JP2003128496A - Method for producing and apparatus for producing single crystal - Google Patents

Method for producing and apparatus for producing single crystal

Info

Publication number
JP2003128496A
JP2003128496A JP2001324487A JP2001324487A JP2003128496A JP 2003128496 A JP2003128496 A JP 2003128496A JP 2001324487 A JP2001324487 A JP 2001324487A JP 2001324487 A JP2001324487 A JP 2001324487A JP 2003128496 A JP2003128496 A JP 2003128496A
Authority
JP
Japan
Prior art keywords
single crystal
producing
crystal
reflector
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001324487A
Other languages
Japanese (ja)
Inventor
Hideto Sato
秀人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001324487A priority Critical patent/JP2003128496A/en
Publication of JP2003128496A publication Critical patent/JP2003128496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for producing a single crystal having a cross sectional shape similiar to that of the desired wafer. SOLUTION: The apparatus 10 for producing the single crystal is the single crystal producing apparatus by Czochralski method. Reflecting plate 30 is partially disposed over the single crystal and in the peripheral direction of a single crystal pull up axis 22 and at the position where the heat radiation from the single crystal is inhibited to rotate synchronously with the single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は単結晶の製造装置
および製造方法に関し、特に、チョクラルスキー法によ
るたとえば酸化物単結晶を製造する単結晶の製造装置お
よび製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal manufacturing apparatus and manufacturing method, and more particularly to a single crystal manufacturing apparatus and manufacturing method for manufacturing, for example, an oxide single crystal by the Czochralski method.

【0002】[0002]

【従来の技術】従来、単結晶の製造方法の1つとしてチ
ョクラルスキー法が用いられている。チョクラルスキー
法による単結晶の製造は、保温材によって囲まれた白金
などの貴金属からなる坩堝に単結晶原料を入れ、坩堝の
周囲に設置された高周波誘導加熱などの加熱手段により
単結晶原料を融解し、この単結晶原料の融液に種結晶を
接触させて鉛直方向に引き上げることによって行われ
る。単結晶の育成は、まずネック部とよばれる種結晶と
同程度またはこれより小さい径の単結晶を引き上げ、次
に肩部と呼ばれるネック部の結晶径を除々に所望の結晶
径まで大きくする部分を作製する。その後、所望の結晶
径となるように高周波出力を調整しながら結晶の育成を
行い、最後に単結晶を融液から切り離して徐冷する。チ
ョクラルスキー法による単結晶の製造では、製造する結
晶に適した温度分布となるように保温材などで構成した
ホットゾーンによって温度環境を制御し、育成中の異方
位成長および結晶のねじれ、冷却中のクラックなどの発
生を抑える。通常、ホットゾーンは耐火煉瓦によって構
成されるが、保温性を向上させるために、アフターヒー
タなどの熱源を配置することやたとえば特開平5−22
1786号に開示されているように反射板を配置して輻
射による放熱を抑えることが試みられている。ここで、
高周波誘導加熱により坩堝の加熱を行う場合には、金属
製の反射板を配置すると、反射板自体も誘導加熱される
ため、反射板はアフターヒータとしても機能する。
2. Description of the Related Art Conventionally, the Czochralski method has been used as one of the methods for producing a single crystal. In the production of single crystals by the Czochralski method, the single crystal raw material is placed in a crucible made of a precious metal such as platinum surrounded by a heat insulating material, and the single crystal raw material is heated by heating means such as high frequency induction heating installed around the crucible. It is carried out by melting, bringing a seed crystal into contact with the melt of the single crystal raw material, and pulling it up in the vertical direction. A single crystal is grown by first pulling up a single crystal having a diameter equal to or smaller than that of a seed crystal called a neck portion, and then gradually increasing the crystal diameter of a neck portion called a shoulder portion to a desired crystal diameter. To make. Then, the crystal is grown while adjusting the high frequency output so as to obtain a desired crystal diameter, and finally the single crystal is separated from the melt and gradually cooled. In the production of single crystals by the Czochralski method, the temperature environment is controlled by a hot zone composed of a heat insulating material so that the temperature distribution suitable for the crystal to be produced is controlled, and heterogeneous growth during growth, crystal twisting, and cooling Suppress the generation of cracks inside. Usually, the hot zone is made of refractory bricks, but in order to improve heat retention, a heat source such as an after-heater may be arranged or, for example, JP-A-5-22.
As disclosed in No. 1786, it has been attempted to arrange a reflection plate to suppress heat radiation due to radiation. here,
When the crucible is heated by high-frequency induction heating, if a metal reflection plate is arranged, the reflection plate itself is also induction-heated, so that the reflection plate also functions as an after-heater.

