JP2003129196A - Grain-oriented silicon steel sheet with ultra-low core loss, and manufacturing method therefor - Google Patents

Grain-oriented silicon steel sheet with ultra-low core loss, and manufacturing method therefor

Info

Publication number
JP2003129196A
JP2003129196A JP2001322388A JP2001322388A JP2003129196A JP 2003129196 A JP2003129196 A JP 2003129196A JP 2001322388 A JP2001322388 A JP 2001322388A JP 2001322388 A JP2001322388 A JP 2001322388A JP 2003129196 A JP2003129196 A JP 2003129196A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
film
coating
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001322388A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001322388A priority Critical patent/JP2003129196A/en
Publication of JP2003129196A publication Critical patent/JP2003129196A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a grain-oriented silicon steel sheet with ultra-low core loss, having a ceramic tension film which has excellent adhesiveness and bending characteristics even after stress relief annealing at high temperature for a long time, and moreover does not cause degradation of the core loss worried in the stress relief annealing. SOLUTION: This silicon steel sheet has an extra-thin ceramic film consisting of crystallites having dominantly such orientations that a ratio of diffraction peak intensity (222)/(200) by X-ray diffraction can be 1.2 or higher, which is coated on the surface of the grain-oriented silicon steel sheet that has been finish-annealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、超低鉄損一方向
性珪素鋼板に関し、仕上焼鈍済みの珪素鋼板の表面にセ
ラミック被膜を被覆するに際し、特に被覆の密着性を効
果的に改善することによって、鉄損特性の一層の向上を
図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-low iron loss grain-oriented silicon steel sheet, and in coating the surface of a finish-annealed silicon steel sheet with a ceramic coating, in particular, effectively improving the adhesion of the coating. Therefore, the iron loss characteristics are further improved.

【0002】[0002]

【従来の技術】近年、方向性珪素鋼板の製造に際し、フ
ォルステライト下地被膜を有さない一方向性珪素鋼板
(以下、膜無し材と呼ぶ)の表面に、TiN,TiO2,Cr
N,TiC,Ti(C,N), Si3N4, SiO2, AlNおよびSi系(Si
−N−O−C)等の薄いセラミック張力被膜を被成する
ことによって、超低鉄損を得る製造方法が提案されてい
る。例えば、特開平11−131252号公報など参照。
2. Description of the Related Art In recent years, in the production of grain-oriented silicon steel sheet, TiN, TiO 2 , Cr, etc. have been formed on the surface of a grain-oriented silicon steel sheet having no forsterite undercoat (hereinafter referred to as a filmless material).
N, TiC, Ti (C, N), Si 3 N 4 , SiO 2 , AlN and Si (Si
-N-O-C) and other thin ceramic tension coatings have been proposed to produce ultra-low iron loss. See, for example, JP-A-11-131252.

【0003】かかる製造方法などにおける長年の懸案事
項は、高温長時間の歪取り焼鈍に耐え得る被膜密着性と
曲げ特性とを有し、しかも歪取り焼鈍時に懸念される鉄
損の劣化が全くなく超低鉄損を達成できるセラミック張
力被膜を効果的に被成することである。
[0003] A long-standing concern in such a manufacturing method is that the film has adhesiveness and bending property capable of withstanding strain relief annealing at high temperature for a long time, and there is no deterioration of iron loss which may occur during stress relief annealing. It is to effectively deposit a ceramic tension coating capable of achieving ultra-low iron loss.

【0004】上記懸案事項は、高温長時間の歪取り焼鈍
に耐え得る被膜の密着性と曲げ特性を有し、しかも歪取
り焼鈍時に懸念される鉄損の劣化が全く無く超低鉄損を
達成できる極薄のセラミック張力被膜を効果的に被成す
ることである。
The above-mentioned matters of concern have an adhesion and bending property of a coating capable of withstanding strain relief annealing at high temperature for a long time, and have achieved ultra-low iron loss without any deterioration of iron loss which may occur during strain relief annealing. Effectively depositing an ultra-thin ceramic tension coating that is possible.

【0005】すなわち、方向性珪素鋼板は、トランスや
電気機器の鉄心材料として供され、中でも巻鉄心トラン
ス材料として供された方向性珪素鋼板は、その需要家に
おいて巻鉄心として加工された後、該加工時に導入され
た歪みを除去するための、高温長時間の歪取り焼鈍が施
されるため、この歪取り焼鈍後にも優れた特性が維持さ
れることが肝要である。
That is, the grain-oriented silicon steel sheet is used as an iron core material of a transformer or an electric device, and the grain-oriented silicon steel sheet provided as a wound iron core transformer material is processed as a wound iron core by the customer and then Since strain relief annealing is performed at high temperature for a long time in order to remove the strain introduced at the time of processing, it is essential that excellent characteristics be maintained even after this strain relief annealing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、一方向
性珪素鋼板の膜無し材の表面に、薄いセラミック張力被
膜を被成した場合、特に高温の歪取り焼鈍後でも十分な
密着性を有するセラミック被膜を安定して得ることは極
めて難しかった。この主な理由は、被成したセラミック
被膜が、天然に存在するセラミックに比較して不安定で
あるため、高温の歪取焼鈍中に、被成したセラミック被
膜と一方向性珪素鋼板の膜無し材の表面との間に反応が
進行して、剥離が生じ易くなるためと考えられる。
However, when a thin ceramic tension coating is applied to the surface of the film-free material of the unidirectional silicon steel sheet, the ceramic coating has sufficient adhesion even after stress relief annealing at high temperature. It was extremely difficult to obtain stable. The main reason for this is that the deposited ceramic coating is more unstable than naturally occurring ceramics, so there is no coating between the deposited ceramic coating and the unidirectional silicon steel sheet during high temperature strain relief annealing. It is considered that the reaction progresses with the surface of the material and peeling easily occurs.

【0007】この発明は、上記の問題を有利に解決する
ものであり、たとえ高温長時間の歪取り焼鈍後であって
も優れた密着性と曲げ特性を有し、しかもかかる歪取り
焼鈍時に懸念される鉄損の劣化が全くないセラミック張
力被膜を有する超低鉄損一方向性珪素鋼板を、その有利
な製造方法と共に提案することを目的とする。
The present invention advantageously solves the above problems and has excellent adhesion and bending characteristics even after strain relief annealing at high temperature and for a long time, and there is a concern during such strain relief annealing. It is an object of the present invention to propose an ultra-low iron loss unidirectional silicon steel sheet having a ceramic tension coating which does not cause any deterioration of iron loss, together with its advantageous manufacturing method.

