本発明は、改質器から電解質型燃
料電池の燃料極に改質ガスを供給する改質ガス供給路に
配されて改質ガスを冷却する熱交換器の改質ガス出口側
に、改質ガス流から凝縮水を排水するトラップを配した
ものである。そのため、電解質型燃料電池の燃料極には
トラップによって凝縮水の排除された改質ガスが供給さ
れ、電解質型燃料電池の発電効率が高められる。
【0009】
【実施例】上記の技術的手段の具体例を示す実施例を図
1乃至図3を参照して説明する。図1は本発明の実施例
の燃料電池発電システムの構成を示す図であり、図2は
図1のトラップの断面図であり、図3は図2のA−A断
面図である。なお、図1において、図4で示した従来技
術と同一の構成要素には同一の参照符号を付して詳細な
説明を省略する。
【0010】改質器7から電解質型燃料電池1の燃料極
3に改質ガスGを供給する改質ガス供給路6に、改質ガ
スGの温度を改質器7の作動温度である約700度Cか
ら電解質型燃料電池1の作動温度である約80度Cに冷
却するため熱交換器13が配される。熱交換器13は、
改質ガスGを冷却水Wで冷却する水熱交換器である。
【0011】熱交換器13の改質ガス出口14側に、改
質ガスG流から凝縮水Dを排水するトラップ15が配さ
れる。オフガス排出路12に、オフガスg流から凝縮水
Dを排水するトラップ16が配される。残りのガス排出
路5に、残りのガスa流から凝縮水Dを排水するトラッ
プ17が配される。トラップ15,16,17は気水分
離部を内蔵したフロート式トラップである。
【0012】トラップ15,16,17を図2及び図3
に示す。トラップのケーシングは、ステンレス製薄板を
円筒状に成形した上本体21と、同じくステンレス製薄
板を略半球状に成形した下本体22を、それぞれ合せ面
で溶接して形成される。上本体21の上部側面に、ガス
と凝縮水の混合流を導入する入口24が取り付けられ
る。上本体21の入口24と同軸上に、ガスの出口31
が取り付けられる。入口24と出口31の弁室23側端
部にはそれぞれ気水分離部としての円板状の気水分離板
32,33が取り付けられる。
【0013】ケーシングの内部に弁室23が形成され、
弁室23内に球形密閉フロート26が自由状態で配され
る。下本体22には、フロート26が降下した場合に着
座するためのフロート座25が設けられる。フロート座
25は、フロート26の浮上降下によって開閉される弁
口27の中心軸と平行に且つ平行方向を長手にして2条
に弁室23の内部に向かって凸状に形成される。下本体
22のフロート座25と対向する位置には、弁口27と
排水口28を設けた弁座部材29を、下本体22に取り
付けるための取付け部としての貫通孔30が設けられ
る。
【0014】入口24から弁室23内に流入するガスと
凝縮水の混合流は、入口側の気水分離板32にまず衝突
して第1段の気水分離が行われ、質量の大きな凝縮水は
下方に滴下し、一方質量の小さいガスは滴下することな
く出口31側の気水分離板33に再度衝突して第2段の
気水分離が行われる。2段階の気水分離によって凝縮水
の分離されたガスは出口31から排気される。
【0015】下方に滴下した液体は弁室23内に溜り、
その液位が徐々に上昇してフロート26をその浮力によ
って上昇させ(図2において破線で示す位置)、フロー
ト座25と弁口27から離座させることにより、弁室2
3内の凝縮水が排水口28から排水される。凝縮水が排
水されて弁室23内の液位が低下すると、フロート26
が降下してフロート座25と弁口27上に着座し、ガス
の排水口28からの漏出が防止される。
【0016】トラップ15の排水口28から排水される
凝縮水Dは凝縮水排水路34を介して、トラップ16の
排水口28から排水される凝縮水Dは凝縮水排水路35
を介して、トラップ17の排水口28から排水される凝
縮水Dは凝縮水排水路36を介して、原料水供給路9の
原料水Y流に合流される。凝縮水Dはシステム外に排水
してもよいが、原料水Y流に合流させることにより、再
利用することができる。トラップ15の出口31からは
凝縮水の排除された改質ガスGが排気されるので、電解
質型燃料電池1の発電効率を高めることができる。トラ
ップ16の出口31から排気されるオフガスgは排気し
てもよいが、原燃料ガスF流に合流させることにより、
再利用することができる。また、トラップ16の出口2
4からは凝縮水の排除されたオフガスgが排気されるの
で、燃焼部10の燃焼効率を高めることができる。
【0017】
【発明の効果】上記のように本発明によれば、改質ガス
流から凝縮水を排水して凝縮水の排除された改質ガスを
電解質型燃料電池の燃料極に供給することにより、電解
質型燃料電池の発電効率を高めることができ、高効率の
燃料電池発電システムを提供できるという優れた効果を
生じる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment and countermeasure for condensed water generated in a fuel cell power generation system including a reformer and an electrolyte fuel cell. Related to the fuel cell power generation system performed. 2. Description of the Related Art A conventional fuel cell power generation system is disclosed, for example, in Japanese Patent Application Laid-Open No. 2001-155748. FIG. 4 shows the fuel cell power generation system disclosed herein. The solid polymer electrolyte fuel cell 1 includes an oxidizer electrode 2 and a fuel electrode 3 with a solid polymer electrolyte membrane interposed therebetween. Oxidizer electrode 2
For example, air is supplied as the oxidant gas A through the oxidant supply path 4. When the supplied air flows downstream through a predetermined passage in contact with the oxidant electrode 2, a necessary amount of oxygen in the air undergoes an electrode reaction and is consumed, and the remaining gas a passes through the remaining gas discharge passage 5. It is discharged outside. [0003] The upstream side of the fuel electrode 3 is connected to a reformer 7 via a reformed gas supply path 6. The reformer 7 is supplied with a fuel gas X such as natural gas through a fuel gas supply passage 8 and a raw water Y required for a steam reforming reaction through a raw water supply passage 9. The reformer 7 includes a combustion unit 10 for heating itself. The raw fuel gas F is supplied to the combustion unit 10 through a raw fuel gas supply path 11. When the raw fuel gas F is burned in the combustion section 10, a steam reforming reaction between the fuel gas X and the raw water Y occurs in the reformer 7, and a hydrogen-rich reformed gas G is generated. The reformed gas G generated by the reformer 7 is supplied to the fuel electrode 3 via the reformed gas supply passage 6 and flows downstream through