【0003】[0003]

【発明が解決しようとする課題】ところが、チョクラル
スキー法によって製造した単結晶は、通常、坩堝から回
転させながら引き上げられるため、円柱状の単結晶とな
る。しかし、結晶方位によって成長速度が大きく異なる
単結晶を育成する場合、育成した単結晶は角柱状になっ
たり楕円柱状になったりする。このため、育成した結晶
から円板状のウエハを採取する際には、大きく研削する
必要が生じ、効率が悪い。そのため、より円柱に近い結
晶形状が求められる。また、逆に角板状のウエハを採取
したい場合には、円柱状の育成結晶から採取するのは効
率が悪く、より角柱に近い結晶形状が求められる。この
ため、単結晶の育成時には、引上げ軸に垂直な断面が所
望のウエハ形状に近い単結晶を育成することが望まし
い。
However, since the single crystal produced by the Czochralski method is usually pulled up while being rotated from the crucible, it becomes a columnar single crystal. However, when growing a single crystal having a growth rate that greatly differs depending on the crystal orientation, the grown single crystal has a prismatic shape or an elliptic cylinder shape. For this reason, when collecting a disk-shaped wafer from the grown crystal, it is necessary to grind it large, which is inefficient. Therefore, a crystal shape closer to a cylinder is required. On the contrary, when it is desired to collect a rectangular plate-shaped wafer, it is inefficient to collect it from a columnar grown crystal, and a crystal shape closer to a prism is required. Therefore, when growing a single crystal, it is desirable to grow a single crystal whose cross section perpendicular to the pulling axis is close to the desired wafer shape.

【0004】それゆえに、この発明の主たる目的は、所
望のウエハの形状に近い断面形状を持つ単結晶を製造す
ることができる単結晶の製造装置および製造方法を提供
することである。
Therefore, a main object of the present invention is to provide a single crystal manufacturing apparatus and manufacturing method capable of manufacturing a single crystal having a cross-sectional shape close to a desired wafer shape.

【0005】[0005]