【0008】[0008]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく鋭意研究を重ねた結果、膜無し材上
に形成したセラミック被膜の密着性を向上するには、セ
ラミック被膜を膜無し材との整合性に優れるものとする
こと、そのためには極薄のセラミック被膜の構造を制御
することが重要であることを知見した。さらに、セラミ
ック被膜の構造を制御するに当り、セラミック被膜のX
線回折による(222 )/(200 )回折ピーク強度比が、
とりわけ膜無し材との整合性に優れる被膜を得るための
指針となることを見出し、この発明を完成するに到っ
た。
The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, in order to improve the adhesion of the ceramic coating formed on the filmless material, the ceramic coating should be improved. It was found that it is important to control the structure of the ultra-thin ceramic coating for achieving excellent compatibility with the filmless material. Further, in controlling the structure of the ceramic coating, the X of the ceramic coating is controlled.
The (222) / (200) diffraction peak intensity ratio by line diffraction is
In particular, they have found that they can be a guideline for obtaining a coating film having excellent compatibility with a filmless material, and have completed the present invention.

【0009】すなわち、この発明は、仕上げ焼鈍済の一
方向性珪素鋼板の表面に、X線回折による(222 )/
(200 )回折ピーク強度比が1.2 以上に優先配向した結
晶質に成る、極薄セラミック被膜を有することを特徴と
する超低鉄損一方向性珪素鋼板である。
That is, according to the invention, the surface of the finish-annealed unidirectional silicon steel sheet is (222) /
(200) An ultra-low iron loss unidirectional silicon steel sheet having an ultrathin ceramic coating which is crystalline with a preferential orientation of (200) diffraction peak intensity ratio of 1.2 or more.

【0010】また、この発明は、上記の極薄セラミック
被膜上に、非晶質薄膜、次いで絶縁被膜を積層して成る
ことを特徴とする超低鉄損一方向性珪素鋼板である。
Further, the present invention is an ultra-low iron loss unidirectional silicon steel sheet characterized in that an amorphous thin film and then an insulating coating are laminated on the above ultrathin ceramic coating.

【0011】上記の超低鉄損一方向性珪素鋼板は、仕上
げ焼鈍済の一方向性珪素鋼板の表面に、極薄セラミック
被膜を被成したのち、該極薄セラミック被膜上に非晶質
の薄膜を被成することを特徴とする一方向性珪素鋼板の
製造方法によって、有利に製造することができる。
The ultra-low iron loss unidirectional silicon steel sheet described above is obtained by forming an ultrathin ceramic coating on the surface of a finish annealed unidirectional silicon steel sheet, and then forming an amorphous film on the ultrathin ceramic coating. It can be advantageously manufactured by a method for manufacturing a unidirectional silicon steel sheet characterized by forming a thin film.

【0012】[0012]

【発明の実施の形態】まず、この発明を導くに到った実
験結果について、以下に詳しく述べる。C:0.076 mass
%、Si:3.35mass%、Mn:0.076 mass%、Se:0.020 ma
ss%、Sb:0.025 mass%、Al:0.021 mass%、N:0.00
70mass%およびMo:0.012 mass%を含有し、残部はFeお
よび不可避的不純物の組成になる珪素鋼連鋳スラブを、
1350℃、4時間の加熱処理後、熱間圧延を施して板厚:
2.0 mmの熱延板とした。この熱延板に1050℃、2分間の
均一化焼鈍を施した後、1050℃の中間焼鈍を挟む2回の
圧延を施して板厚:0.23mmの最終冷延板とした。
BEST MODE FOR CARRYING OUT THE INVENTION First, the experimental results leading to the present invention will be described in detail below. C: 0.076 mass
%, Si: 3.35 mass%, Mn: 0.076 mass%, Se: 0.020 ma
ss%, Sb: 0.025 mass%, Al: 0.021 mass%, N: 0.00
A silicon steel continuous casting slab containing 70 mass% and Mo: 0.012 mass% and the balance being Fe and inevitable impurities.
After heat treatment at 1350 ° C for 4 hours, hot rolling is applied to the sheet thickness:
A 2.0 mm hot rolled sheet was used. The hot-rolled sheet was subjected to homogenizing annealing at 1050 ° C. for 2 minutes and then rolled twice with intermediate annealing at 1050 ° C. to obtain a final cold-rolled sheet having a thickness of 0.23 mm.

【0013】次いで、 840℃の湿H2中で脱炭・1次再結
晶焼鈍を行った後、鋼板表面に MgO(20mass%), Al2O3(3
0mass%), Sr(OH)(10mass%), NiCl3(15mass%), CaSiO3(5
mass%),SiO2(20mass%) の組成になる焼鈍分離剤スラリ
−を塗布し、次いで 850℃で15時間の焼鈍後、 850℃か
ら12℃/hの速度で1100℃まで昇温してゴス方位に強く集
積した2次再結晶粒を発達させたのち、1200℃の乾H2
で純化処理を施してフォルステライト被膜を有さない珪
素鋼板(膜無し材)を製造した。
Then, after decarburizing and primary recrystallization annealing in wet H 2 at 840 ° C., MgO (20 mass%), Al 2 O 3 (3
0mass%), Sr (OH) (10mass%), NiCl 3 (15mass%), CaSiO 3 (5
mass%), SiO 2 (20mass%) composition, and then an annealing separator slurry is applied. Then, after annealing at 850 ℃ for 15 hours, the temperature is raised from 850 ℃ to 1100 ℃ at a rate of 12 ℃ / h. After developing the secondary recrystallized grains strongly integrated in the Goss orientation, a purification treatment was performed in dry H 2 at 1200 ° C. to produce a silicon steel sheet (film-less material) having no forsterite coating.

【0014】かくして得られた膜無し材の表面に、中空
陰極を用いたHollow Cathode Discharge(HCD )法、ア
ーク放電法、エレクトロンビームにRadio Frequency を
組み合わせた手法(EB+RF法)、エレクトロンビームに
HCD 法を組み合わせた手法(EB+HCD 法)、化学蒸着法
(熱CVD 法)、プラズマ化学蒸着法(プラズマCVD 法)
および直流マグネトロンスパッタの各手法を用いて、種
々の条件下にTiN による極薄セラミック被膜を0.1 μm
厚にて形成した。ここで、各膜無し材上に被成した極薄
セラミック被膜について、その薄膜X線による(222 )
/(200 )回折ピーク強度比を測定した。
On the surface of the film-free material thus obtained, a Hollow Cathode Discharge (HCD) method using a hollow cathode, an arc discharge method, a method of combining an electron beam with a Radio Frequency (EB + RF method), an electron beam is used.
Combined HCD method (EB + HCD method), chemical vapor deposition method (thermal CVD method), plasma chemical vapor deposition method (plasma CVD method)
And direct current magnetron sputter techniques to produce TiN ultra-thin ceramic coatings of 0.1 μm under various conditions.
It was formed to a thickness. Here, the ultra-thin ceramic coating formed on each film-free material is analyzed by thin-film X-ray (222)
The / (200) diffraction peak intensity ratio was measured.