a predetermined passage in contact with the fuel electrode 3 when the reformed gas G is generated. The required amount of hydrogen in the electrode reacts and is consumed, and the remaining off-gas g is combined with the raw fuel gas F flow in the raw fuel gas supply path 11 via the off-gas discharge path 12. Although not disclosed in the above-mentioned prior art publication, a heat exchanger for lowering the temperature of the reformed gas G is disposed in the reformed gas supply passage 6. The heat exchanger lowers the temperature of the reformed gas from the high operating temperature of the reformer 4 to the low operating temperature of the electrolyte fuel cell 1. In the above conventional fuel cell power generation system, condensed water is supplied to the fuel electrode of the electrolyte fuel cell together with the reformed gas. Therefore, there is a problem that the power generation efficiency of the electrolyte fuel cell is low. Therefore, a technical problem of the present invention is to provide a fuel cell power generation system with improved power generation efficiency of an electrolyte fuel cell. Means for Solving the Problems The technical means of the present invention taken to solve the above technical problem is a reformer for producing a reformed gas from a fuel gas, a fuel electrode and an oxidizer. An electrolyte type fuel cell in which an electrolyte membrane is sandwiched between a pair of electrodes composed of a cathode, and which generates power using a reformed gas supplied to a fuel electrode and an oxidant gas supplied to an oxidant electrode, A heat exchanger that is arranged in a reformed gas supply path that supplies the reformed gas from the reformer to the fuel electrode of the electrolyte fuel cell and cools the reformed gas;
A fuel cell power generation system, comprising: a trap disposed on a reformed gas outlet side of a heat exchanger to drain condensed water from a reformed gas stream. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger for cooling a reformed gas which is disposed in a reformed gas supply path for supplying the reformed gas from a reformer to a fuel electrode of an electrolyte fuel cell. A trap for draining condensed water from the reformed gas stream is disposed on the reformed gas outlet side of the apparatus. Therefore, the reformed gas from which the condensed water is removed by the trap is supplied to the fuel electrode of the electrolyte fuel cell, and the power generation efficiency of the electrolyte fuel cell is increased. An embodiment showing a specific example of the above technical means will be described with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing a configuration of a fuel cell power generation system according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the trap of FIG. 1, and FIG. 3 is a cross-sectional view of FIG. In FIG. 1, the same components as those of the prior art shown in FIG. 4 are denoted by the same reference numerals, and detailed description will be omitted. The temperature of the reformed gas G is supplied to a reformed gas supply path 6 for supplying the reformed gas G from the reformer 7 to the fuel electrode 3 of the electrolyte fuel cell 1. A heat exchanger 13 is provided for cooling from 700 ° C. to about 80 ° C., which is the operating temperature of the electrolyte fuel cell 1. The heat exchanger 13
This is a water heat exchanger that cools the reformed gas G with the cooling water W. A trap 15 for discharging condensed water D from the reformed gas G flow is disposed on the reformed gas outlet 14 side of the heat exchanger 13. A trap 16 for draining condensed water D from the off-gas g flow is disposed in the off-gas discharge path 12. A trap 17 for draining condensed water D from the remaining gas a stream is provided in the remaining gas discharge path 5. The traps 15, 16, 17 are float traps having a built-in steam-water separation unit. The traps 15, 16, and 17 are shown in FIGS.