【課題を解決するための手段】この発明にかかる単結晶
の製造装置は、チョクラルスキー法による単結晶の製造
装置において、反射板が、単結晶と同期して回転するよ
うに、単結晶の上部にかつ単結晶引上げ軸の周方向であ
って単結晶からの放熱が抑制される位置に部分的に配置
されていることを特徴とする、単結晶の製造装置であ
る。また、この発明にかかる単結晶の製造装置では、反
射板はたとえば単結晶引上げ軸に設けられている。さら
に、この発明にかかる単結晶の製造装置では、反射板は
たとえば貴金属製である。この発明にかかる単結晶の製
造方法は、この発明にかかる単結晶の製造方法を用いて
単結晶を製造する、単結晶の製造方法である。この発明
にかかる単結晶の製造方法では、製造される単結晶は酸
化物である。この発明にかかる単結晶の製造方法では、
製造される単結晶はたとえばLa3Ga5 SiO14単結
晶である。チョクラルスキー法による単結晶の育成で
は、固液界面での凝固潜熱は育成した結晶を介してホッ
トゾーン上部へと伝えられる。このため、結晶のある特
定の部分だけ潜熱の伝達を抑えるとその部分の結晶成長
速度は低下する。潜熱の伝達を抑えるには結晶の周囲に
反射板を設置して輻射による熱の逃げを抑制するのが有
効である。しかし、通常使用されているようなホットゾ
ーン上部に設置された円筒状または円錐状の反射板で
は、引上げ軸方向については輻射による放熱効率の大小
を発生させることができるが、引上げ軸周方向の放熱効
率は一定となる。また、反射板に切込みを入れたり形状
を変形させたりして引上げ軸周方向の放熱効率に変化を
つけた場合であっても、結晶は反射板に対して回転しな
がら育成されるため、これらの効果は平均化されて結晶
の特定の部分だけの放熱効率を低下させることはできな
い。そこで、引上げ軸に垂直な結晶断面形状を所望の形
状となるように育成するためには、結晶の引上げ軸周方
向について放熱効果の小さい部分を作り、この部分の径
方向への成長を抑える必要がある。このためには、本願
発明のように、結晶の成長を抑えたい特定の方向に部分
的に反射板を配置し、かつ、この反射板を育成結晶と同
期して回転させればよい。特開平5−221786号で
は、引上げ軸に笠状の反射板を設け、シリコン単結晶の
成長初期に発生する酸化誘起積層欠陥を抑えることが試
みられている。しかし、このような反射板は結晶と同期
して回転することは可能であるが、引上げ軸周方向の放
熱抑制効果は一定となるため、引上げ軸に垂直な結晶断
面形状の制御を行うことはできない。よって、結晶と同
期して回転する反射板としては、本願発明のように、引
上げ軸周方向の放熱効果に差違が発生するように、引上
げ方向から見て部分的に配置された反射板を使用する必
要があるのである。
A single crystal manufacturing apparatus according to the present invention is a single crystal manufacturing apparatus according to the Czochralski method, wherein the reflector is rotated in synchronization with the single crystal. An apparatus for producing a single crystal, characterized in that the single crystal is partially disposed at an upper portion in a circumferential direction of a pulling axis of the single crystal and in which heat radiation from the single crystal is suppressed. Further, in the single crystal manufacturing apparatus according to the present invention, the reflecting plate is provided, for example, on the single crystal pulling shaft. Further, in the single crystal manufacturing apparatus according to the present invention, the reflector is made of, for example, a noble metal. The method for producing a single crystal according to the present invention is a method for producing a single crystal using the method for producing a single crystal according to the present invention. In the method for producing a single crystal according to the present invention, the produced single crystal is an oxide. In the method for producing a single crystal according to the present invention,
The single crystal produced is, for example, a La 3 Ga 5 SiO 14 single crystal. In growing a single crystal by the Czochralski method, the latent heat of solidification at the solid-liquid interface is transferred to the upper part of the hot zone through the grown crystal. Therefore, if the transfer of latent heat is suppressed only in a specific part of the crystal, the crystal growth rate of that part is reduced. In order to suppress the transfer of latent heat, it is effective to install a reflector around the crystal to suppress the escape of heat due to radiation. However, with a cylindrical or conical reflection plate installed in the upper part of the hot zone, which is usually used, it is possible to generate large or small heat radiation efficiency by radiation in the pulling axis direction. The heat dissipation efficiency is constant. Even when the heat dissipation efficiency in the pulling shaft circumferential direction is changed by making a cut or deforming the shape of the reflector, the crystal grows while rotating with respect to the reflector. The effect of is not averaged and the heat dissipation efficiency of only a specific part of the crystal cannot be reduced. Therefore, in order to grow the crystal cross-sectional shape perpendicular to the pulling axis to a desired shape, it is necessary to create a portion with a small heat radiation effect in the circumferential direction of the pulling axis of the crystal and suppress the radial growth of this portion. There is. To this end, as in the present invention, a reflecting plate may be partially arranged in a specific direction in which crystal growth is desired to be suppressed, and this reflecting plate may be rotated in synchronization with the grown crystal. JP-A-5-221786 attempts to suppress an oxidation-induced stacking fault that occurs at the initial stage of the growth of a silicon single crystal by providing a pull-up shaft with a cap-shaped reflector. However, although such a reflector can be rotated in synchronization with the crystal, the effect of suppressing heat radiation in the circumferential direction of the pulling axis is constant, so it is not possible to control the crystal cross-sectional shape perpendicular to the pulling axis. Can not. Therefore, as the reflecting plate that rotates in synchronism with the crystal, as in the present invention, a reflecting plate partially arranged when viewed from the pulling direction is used so that a difference in heat radiation effect in the pulling shaft circumferential direction occurs. It is necessary to do it.

【0006】この発明の上述の目的、その他の目的、特
徴および利点は、図面を参照して行う以下の発明の実施
の形態の詳細な説明から一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments of the invention with reference to the drawings.