【0015】その後、極薄セラミック被膜上にマグネト
ロン・スパッタ法を用いて、SiNxによる被膜を0.2 μm
厚で形成した。さらに、コロイダルシリカと燐酸塩を主
成分とする0.8 μm 厚の絶縁被膜を塗布、焼付けによっ
て形成した後、高温の歪取り焼鈍条件に相当する800 ℃
で3時間窒素中で焼鈍した。
Thereafter, a magnetron sputter method was used to form a SiNx coating on the ultrathin ceramic coating by 0.2 μm.
Formed thick. Furthermore, after forming an insulating coating of 0.8 μm thickness consisting mainly of colloidal silica and phosphate by baking, 800 ° C which is equivalent to high temperature strain relief annealing conditions.
Annealed in nitrogen for 3 hours.

【0016】かくして得られた方向性珪素鋼板の鉄損を
測定するとともに、被膜密着性について評価した。な
お、鉄損は膜無し材での鉄損値に対する低減度合いとし
て評価した。これらの評価結果をまとめて、図1に示
す。
The iron loss of the grain-oriented silicon steel sheet thus obtained was measured, and the coating adhesion was evaluated. The iron loss was evaluated as the degree of reduction with respect to the iron loss value of the filmless material. These evaluation results are summarized and shown in FIG.

【0017】図1から明らかなように、TiN セラミック
膜を薄膜X線による(222 )/(200 )回折ピーク強度
比が1.2 以上である、極薄セラミック被膜を有する場合
に、高温の歪取焼鈍後の一方向性珪素鋼板における、鉄
損の低減度合いが0.11W/kg以上になり、しかも被膜の密
着性も良好な製品が得られることがわかる。特に、(22
2 )/(200 )回折ピーク強度比が4以上になると、鉄
損の低減度合いが大幅に増加することも判明した。
As is clear from FIG. 1, when a TiN ceramic film has an ultrathin ceramic coating having a (222) / (200) diffraction peak intensity ratio by thin film X-ray of 1.2 or more, strain relief annealing at high temperature is carried out. It can be seen that in the subsequent unidirectional silicon steel sheet, the degree of reduction of iron loss was 0.11 W / kg or more, and a product with good coating adhesion was obtained. In particular, (22
It was also found that when the 2) / (200) diffraction peak intensity ratio is 4 or more, the degree of iron loss reduction increases significantly.

【0018】ここで、薄膜X線による(222 )/(200
)回折ピーク強度比の典型的な事例について、図2に
示す。すなわち、図2に、HCD 法およびアーク放電法を
用いて作製したTiN による極薄セラミック被膜について
の、薄膜X線による回折結果を示すように、HCD 法によ
るセラミック被膜とアーク放電法によるセラミック被膜
との(222 )/(200 )回折ピーク強度比は全く異なる
ことがわかる。
Here, (222) / (200
) A typical case of the diffraction peak intensity ratio is shown in FIG. That is, Fig. 2 shows the diffraction results by thin film X-rays of the ultra-thin ceramic coating made of TiN produced by the HCD method and the arc discharge method. It can be seen that the (222) / (200) diffraction peak intensity ratios of are completely different.

【0019】なお、(222 )/(200 )回折ピーク強度
比と鉄損との関係は、明確に解明されたわけではない
が、極薄セラミック被膜が珪素鋼板マトリックスと整合
が良い場合は、該極薄セラミック被膜が膜無し材上でエ
ピタキシャル成長して(222 )/(200 )回折ピーク強
度比が高くなって、密着性が良くなる結果、鉄損に好影
響を与えるためと考えられる。
Although the relationship between the (222) / (200) diffraction peak intensity ratio and the iron loss has not been clarified, if the ultrathin ceramic coating has a good match with the silicon steel sheet matrix, the It is considered that the thin ceramic film epitaxially grows on the film-less material, the (222) / (200) diffraction peak intensity ratio becomes high, and the adhesion becomes good, resulting in a favorable effect on iron loss.

【0020】ところで、TiN のJCPDS (International
Centre for Diffraction Data No.38−1420)では、Ti
N の(222 )の回折ピーク強度は、Int.:72であり、Ti
N の(200 )の回折ピーク強度は、Int.:100 である。
従って、(222 )/(200 )回折ピーク強度比は0.72と
なり、この発明で規定する1.2 未満であるのが通例であ
る。従って、(222 )/(200 )回折ピーク強度比を1.
2 以上に上昇させるには、極薄セラミック被膜を形成す
る手法を選択した上で、適宜の条件で処理を行う必要が
ある。
By the way, JCPDS (International
Center for Diffraction Data No. 38-1420), Ti
The diffraction peak intensity of N (222) is Int .: 72,
The (200) diffraction peak intensity of N is Int.:100.
Therefore, the (222) / (200) diffraction peak intensity ratio is 0.72, which is usually less than 1.2 specified in the present invention. Therefore, the (222) / (200) diffraction peak intensity ratio is 1.
In order to raise it to 2 or more, it is necessary to select a method for forming an ultrathin ceramic coating and then perform the treatment under appropriate conditions.

【0021】例えば、図1に示したように、(222 )/
(200 )回折ピーク強度比を1.2 以上にするには、HCD
法、EB+HCD 法、プラズマCVD 法および熱CVD を用い
て、適宜の条件に従って処理を行うことが有利である。
特に、(222 )/(200 )回折ピーク強度比を4以上の
範囲とするには、HCD 法、中でも高バイアス電圧を付与
するHCD 法によって被膜形成を行うことが好ましい。
For example, as shown in FIG. 1, (222) /
To increase the (200) diffraction peak intensity ratio to 1.2 or higher, use HCD
Method, EB + HCD method, plasma CVD method and thermal CVD method, it is advantageous to perform the treatment under appropriate conditions.
In particular, in order to set the (222) / (200) diffraction peak intensity ratio to a range of 4 or more, it is preferable to form the film by the HCD method, especially the HCD method which gives a high bias voltage.