Shown in The casing of the trap is formed by welding an upper body 21 made of a stainless steel thin plate into a cylindrical shape and a lower body 22 made of a stainless steel thin plate into a substantially hemispherical shape at the mating surfaces. An inlet 24 for introducing a mixed flow of gas and condensed water is attached to an upper side surface of the upper body 21. The gas outlet 31 is coaxial with the inlet 24 of the upper body 21.
Is attached. Disc-shaped water / water separation plates 32 and 33 as a water / water separation unit are respectively attached to the inlet 24 and the outlet 31 on the valve chamber 23 end. A valve chamber 23 is formed inside the casing,
A spherical closed float 26 is arranged in the valve chamber 23 in a free state. The lower body 22 is provided with a float seat 25 for sitting when the float 26 descends. The float seat 25 is formed in two protruding shapes toward the inside of the valve chamber 23 in parallel with the central axis of the valve port 27 which is opened and closed by the floating movement of the float 26 and extending in the parallel direction. At a position facing the float seat 25 of the lower main body 22, a through hole 30 is provided as a mounting portion for mounting a valve seat member 29 provided with a valve port 27 and a drain port 28 to the lower main body 22. The mixed flow of the gas and the condensed water flowing into the valve chamber 23 from the inlet 24 first collides with the steam-water separating plate 32 on the inlet side to perform the first-stage steam-water separation. The water drops downward, while the gas having a small mass does not drop, but again collides with the steam-water separator 33 on the outlet 31 side to perform the second-stage steam-water separation. The gas separated from the condensed water by the two-stage steam-water separation is exhausted from the outlet 31. The liquid that has dropped downward accumulates in the valve chamber 23,
The liquid level gradually rises to raise the float 26 by its buoyancy (the position shown by the broken line in FIG. 2), and the float 26 is separated from the float seat 25 and the valve port 27 to thereby provide the valve chamber 2
The condensed water in 3 is drained from the drain 28. When the condensed water is drained and the liquid level in the valve chamber 23 drops, the float 26
Descends and sits on the float seat 25 and the valve port 27, thereby preventing gas from leaking from the drain port 28. The condensed water D drained from the drain port 28 of the trap 15 passes through a condensed water drain channel 34, and the condensed water D drained from the drain port 28 of the trap 16 is condensed water drain channel 35.
, The condensed water D drained from the drain port 28 of the trap 17 is joined to the raw water Y flow in the raw water supply passage 9 via the condensed water drain passage 36. The condensed water D may be drained out of the system, but can be reused by joining the raw water Y. Since the reformed gas G from which the condensed water has been removed is exhausted from the outlet 31 of the trap 15, the power generation efficiency of the electrolyte fuel cell 1 can be increased. The off-gas g exhausted from the outlet 31 of the trap 16 may be exhausted, but by being combined with the raw fuel gas F flow,
Can be reused. Also, the exit 2 of the trap 16
Since the off gas g from which the condensed water is removed is exhausted from 4, the combustion efficiency of the combustion unit 10 can be increased. As described above, according to the present invention, the condensed water is drained from the reformed gas stream, and the reformed gas from which the condensed water is removed is supplied to the fuel electrode of the electrolyte fuel cell. As a result, the power generation efficiency of the electrolyte fuel cell can be increased, and an excellent effect that a highly efficient fuel cell power generation system can be provided is obtained.