【0007】[0007]

【発明の実施の形態】(実施例1)図1はこの発明にか
かる単結晶の製造装置の一例を示す断面図解図であり、
図2はその単結晶の製造装置に用いられる反射板を示す
図解図であり、図3はその反射板の平面図である。図1
に示す単結晶の製造装置10はチャンバー12を含む。
チャンバー12の内部には、高周波誘導コイル14が配
置される。高周波誘導コイル14の内側には、保温材と
してアルミナ炉材からなるホットゾーン16が設けられ
る。ホットゾーン16の中央には、たとえば白金ロジウ
ムからなる外径100mm高さ100mmの坩堝18が
配置される。この坩堝18の中には、単結晶原料20が
充填される。また、坩堝18の上方には、たとえばアル
ミナからなる単結晶引上げ軸22が設けられる。単結晶
引上げ軸22の下端には、種結晶保持具24が固着され
る。この種結晶保持具24の下には、種結晶26が保持
される。また、単結晶引上げ軸22の下端には、種結晶
保持具24および線状の支持部材28を介して、たとえ
ば白金からなる6枚の羽状の反射板30が取り付けられ
る。この場合、6枚の反射板30は、種結晶26の
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 is a schematic sectional view showing an example of an apparatus for producing a single crystal according to the present invention.
FIG. 2 is an illustrative view showing a reflector used in the apparatus for producing the single crystal, and FIG. 3 is a plan view of the reflector. Figure 1
The single crystal manufacturing apparatus 10 shown in FIG.
A high frequency induction coil 14 is arranged inside the chamber 12. Inside the high frequency induction coil 14, a hot zone 16 made of alumina furnace material is provided as a heat insulating material. At the center of the hot zone 16, a crucible 18 made of, for example, platinum rhodium and having an outer diameter of 100 mm and a height of 100 mm is arranged. A single crystal raw material 20 is filled in the crucible 18. A single crystal pulling shaft 22 made of, for example, alumina is provided above the crucible 18. A seed crystal holder 24 is fixed to the lower end of the single crystal pulling shaft 22. A seed crystal 26 is held under the seed crystal holder 24. Further, at the lower end of the single crystal pulling shaft 22, six feather-shaped reflecting plates 30 made of, for example, platinum are attached via a seed crystal holder 24 and a linear supporting member 28. In this case, the six reflectors 30 are made of the seed crystal 26.

【数1】 に配置される。また、この場合、6枚の反射板30は、
特に図2に示すように、最大径が70mmになるように
配置される。
[Equation 1] Is located in. Further, in this case, the six reflectors 30 are
In particular, as shown in FIG. 2, they are arranged so that the maximum diameter is 70 mm.