【0022】次に、上記の極薄セラミック被膜の上に形
成する第2層の被膜について行った実験結果について、
詳しく説明する。まず、磁区細分化処理を施した一方向
性珪素鋼板の膜無し材に、HCD 法を用いてTiN による極
薄セラミック被膜を0.1 μm 厚で形成した。この極薄セ
ラミック被膜の(222 )/(200 )回折ピーク強度比は
4.8 であった。この極薄セラミック被膜上に、マグネト
ロン・スパッタ法を用いて、(1)SiNx および(2)AlNによ
る被膜を0.2 μm 厚にて、またHCD 法を用いて、(3)Cr
N、(4)TiO2 、(5)TiAlO2 、(6)MnCoNiNおよび(7)CrAlSi
Nによる被膜を0.1 〜0.15μm の厚さにて、それぞれ被
成し、さらにその上に、コロイダルシリカおよび燐酸塩
を主成分とする絶縁被膜を0.8 μm 厚で塗布、焼付した
後、800 ℃で3時間窒素中で焼鈍した。 かくして得られ
た膜付きの方向性珪素鋼板について、磁気特性および被
膜密着性を調査した結果を表1に示す。
Next, the results of experiments conducted on the second layer coating formed on the ultrathin ceramic coating described above,
explain in detail. First, an ultra-thin ceramic coating of TiN was formed to a thickness of 0.1 μm on the filmless material of unidirectional silicon steel sheet that had been subjected to magnetic domain refinement treatment, using the HCD method. The (222) / (200) diffraction peak intensity ratio of this ultra-thin ceramic coating is
It was 4.8. On this ultrathin ceramic coating, a coating of (1) SiNx and (2) AlN is formed to a thickness of 0.2 μm using magnetron sputtering, and (3) Cr using the HCD method.
N, (4) TiO 2 , (5) TiAlO 2 , (6) MnCoNiN and (7) CrAlSi
A coating film of N is formed to a thickness of 0.1 to 0.15 μm, and an insulating coating film containing colloidal silica and phosphate as the main component is applied to the coating film with a thickness of 0.8 μm and baked at 800 ° C. Annealed in nitrogen for 3 hours. Table 1 shows the results of an examination of the magnetic properties and coating adhesion of the grain-oriented silicon steel sheet with a film thus obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、極めて低い鉄損
と良好な被膜密着性の両方を達成出来る場合は、(1) Si
Nx、(2) AlN および(7) CrAlSiN であることが判る。そ
の中でもSiNxは、最も優れた特性を有することが注目さ
れる。一方、CrAlSiN の場合は、鉄損が0.55〜0.64W /
kg、密着性も若干剥離(△)から剥離無し(○)の間で
変化することが判明した。
As is clear from Table 1, when both extremely low iron loss and good coating adhesion can be achieved, (1) Si
It can be seen that they are Nx, (2) AlN and (7) CrAlSiN. Among them, it is noted that SiNx has the most excellent characteristics. On the other hand, in the case of CrAlSiN, the iron loss is 0.55 to 0.64W /
It was found that the kg and the adhesiveness also slightly changed from peeling (Δ) to no peeling (◯).

【0025】また、薄膜X線回折による第2層目の被膜
の構造解析では、超鉄損と密着性の両方を達成できた
(1) SiNxおよび(7) CrAlSiN の場合においては、SiNxの
構造が非晶質であり、CrAlSiN の構造は非晶質〜結晶質
であることが注目される。すなわち、TiN の極薄セラミ
ック被膜上に形成する第2層については、結晶質よりも
非晶質構造である場合において、超鉄損および良好な密
着性の両方を達成できることが注目される。
Further, in the structural analysis of the second layer film by thin film X-ray diffraction, both super-iron loss and adhesion were achieved.
In the case of (1) SiNx and (7) CrAlSiN, it is noted that the structure of SiNx is amorphous and the structure of CrAlSiN is amorphous to crystalline. That is, it is noted that the second layer formed on the TiN ultrathin ceramic coating can achieve both super-iron loss and good adhesion when it has an amorphous structure rather than a crystalline structure.

【0026】この理由は、明確に解明された訳ではない
が、第1層目の極薄セラミック被膜を結晶質構造とし、
その上に第2層目を非晶質の構造として積層すると、そ
の後の高温の歪取焼鈍において第2層目が拡散のバリヤ
ーとしての作用を効果的に発揮するためと考えられる。
The reason for this is not clearly understood, but the ultrathin ceramic coating of the first layer has a crystalline structure,
It is considered that when the second layer is laminated thereon as an amorphous structure, the second layer effectively acts as a diffusion barrier in the subsequent high temperature strain relief annealing.

【0027】そこで、この考察結果が妥当であるのかを
検証するため、さらには(7) のCrAlSiN の構造が非晶質
から結晶質に変化し、同時に一方向性珪素鋼板の鉄損お
よび密着性も変化していることから、(7) のCrAlSiN の
被膜について、Cr、AlおよびSiの含有量を変えて再度詳
細な実験を行った。すなわち、第2層としてCrAlSiNの
被膜を形成する際、該被膜におけるCr、AlおよびSiの含
有量を変えた他は、上記した表1に結果を示した実験と
同様の条件にて、膜付き鋼板を作製し、膜無し材におけ
る鉄損値と高温の歪取り後の鉄損との差である、鉄損低
減度合い△W17 /50 および被膜密着性を評価すると共
に、第2層目の薄膜X線回折を行った。その結果を、表
2にまとめて示す。
Therefore, in order to verify whether the result of this consideration is valid, further, the structure of CrAlSiN of (7) is changed from amorphous to crystalline, and at the same time, the iron loss and the adhesion of the unidirectional silicon steel sheet are Since the value has also changed, detailed experiments were performed again for the CrAlSiN film of (7) with different contents of Cr, Al and Si. That is, when a CrAlSiN film was formed as the second layer, the film formation was performed under the same conditions as in the experiment whose results are shown in Table 1 above, except that the contents of Cr, Al and Si in the film were changed. to prepare a steel plate, which is the difference between the iron loss value and high temperature iron loss after stress relief in the membrane without material, as well as evaluating the iron loss reducing degree △ W 17/50 and coating adhesion, the second layer Thin film X-ray diffraction was performed. The results are summarized in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】表2から明らかなように、鉄損の低減度合
い△W17/50 は、Cr、AlおよびSiの含有量によって0.07
4 〜0.151W/kgと変化し、また薄膜X線回折による測定
も、Cr、AlおよびSiの含有量によって結晶質または非晶
質になることが判る。特に、(7-3) Cr1.5Al1.0 Si2.0
成分は、鉄損の低減度合い△W17/50 が0.151W/kgと最
も大きく、この場合の薄膜X線回折による測定結果は非
晶質であることが注目される。 従って、この発明では、
第2層として非晶質被膜を採用することとした。
As is clear from Table 2, the degree of reduction in iron loss ΔW 17/50 is 0.07 depending on the contents of Cr, Al and Si.
It varies from 4 to 0.151 W / kg, and it can be seen from the measurement by thin film X-ray diffraction that it becomes crystalline or amorphous depending on the contents of Cr, Al and Si. In particular, the component of (7-3) Cr 1.5 Al 1.0 Si 2.0 has the largest iron loss reduction degree ΔW 17/50 of 0.151 W / kg, and the measurement result by thin film X-ray diffraction in this case is amorphous. It is noted that Therefore, in this invention,
An amorphous coating is adopted as the second layer.