【図面の簡単な説明】
【図1】本発明の実施例の燃料電池発電システムの構成
を示す図である。
【図2】図1のトラップの断面図である。
【図3】図2のA−A断面図である。
【図4】従来の燃料電池発電システムの構成を示す図で
ある。
【符号の説明】
1 高分子電解質型燃料電池
2 酸化剤極
3 燃料極
4 酸化剤ガス供給路
5 残りのガス排出路
6 改質ガス供給路
7 改質器
8 燃料ガス供給路
9 原料水供給路
10 燃焼部
11 原燃料ガス供給路
12 オフガス排出路
13 熱交換器
14 改質ガス出口
15,16,17 トラップ
23 弁室
24 入口
25 フロート座
26 フロート
27 弁口
28 排水口
31 出口
32 気水分離板
33 気水分離板
34,35,36 凝縮水排水路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of a fuel cell power generation system according to an embodiment of the present invention. FIG. 2 is a sectional view of the trap of FIG. 1; FIG. 3 is a sectional view taken along line AA of FIG. 2; FIG. 4 is a diagram showing a configuration of a conventional fuel cell power generation system. [Description of Signs] 1 polymer electrolyte fuel cell 2 oxidant electrode 3 fuel electrode 4 oxidant gas supply path 5 remaining gas discharge path 6 reformed gas supply path 7 reformer 8 fuel gas supply path 9 feed water Passage 10 Combustion unit 11 Raw fuel gas supply passage 12 Off gas discharge passage 13 Heat exchanger 14 Reformed gas outlets 15, 16, 17 Trap 23 Valve chamber 24 Inlet 25 Float seat 26 Float 27 Valve outlet 28 Drain outlet 31 Exit 32 Steam Separation plate 33 Steam-water separation plates 34, 35, 36 Condensate drainage channel
Claims (1)
と、燃料極及び酸化剤極からなる一対の電極間に電解質
膜を挟持させてなり、燃料極に供給される改質ガスと酸
化剤極に供給される酸化剤ガスとを用いて発電を行う電
解質型燃料電池と、改質器から電解質型燃料電池の燃料
極に改質ガスを供給する改質ガス供給路に配され、改質
ガスを冷却する熱交換器と、熱交換器の改質ガス出口側
に配され、改質ガス流から凝縮水を排水するトラップと
を備えたことを特徴とする燃料電池発電システム。Claims: 1. A reformer for producing a reformed gas from a fuel gas, and an electrolyte membrane sandwiched between a pair of electrodes comprising a fuel electrode and an oxidant electrode, and supplied to the fuel electrode. Fuel cell that generates power using the reformed gas supplied and the oxidant gas supplied to the oxidant electrode, and the reformed gas that supplies the reformed gas from the reformer to the fuel electrode of the electrolyte fuel cell A heat exchanger for cooling the reformed gas disposed in the supply path; and a trap disposed on the reformed gas outlet side of the heat exchanger for draining condensed water from the reformed gas stream. Fuel cell power generation system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001237044A JP2003051326A (en) | 2001-08-03 | 2001-08-03 | Fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001237044A JP2003051326A (en) | 2001-08-03 | 2001-08-03 | Fuel cell power generation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003051326A true JP2003051326A (en) | 2003-02-21 |
Family
ID=19068191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001237044A Pending JP2003051326A (en) | 2001-08-03 | 2001-08-03 | Fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003051326A (en) |
-
2001
- 2001-08-03 JP JP2001237044A patent/JP2003051326A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2435104A1 (en) | Gas generation system | |
JP2007052948A (en) | Fuel cell system | |
WO2006126704A2 (en) | Fuel cell system and method of operating the fuel cell system | |
US10320016B2 (en) | High-temperature fuel cell system | |
KR20080000674A (en) | Fuel cell system | |
JP5804103B2 (en) | Fuel cell system | |
US8404394B2 (en) | Fuel cell system and method of operating the fuel cell system | |
CN100533829C (en) | Fuel cell system | |
JP5055808B2 (en) | Fuel cell system | |
JP2009064619A (en) | Fuel cell system | |
JP2003051326A (en) | Fuel cell power generation system | |
JP2003132918A (en) | Fuel cell generating system | |
JP2003059522A (en) | Fuel cell power generation system | |
JP2003051327A (en) | Fuel cell power generation system | |
JP2003132925A (en) | Fuel cell power generating system | |
US7514165B2 (en) | Fuel cell system fluid recovery | |
JP2009016151A (en) | Drain recovery apparatus of fuel cell power generating device | |
US20040197625A1 (en) | Method and apparatus for separating water from a fuel cell exhaust stream | |
JP4842616B2 (en) | Stacked fuel cell | |
JP2006059549A (en) | Fuel cell power generator | |
JP3561659B2 (en) | Fuel cell system | |
KR100864654B1 (en) | Fuel tank structure of fuel cell | |
JPH11233130A (en) | Fuel cell power generating facility | |
JP2002241108A (en) | Fuel reforming apparatus and fuel cell power generation apparatus | |
JP2008251240A (en) | Fuel cell system |