【0008】次に、この単結晶の製造装置10を用いて
単結晶を製造する方法について説明する。まず、製造す
る単結晶としてLa3 Ga5 SiO14を選び、単結晶原
料20としてはLa23 、Ga23 、SiO2 をそ
れぞれ1537.1g、1473.9g、189.0g
乾式混合し、これをプレス成形した後に、単結晶の製造
装置10の坩堝18に充填した。単結晶の育成は、ホッ
トゾーン16を使用した。雰囲気ガスとしては、N2
スに2vol%のO2 ガスを混入した混合ガスをホット
ゾーン16の下部より流すこととした。単結晶原料20
の加熱方法は、高周波誘導コイル14で高周波誘導加熱
により行った。種結晶26には、<0001>面方位に
垂直な5mm×5mmの断面を有する長さ50mmの棒
状のLa3 Ga5 SiO14単結晶を用いた。種結晶26
を単結晶原料20の融液に接触させた。そして、回転数
19rpmで引上げ速度1.5mm/時間で種結晶26
の引上げを行い、肩部において徐々に単結晶原料20の
融液の温度を下げることによって単結晶の直径を大きく
した。また、円柱換算で単結晶の直径が55mmとなる
ようにすなわち30.2g/時間の重量増加速度になる
ように、高周波誘導コイル14に接続されている高周波
発振器(図示せず)の出力を調節しながら単結晶を育成
した。その後、30時間単結晶の直胴部の引上げを行
い、単結晶を単結晶原料20の融液から切り離して徐冷
した。引き上げた単結晶は、6角柱の角が取れて円柱に
近い角柱状であり、直胴部における直径の最大値は5
6.5mmで最小値は54.2mmであった。
Next, a method for producing a single crystal using this single crystal producing apparatus 10 will be described. First, La 3 Ga 5 SiO 14 is selected as the single crystal to be manufactured, and La 2 O 3 , Ga 2 O 3 , and SiO 2 are used as the single crystal raw material 20 in 1537.1 g, 1473.9 g, and 189.0 g, respectively.
After dry mixing and press molding, the crucible 18 of the single crystal manufacturing apparatus 10 was filled. The hot zone 16 was used for growing the single crystal. As the atmosphere gas, a mixed gas of 2 vol% O 2 gas mixed with N 2 gas was made to flow from the lower part of the hot zone 16. Single crystal raw material 20
The heating method was performed by high frequency induction heating with the high frequency induction coil 14. As the seed crystal 26, a rod-shaped La 3 Ga 5 SiO 14 single crystal having a cross section of 5 mm × 5 mm perpendicular to the <0001> plane orientation and a length of 50 mm was used. Seed crystal 26
Was brought into contact with the melt of the single crystal raw material 20. Then, at a rotation speed of 19 rpm and a pulling speed of 1.5 mm / hour, the seed crystal 26
And the temperature of the melt of the single crystal raw material 20 was gradually lowered at the shoulder to increase the diameter of the single crystal. In addition, the output of a high-frequency oscillator (not shown) connected to the high-frequency induction coil 14 is adjusted so that the diameter of the single crystal becomes 55 mm in cylinder conversion, that is, the weight increasing rate of 30.2 g / hour. While growing a single crystal. After that, the straight body portion of the single crystal was pulled for 30 hours, the single crystal was separated from the melt of the single crystal raw material 20, and gradually cooled. The pulled single crystal is a prism having a hexagonal prism with a corner close to a cylinder, and the maximum diameter of the straight body is 5
At 6.5 mm, the minimum value was 54.2 mm.

【0009】(実施例2)実施例2では、実施例1と同
様のホットゾーン16を有する単結晶の製造装置10
と、実施例1と同じ単結晶原料20、種結晶26および
雰囲気ガスとを使用した。ただし、実施例2では、図4
および図5に示すように、単結晶引上げ軸22に種結晶
26の
(Embodiment 2) In Embodiment 2, a single crystal manufacturing apparatus 10 having a hot zone 16 similar to that of Embodiment 1 is used.
And the same single crystal raw material 20, seed crystal 26, and atmosphere gas as in Example 1 were used. However, in the second embodiment, as shown in FIG.
Further, as shown in FIG. 5, the single crystal pulling shaft 22 is provided with a seed crystal 26.

【数2】 に白金からなる2枚の羽状の反射板30が取り付けられ
ている。実施例2では、まず、種結晶26を単結晶原料
の融液に接触させた。そして、回転数19rpmで引上
げ速度1.5mm/時間で種結晶26の引上げを行い、
肩部において徐々に単結晶原料の融液の温度を下げるこ
とによって単結晶の直径を大きくし、円柱換算で単結晶
の直径が55mmとなるようにすなわち30.2g/時
間の重量増加速度になるように、高周波発振器の出力を
調整しながら単結晶を育成した。その後、30時間単結
晶の直胴部の引上げを行い、単結晶を単結晶原料の融液
から切り離して徐冷した。引き上げた単結晶の断面形状
は、図6に示すように、6角形の2つの角が取れた長方
形に近い形状となった。
[Equation 2] Two feather-shaped reflectors 30 made of platinum are attached to the. In Example 2, first, the seed crystal 26 was brought into contact with the melt of the single crystal raw material. Then, the seed crystal 26 is pulled up at a rotation speed of 19 rpm at a pulling rate of 1.5 mm / hour,
The diameter of the single crystal is increased by gradually lowering the temperature of the melt of the single crystal raw material at the shoulder so that the diameter of the single crystal becomes 55 mm in terms of a cylinder, that is, a weight increasing rate of 30.2 g / hour. Thus, a single crystal was grown while adjusting the output of the high frequency oscillator. Thereafter, the straight body portion of the single crystal was pulled for 30 hours, the single crystal was separated from the melt of the single crystal raw material, and gradually cooled. As shown in FIG. 6, the cross-sectional shape of the pulled single crystal was a shape close to a rectangle with two hexagonal corners.