【0030】なお、薄膜X線回折による結晶質または非
晶質の判断は、次のように行った。ここで、薄膜X線回
折の例として、表2のCrAlSiN 被膜について行った薄膜
X線回折結果のうち、結晶質の場合を図3(a)に、ま
た非晶質の場合を図3(b)に、それぞれ示す。すなわ
ち、図3(a)に示した薄膜X線回折では、明瞭な回折
ピークが認められることから、結晶質であることがわか
る。なお、CrN のJCPDS (カードNo.11-0065 )では、
(200 )CrN が2.0680Å、Int.:100 、(220 )CrN
1.4630Å、Int.:80であり、またAIN のJCPDS (カード
No.25−1496)では、(200 )AI N が2.060 Å、Int.:
100 、(220 )AIN が1.457 Å、Int.:80であり、CrN
とほぼ同一の回折ピーク位置であり、さらに、被膜のGD
S (Glow Discharge Spectroscopy )分析では、Cr、Al
およびSiが検出されることから、図3(a)の回折ピー
クについて、CrN とAlN のピークの相違を区別すること
は不可能である。
The determination of crystalline or amorphous by thin film X-ray diffraction was performed as follows. Here, as an example of the thin film X-ray diffraction, among the thin film X-ray diffraction results performed on the CrAlSiN film in Table 2, the crystalline case is shown in FIG. 3A, and the amorphous case is shown in FIG. ), Respectively. That is, in the thin film X-ray diffraction shown in FIG. 3A, a clear diffraction peak is recognized, which indicates that the film is crystalline. In addition, in CrN's JCPDS (card No. 11-0065),
(200) CrN is 2.0680Å, Int .: 100, (220) CrN is
1.4630Å, Int.:80 and AIN JCPDS (card
No. In 25-1496), (200) AI N is 2.060 Å, Int .:
100, (220) AIN 1.457 Å, Int .: 80, CrN
And the GD of the coating.
In S (Glow Discharge Spectroscopy) analysis, Cr, Al
Since Si and Si are detected, it is impossible to distinguish the difference between the peaks of CrN and AlN in the diffraction peak of FIG.

【0031】これに対して、図3(b)のX線回折の結
果は、明瞭な回折ピークのないブロードな状況にあり、
ピークの判定が不可能であるところから、かようなX線
回折結果が得られる場合を非晶質とした。従って、この
発明における非晶質とは、例えば図3(b)に示したよ
うな、明瞭な回折ピークのないブロードな状況の回折結
果が得られた場合を意味する。
On the other hand, the result of the X-ray diffraction shown in FIG. 3 (b) is in a broad state without a clear diffraction peak,
Since it was impossible to determine the peak, the case where such an X-ray diffraction result was obtained was made amorphous. Therefore, the amorphous in the present invention means a case where a broad diffraction result without a clear diffraction peak as shown in FIG. 3B is obtained.

【0032】以上、表2および図3の結果から、TiN の
極薄セラミック被膜上に第2層として、非晶質構造の被
膜を形成した場合に、高温の歪取焼鈍後においても、超
低鉄損でかつ密着性に優れた一方向性珪素鋼板が得られ
ることがわかる。
From the results shown in Table 2 and FIG. 3, as described above, when a film having an amorphous structure was formed as a second layer on a TiN ultrathin ceramic film, the ultra-low temperature was obtained even after high-temperature stress relief annealing. It can be seen that a unidirectional silicon steel sheet having iron loss and excellent adhesion can be obtained.

【0033】このように、第2層として非晶質構造の被
膜を用いた場合に、超低鉄損と優れた密着性が得られる
理由については、明確に解明された訳ではないが、第1
層目に結晶質の極薄セラミック被膜を形成した上に、第
2層として、例えばCrAlSiNやSiNxによる非晶質膜を積
層すると、該第2層が、その後の高温の歪取焼鈍におい
て極薄セラミック被膜の拡散のバリヤーとしての作用を
効果的に発揮出来るためと考えられる。
The reason why ultra-low iron loss and excellent adhesion can be obtained when a film having an amorphous structure is used as the second layer has not been clarified yet. 1
When a crystalline ultra-thin ceramic coating is formed on the layer and an amorphous film made of, for example, CrAlSiN or SiNx is laminated as the second layer, the second layer becomes ultra-thin in the subsequent stress relief annealing at high temperature. It is considered that this is because the ceramic film can effectively exert its function as a diffusion barrier.

【0034】この発明は、以上の実験結果に基づき、膜
無し材上に形成する極薄セラミック被膜に関する新規の
技術内容を開示したものであり、この発明によって発揮
される効果は極めて大きいところに特徴がある。
The present invention discloses a new technical content relating to an ultrathin ceramic coating formed on a filmless material, based on the above experimental results, and is characterized in that the effect exerted by the present invention is extremely large. There is.

【0035】以下に、この発明の各構成要素について、
さらに詳しく述べる。この発明において、被膜処理を行
う素材には、一方向性珪素鋼板、とりわけ磁区細分化処
理を施した膜無し材を用いることが好ましい。この膜無
し材としては、従来の公知の技術によって製造された、
一方向性珪素鋼板を用いることができる。また、膜無し
材に、さらに表面処理、例えば酸洗処理、化学研磨ある
いは電解研磨処理を施すことも可能であるが、これらの
手法はいずれもコスト増をまねくため、膜無し材をその
まま使用することが、コスト面からは好ましい。
The respective constituent elements of the present invention will be described below.
Further details. In the present invention, it is preferable to use a unidirectional silicon steel sheet, especially a film-less material that has been subjected to a magnetic domain refining treatment, as a material to be coated. As this film-less material, manufactured by a conventionally known technique,
A unidirectional silicon steel plate can be used. Further, the filmless material can be further subjected to surface treatment, for example, pickling treatment, chemical polishing or electrolytic polishing treatment, but since any of these methods leads to cost increase, the filmless material is used as it is. Is preferable from the viewpoint of cost.