【0010】(比較例1)実施例1と同様のホットゾー
ン16を有する単結晶の製造装置10と、実施例1と同
じ単結晶原料20および種結晶26とを使用した。ただ
し、比較例1では、製造装置において、反射板を設けて
いない。まず、種結晶を単結晶原料の融液に接触させ
た。そして、回転数19rpmで引上げ速度1.5mm
/時間で種結晶の引上げを行い、肩部において徐々に単
結晶原料の融液の温度を下げることによって単結晶の直
径を大きくした。また、円柱換算で単結晶の直径が55
mmとなるようにすなわち30.2g/時間の重量増加
速度になるように、単結晶を育成した。その後、30時
間単結晶の直胴部の引上げを行い、単結晶を単結晶原料
の融液から切り離して徐冷した。引き上げた単結晶は、
6角柱状であり、直胴部における直径の最大値は60.
0mmで最小値は52.0mmであった。
Comparative Example 1 A single crystal manufacturing apparatus 10 having the same hot zone 16 as in Example 1 and the same single crystal raw material 20 and seed crystal 26 as in Example 1 were used. However, in Comparative Example 1, no reflector is provided in the manufacturing apparatus. First, the seed crystal was brought into contact with the melt of the single crystal raw material. And, the rotation speed is 19 rpm and the pulling speed is 1.5 mm.
The seed crystal was pulled up for every hour, and the diameter of the single crystal was increased by gradually lowering the temperature of the melt of the single crystal raw material at the shoulder. Also, the diameter of the single crystal is 55
The single crystal was grown to have a weight gain of 30.2 g / hour. Thereafter, the straight body portion of the single crystal was pulled for 30 hours, the single crystal was separated from the melt of the single crystal raw material, and gradually cooled. The pulled single crystal is
It has a hexagonal prism shape, and the maximum diameter of the straight body is 60.
At 0 mm, the minimum value was 52.0 mm.

【0011】上述のように、反射板を設けていない比較
例1では、6角柱状の単結晶が製造されてしまうが、反
射板を設けた実施例1では、円柱に近い角柱状の単結晶
を製造することができた。そのため、実施例1によれ
ば、製造された単結晶から円板状のウエハを採取する際
に効率がよい。また、実施例2では、6角形の2つの角
が取れた長方形に近い形状の単結晶を製造することがで
きた。
As described above, in Comparative Example 1 in which the reflector is not provided, a hexagonal columnar single crystal is produced, but in Example 1 in which the reflector is provided, the columnar single crystal close to the column is formed. Could be manufactured. Therefore, according to Example 1, the efficiency is high when a disk-shaped wafer is sampled from the manufactured single crystal. In addition, in Example 2, a single crystal having a shape close to a rectangle in which two corners of a hexagon were removed could be manufactured.

【0012】なお、上述の実施例1では6枚の反射板が
放射状に配置されているが、この発明では、反射板は、
製造される単結晶の径方向への成長を抑えたい方位に対
応させて配置されればよい。このように単結晶の径方向
の成長を抑えるために単結晶の上部の放熱を抑えるに
は、1枚または複数枚の反射板を単結晶の上部の円錐部
に向けて配置し、単結晶引上げ軸自体に反射板を保持す
る機構を設けて、この機構で反射板を保持し、単結晶と
共に反射板を回転すればよい。たとえば、図4に示すよ
うに、2枚の反射板30が、単結晶の上部の円錐部に対
向するように、2つの支持部材28を介して単結晶引上
げ軸22に取り付けられてもよい。また、反射板は、単
結晶の側面部からの放熱も抑えるために、単結晶の半径
方向の外側にまで達して、単結晶の側面に対向している
ことが好ましい。
In the first embodiment, the six reflectors are arranged radially, but in the present invention, the reflectors are
It may be arranged so as to correspond to the direction in which it is desired to suppress the growth of the manufactured single crystal in the radial direction. In order to suppress the heat radiation of the upper part of the single crystal in order to suppress the radial growth of the single crystal as described above, one or more reflectors are arranged toward the conical part of the upper part of the single crystal and the single crystal is pulled up. It suffices to provide a mechanism for holding the reflector on the shaft itself, hold the reflector by this mechanism, and rotate the reflector together with the single crystal. For example, as shown in FIG. 4, the two reflectors 30 may be attached to the single crystal pulling shaft 22 via the two supporting members 28 so as to face the upper conical portion of the single crystal. Further, in order to suppress heat radiation from the side surface portion of the single crystal, it is preferable that the reflection plate reach the outer side in the radial direction of the single crystal and face the side surface of the single crystal.