【0036】次に、この発明の必須条件である、第1層
目の極薄セラミック被膜は、膜無し材との密着性の観点
から、TiN から成ることが有利である。しかし、図1に
示したように、極薄セラミック被膜の薄膜X線回折によ
る(222 )/(200 )回折ピーク強度比が1.2 以上であ
れば、特に材質を限定する必要はなく、従来公知の被
膜、例えば窒化物系セラミック膜や炭化物系セラミック
膜等の従来公知の被膜を用いても良い。なお、極薄セラ
ミック被膜の被成方法としては、PVD 、CVD 、スパック
リングおよびイオンインプランテーション等を用いるこ
とができるが、(222 )/(200 )回折ピーク強度比が
1.2 以上を容易に得られる、HCD 法が最適である。
Next, it is advantageous that the ultrathin ceramic coating of the first layer, which is an essential condition of the present invention, is made of TiN from the viewpoint of adhesion with the filmless material. However, as shown in FIG. 1, if the (222) / (200) diffraction peak intensity ratio by the thin film X-ray diffraction of the ultrathin ceramic coating is 1.2 or more, there is no particular limitation on the material, and it is well known in the art. A known film such as a nitride ceramic film or a carbide ceramic film may be used. PVD, CVD, sprinkling, ion implantation, etc. can be used as the method for forming the ultrathin ceramic coating, but the (222) / (200) diffraction peak intensity ratio is
The HCD method is the most suitable because it can easily obtain 1.2 or higher.

【0037】HCD 法による成膜条件、とりわけ(222 )
/(200 )回折ピーク強度比を4以上にするには、200
℃以上に加熱し、 バイアス電圧を−70V以上の高バイヤ
ス印加( 好適には−100 〜−300 V) ,反応ガスのイオ
ン化電圧1500V、65mAなどの条件が推奨される。
Film forming conditions by the HCD method, especially (222)
/ (200) To increase the diffraction peak intensity ratio to 4 or above, use 200
It is recommended to heat at a temperature of ℃ or more, apply a bias voltage of -70 V or more with a high bias (preferably -100 to -300 V), and ionize the reaction gas at 1500 V, 65 mA.

【0038】さらに、極薄セラミック被膜の膜厚は、0.
01〜0.3 μm 程度とする。すなわち、上記した極薄セラ
ミック被膜による効果を得るには、少なくとも0.01μm
の厚さが必要であり、一方厚さが0.3 μm を超えると、
やはり上記した極薄セラミック被膜による効果、特に膜
無し材と絶縁被膜との間の密着層としての役目が発揮さ
れなくなり、またコスト増をまねくことになる。より好
ましくは、0.005 〜0.3 μm とする。
Further, the thickness of the ultrathin ceramic coating is 0.
It should be about 01 to 0.3 μm. That is, in order to obtain the effect of the ultrathin ceramic coating described above, at least 0.01 μm
Thickness is required, while when the thickness exceeds 0.3 μm,
After all, the effect of the ultrathin ceramic coating described above, in particular, the function as an adhesion layer between the filmless material and the insulating coating is not exerted, and the cost is increased. More preferably, it is 0.005 to 0.3 μm.

【0039】次に、上記極薄セラミック被膜上への第2
層目としては、非晶質の被膜、具体的には、CrAISiN 或
いはSiNxによる非晶質被膜が、その後の高温の歪取焼鈍
において第2層を第1層の拡散のバリヤーとしての作用
を効果的に発揮させるのに有利である。この場合の非晶
質の定義は、上述のとおりである。なお、非晶質被膜と
しては、CrAISiN およびSiNxの他、TiAlN,TiCrSiN,TiCr
AlSiN 等の多種の金属の窒化物などの非晶質被膜を採用
することができる。
Next, a second layer is formed on the ultrathin ceramic coating.
As the second layer, an amorphous film, specifically, an amorphous film made of CrAISiN or SiNx, acts as a diffusion barrier for the second layer in the subsequent high temperature strain relief annealing. It is advantageous to make the most of it. The definition of amorphous in this case is as described above. As the amorphous film, in addition to CrAISiN and SiNx, TiAlN, TiCrSiN, TiCr
Amorphous coatings such as nitrides of various metals such as AlSiN can be employed.

【0040】また、非晶質被膜の膜厚は、0.005 〜0.3
μm 程度とする。すなわち、非晶質被膜の厚みが0.005
μm 未満ではバリアーとしての効果が小さく、一方0.3
μmをこえると、コストアップとなり経済的に問題とな
る。
The thickness of the amorphous coating is 0.005 to 0.3.
It is about μm. That is, the thickness of the amorphous coating is 0.005
If it is less than μm, the effect as a barrier is small, while 0.3
If it exceeds μm, the cost is increased and it becomes an economical problem.

【0041】ここで、非晶質被膜の被成は、HCD 法、 マ
グネトロンスパッタ法の手法を用いて行うことができる
が、得られる被膜を非晶質とするためには、多種の金属
を含有する窒化物( 例えばCr、 Al、 Si、 Ti、 B 等を含有
する) を被成することに留意する。
Here, the amorphous film can be formed by using the HCD method or the magnetron sputtering method, but in order to make the obtained film amorphous, various kinds of metals are contained. Note that a nitride (for example, containing Cr, Al, Si, Ti, B, etc.) is deposited.

【0042】かくして被膜を施した鋼板には、さらに公
知の絶縁被膜を好ましくは0.3 〜1.5 μmの厚さで被覆
して製品板とする。
The steel sheet thus coated is further coated with a known insulating coating, preferably in a thickness of 0.3 to 1.5 μm to obtain a product plate.

【0043】[0043]

【実施例】C:0.073 mass%、Si:3.42mass%、Mn:0.
072 mass%、Se:0.020 mass%、Sb:0.025 mass%、A
l:0.020 mass%、Mo:0.012 mass%およびN:0.0071m
ass%を含有し、残部は実質的に鉄および不可避的不純
物の組成になる珪素鋼スラブを、1340℃で3時間加熱
後、熱間圧延を施し、次いで1050℃の中間焼鈍を挟む2
回の冷間圧延を施して0.23mm厚の最終冷延坂とした。そ
の後、圧延方向にほぼ直角方向に4mm間隔にて、幅:20
0 μm および深さ:20μm の溝を形成する、磁区細分化
処理を施したのち、840 ℃の湿水素中で脱炭焼鈍を行
い、ついで鋼坂表面に、CaSiO3:25mass%,A1203 :10
mass%,MgO :45mass%,SiO2:15mass%、AICl3 :3
mass%およびSr(OH):2 mass%を主成分とする焼鈍分
離剤を塗布してから、850 ℃で15時間保持後、12℃/h
で1050℃まで昇温してゴス方位の2次再結晶粒を優先成
長させた後、1200℃の乾水素中で純化焼鈍を施した。
Example: C: 0.073 mass%, Si: 3.42 mass%, Mn: 0.
072 mass%, Se: 0.020 mass%, Sb: 0.025 mass%, A
l: 0.020 mass%, Mo: 0.012 mass% and N: 0.0071m
A silicon steel slab containing ass% and the balance of which is substantially composed of iron and unavoidable impurities is heated at 1340 ° C. for 3 hours, hot-rolled, and then subjected to intermediate annealing at 1050 ° C. 2
Cold rolling was performed twice to obtain a final cold-rolled slope with a thickness of 0.23 mm. After that, at a width of 20 mm at an interval of 4 mm in a direction substantially perpendicular to the rolling direction
0 [mu] m and depth: forming a groove of 20 [mu] m, then subjected to magnetic domain refining treatment, carried out decarburization annealing in a wet hydrogen of 840 ° C., and then the steel slope surface, CaSiO 3: 25mass%, A1 2 0 3 : 10
mass%, MgO: 45mass%, SiO 2: 15mass%, AICl 3: 3
mass% and Sr (OH): After applying an annealing separator containing 2 mass% as the main component, hold at 850 ° C for 15 hours, then at 12 ° C / h
Then, the temperature was raised to 1050 ° C. to preferentially grow secondary recrystallized grains in the Goss orientation, and then purification annealing was performed in dry hydrogen at 1200 ° C.

【0044】次いで、この膜無し材上に、第1層目とし
て (A)HCD法を用いて、TiN セラミック張力被膜を0.1 μm
厚で被成した。 (B) 熱CVD 法を用いて、TiN セラミック張力被膜を0.15
μm 厚を被成した。その後、第2層目として、 (a) マグネトロン・スパッタ法を用いて、SiNx膜を0.15
μm 厚で被成した。 (b)HCD法を用いて、CrAlSiN 膜を0.15μm 厚で被成し
た。
Then, a TiN ceramic tension coating of 0.1 μm was formed as the first layer on this filmless material using (A) HCD method.
Overlaid with thick. (B) Apply 0.15 TiN ceramic tension coating using thermal CVD method.
Deposited to a thickness of μm. Then, as the second layer, (a) a SiNx film of 0.15 is formed by using the magnetron sputtering method.
Deposited to a thickness of μm. (b) The HCD method was used to deposit a CrAlSiN film to a thickness of 0.15 μm.

【0045】なお、被膜の被成条件は、次の通りであ
る。 (A)HCD法:40V、500Aおよび250 ℃にて−150 Vのバイ
アス電圧、 イオン化電圧1500V、65mAで成膜した。 (B) 熱CVD 法:950 ℃のTiCl4 +H2+N2雰囲気中にて、
10分間のCVD 反応を行った。 (a) マグネトロン・スパッタ法:15KWで、 フェローSiタ
ーゲットを用いてスパッタ処理した。 (b)HCD法:20Vおよび 250Aで成膜した。
The film forming conditions are as follows. (A) HCD method: A film was formed at a bias voltage of -150 V, an ionization voltage of 1500 V and 65 mA at 40 V, 500 A and 250 ° C. (B) Thermal CVD method: In a TiCl 4 + H 2 + N 2 atmosphere at 950 ℃,
A 10 minute CVD reaction was performed. (a) Magnetron-sputtering method: Sputtering was performed at 15 KW using a Fellow Si target. (b) HCD method: A film was formed at 20 V and 250 A.

【0046】次いで、コロイダルシリカおよび燐酸塩を
主成分とする絶縁被膜を塗布・焼付けによって形成した
後、800 ℃で3時間窒素雰囲気中で歪取焼鈍を行った。
かくして得られた製品の鉄損向上度合い(△W17/50
と被膜密着性とを評価した結果を、表3にまとめて示
す。
Next, an insulating coating containing colloidal silica and phosphate as the main components was formed by coating and baking, and then strain relief annealing was carried out at 800 ° C. for 3 hours in a nitrogen atmosphere.
The degree of improvement in iron loss of the product thus obtained (△ W 17/50 )
Table 3 shows the results of the evaluation of the film adhesion and the film adhesion.

【0047】[0047]

【表3】 [Table 3]

【0048】表3から明らかなように、一方向性珪素鋼
板の膜無し材に施す第1層目を(222 )/(200 )回折
ピーク強度比が1.2 以上の極薄セラミック被膜とし、第
2層目を非晶質被膜とすることによって、一方向性珪素
鋼板の磁気特性のうち、磁束密度は同じであるが、鉄損
が0.13W/kgと大幅に向上することが注目される。ま
た、直径 15 mmの丸棒上での 180°曲げを行った際に、
被膜が剥離することもなく、被膜の密着性にも優れるこ
とがわかる。
As is clear from Table 3, the first layer applied to the film-less material of the unidirectional silicon steel sheet was an ultrathin ceramic coating having a (222) / (200) diffraction peak intensity ratio of 1.2 or more, and the second It is noted that by forming the layer as an amorphous coating, among the magnetic properties of the unidirectional silicon steel sheet, the magnetic flux density is the same, but the iron loss is significantly improved to 0.13 W / kg. Also, when bending 180 ° on a round bar with a diameter of 15 mm,
It can be seen that the coating does not peel off and the coating has excellent adhesion.

【0049】[0049]

【発明の効果】この発明に従って、仕上げ焼鈍済の一方
向性珪素鋼板の表面に形成した被膜は、たとえ高温長時
間の歪取り焼鈍後であっても優れた密着性と曲げ特性を
有し、しかもかかる歪取り焼鈍時に懸念される鉄損の劣
化を招くことがないため、高温長時間の歪取り焼鈍後で
あっても優れた鉄損特性を有する超低鉄損一方向性珪素
鋼板を安定して提供することができる。
According to the present invention, the coating film formed on the surface of the finish-annealed unidirectional silicon steel sheet has excellent adhesion and bending characteristics even after strain relief annealing at high temperature for a long time, Moreover, since the deterioration of iron loss, which is a concern during such stress relief annealing, is not caused, it is possible to stabilize the ultra-low iron loss unidirectional silicon steel sheet having excellent iron loss characteristics even after high temperature and long time stress relief annealing. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 鉄損の低減度合いおよび被膜の密着性と被膜
の薄膜X線回折測定による(222 )/(200 )回折ピー
ク強度比との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the degree of reduction in iron loss and the adhesion of a coating, and the (222) / (200) diffraction peak intensity ratio of the coating measured by thin film X-ray diffraction.

【図2】 極薄セラミック被膜の薄膜X線回折測定の結
果を示す図である。
FIG. 2 is a diagram showing the results of thin film X-ray diffraction measurement of an ultrathin ceramic coating.

【図3】 CrAlSiN 被膜の薄膜X線回折測定の結果を示
す図である。
FIG. 3 is a diagram showing a result of thin film X-ray diffraction measurement of a CrAlSiN film.

フロントページの続き Fターム(参考) 4K026 AA03 AA22 BA01 BA08 BA12 BB10 CA16 CA18 CA23 CA27 CA41 DA02 EB11 4K029 AA02 BA58 BB02 BB08 BB10 CA03 CA05 DC39 DD05 FA06 GA01 GA03 Continued front page    F-term (reference) 4K026 AA03 AA22 BA01 BA08 BA12                       BB10 CA16 CA18 CA23 CA27                       CA41 DA02 EB11                 4K029 AA02 BA58 BB02 BB08 BB10                       CA03 CA05 DC39 DD05 FA06                       GA01 GA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 仕上げ焼鈍済の一方向性珪素鋼板の表面
に、X線回折による(222 )/(200 )回折ピーク強度
比が1.2 以上に優先配向した結晶質に成る、極薄セラミ
ック被膜を有することを特徴とする超低鉄損一方向性珪
素鋼板。
1. An ultrathin ceramic coating, which is crystalline, is preferentially oriented so that the (222) / (200) diffraction peak intensity ratio by X-ray diffraction is 1.2 or more on the surface of a finish-annealed unidirectional silicon steel sheet. An ultra-low iron loss unidirectional silicon steel sheet having.
【請求項2】 請求項1に記載の極薄セラミック被膜上
に、非晶質薄膜、次いで絶縁被膜を積層して成ることを
特徴とする超低鉄損一方向性珪素鋼板。
2. An ultra-low iron loss unidirectional silicon steel sheet, which is obtained by laminating an amorphous thin film and then an insulating coating on the ultrathin ceramic coating according to claim 1.
【請求項3】 仕上げ焼鈍済の一方向性珪素鋼板の表面
に、極薄セラミック被膜を被成したのち、該極薄セラミ
ック被膜上に非晶質の薄膜を被成することを特徴とする
一方向性珪素鋼板の製造方法。
3. An ultrathin ceramic coating is formed on the surface of a finish-annealed unidirectional silicon steel sheet, and then an amorphous thin film is formed on the ultrathin ceramic coating. Method for manufacturing grain-oriented silicon steel sheet.
JP2001322388A 2001-10-19 2001-10-19 Grain-oriented silicon steel sheet with ultra-low core loss, and manufacturing method therefor Pending JP2003129196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001322388A JP2003129196A (en) 2001-10-19 2001-10-19 Grain-oriented silicon steel sheet with ultra-low core loss, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001322388A JP2003129196A (en) 2001-10-19 2001-10-19 Grain-oriented silicon steel sheet with ultra-low core loss, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003129196A true JP2003129196A (en) 2003-05-08

Family

ID=19139445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001322388A Pending JP2003129196A (en) 2001-10-19 2001-10-19 Grain-oriented silicon steel sheet with ultra-low core loss, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003129196A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044078A (en) * 2016-10-18 2019-04-29 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRIC STEEL SHEET
CN110023538A (en) * 2016-12-21 2019-07-16 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
CN111118455A (en) * 2020-01-03 2020-05-08 北京金轮坤天特种机械有限公司 High-temperature-resistant anti-radiation silicon steel sheet and preparation method and application thereof
US11781196B2 (en) * 2016-11-28 2023-10-10 Jfe Steel Corporation Grain-oriented electromagnetic steel sheet and method of producing grain-oriented electromagnetic steel sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044078A (en) * 2016-10-18 2019-04-29 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRIC STEEL SHEET
CN109844179A (en) * 2016-10-18 2019-06-04 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
EP3514261A4 (en) * 2016-10-18 2019-07-24 JFE Steel Corporation Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
US20190256985A1 (en) * 2016-10-18 2019-08-22 Jfe Steel Corporation Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
KR102230629B1 (en) * 2016-10-18 2021-03-22 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
US11091842B2 (en) * 2016-10-18 2021-08-17 Jfe Steel Corporation Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
US11781196B2 (en) * 2016-11-28 2023-10-10 Jfe Steel Corporation Grain-oriented electromagnetic steel sheet and method of producing grain-oriented electromagnetic steel sheet
CN110023538A (en) * 2016-12-21 2019-07-16 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
US20190390350A1 (en) * 2016-12-21 2019-12-26 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
US10968521B2 (en) * 2016-12-21 2021-04-06 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
CN111118455A (en) * 2020-01-03 2020-05-08 北京金轮坤天特种机械有限公司 High-temperature-resistant anti-radiation silicon steel sheet and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4698272A (en) Extra-low iron loss grain oriented silicon steel sheets
RU2288297C2 (en) Electrical textured steel sheet with electrically insulating coating and process for producing electrical textured sheet steel with such coating
US5565272A (en) Grain oriented silicon steel sheet having excellent primary film properties
US4713123A (en) Method of producing extra-low iron loss grain oriented silicon steel sheets
US6811900B2 (en) Unidirectional silicon steel sheet of ultra-low iron loss and method for production thereof
WO2018074462A1 (en) Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
JP2003129196A (en) Grain-oriented silicon steel sheet with ultra-low core loss, and manufacturing method therefor
JP6410002B1 (en) Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
JP2006253555A (en) Super-low iron loss grain-oriented magnetic steel sheet excellent in coat adhesion
JP6856080B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4206942B2 (en) Oriented electrical steel sheet with extremely low iron loss and excellent film adhesion and method for producing the same
JP4192818B2 (en) Oriented electrical steel sheet
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH11286775A (en) Production of ultralow core loss grain-oriented silicon steel sheet
JP2004060029A (en) Method for manufacturing super low core loss grain oriented magnetic steel sheet having excellent film adhesion
JP2004027348A (en) Method for manufacturing ultra-low-iron loss grain-oriented silicon steel plate having excellent film adhesion property
JP2002129309A (en) Single directional, ultra low iron loss silicon steel sheets and strips eliminating deterioration of iron loss after strain annealing and having superior coating adhesion and manufacturing method for the same
JP2004238669A (en) Superlow core loss grain-oriented silicon steel plate and method for manufacturing the same, and film deposition apparatus
JPH11343579A (en) Extremely low iron loss grain-oriented silicon steel sheet and its production
JP2006261602A (en) Super-low iron loss directive electromagnetic steel sheet excellent in coat adhesiveness
JP2000260631A (en) Winding transformer with small building factor and low iron loss of actual machine
JP4042202B2 (en) Unidirectional silicon steel sheet
JP2003342699A (en) Production method for ultralow-iron-loss unidirectional silicon steel sheet excellnet in adhesion to film and free of degradation in cahracteristics after stress relieving annealing
JP2001303235A (en) ULTRA LOW CORE-LOSS GRAIN ORIENTED SILICON STEEL SHEET HAVING SiNX CERAMIC THIN FILM EXCELLENT IN FILM CHARACTERISTIC, AND ITS MANUFACTURING METHOD
JP2004353065A (en) Low core loss grain-oriented silicon steel sheet and its production method