【0013】[0013]

【発明の効果】この発明によれば、チョクラルスキー法
による単結晶の製造において、所望のウエハ断面形状を
持つ単結晶を製造することができる。
According to the present invention, in the production of a single crystal by the Czochralski method, a single crystal having a desired wafer sectional shape can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる単結晶の製造装置の一例を示
す図解図である。
FIG. 1 is an illustrative view showing an example of an apparatus for producing a single crystal according to the present invention.

【図2】図1に示す単結晶の製造装置に用いられる反射
板を示す図解図である。
FIG. 2 is an illustrative view showing a reflector used in the apparatus for producing a single crystal shown in FIG.

【図3】図2に示す反射板の平面図である。FIG. 3 is a plan view of the reflector shown in FIG.

【図4】この発明にかかる単結晶の製造装置に用いられ
る反射板の他の例を示す図解図である。
FIG. 4 is an illustrative view showing another example of the reflector used in the single crystal manufacturing apparatus according to the present invention.

【図5】図4に示す反射板の平面図である。5 is a plan view of the reflector shown in FIG. 4. FIG.

【図6】図4および図5に示す反射板を用いた単結晶の
製造装置で製造された単結晶を示す断面図解図である。
6 is a schematic sectional view showing a single crystal manufactured by the single crystal manufacturing apparatus using the reflector shown in FIGS. 4 and 5. FIG.

【図7】反射板のさらに他の例を示す斜視図である。FIG. 7 is a perspective view showing still another example of the reflection plate.

【符号の説明】[Explanation of symbols]

10 単結晶の製造装置 12 チャンバー 14 高周波誘導コイル 16 ホットゾーン 18 坩堝 20 単結晶原料 22 単結晶引上げ軸 24 種結晶保持具 26 種結晶 28 支持部材 30 反射板 10 Single crystal manufacturing equipment 12 chambers 14 High frequency induction coil 16 hot zones 18 crucible 20 Single crystal raw material 22 Single crystal pulling shaft 24 seed crystal holder 26 seed crystals 28 Support member 30 reflector

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法による単結晶の製造
装置において、 反射板が、単結晶と同期して回転するように、単結晶の
上部にかつ単結晶引上げ軸の周方向であって単結晶から
の放熱が抑制される位置に部分的に配置されていること
を特徴とする、単結晶の製造装置。
1. An apparatus for producing a single crystal by the Czochralski method, wherein the reflecting plate is above the single crystal and in the circumferential direction of the single crystal pulling axis so that the reflecting plate rotates in synchronization with the single crystal. An apparatus for producing a single crystal, characterized in that it is partially arranged at a position where heat radiation from the is suppressed.
【請求項2】 前記反射板は前記単結晶引上げ軸に設け
られている、請求項1に記載の単結晶の製造装置。
2. The single crystal manufacturing apparatus according to claim 1, wherein the reflector is provided on the single crystal pulling shaft.
【請求項3】 前記反射板は貴金属製である、請求項1
または請求項2に記載の単結晶の製造装置。
3. The reflector is made of a noble metal.
Alternatively, the apparatus for producing a single crystal according to claim 2.
【請求項4】 請求項1ないし請求項3のいずれかに記
載の単結晶の製造装置を用いて単結晶を製造する、単結
晶の製造方法。
4. A method for producing a single crystal, which comprises using the apparatus for producing a single crystal according to claim 1.
【請求項5】 前記単結晶は酸化物である、請求項4に
記載の単結晶の製造方法。
5. The method for producing a single crystal according to claim 4, wherein the single crystal is an oxide.
【請求項6】 前記単結晶はLa3 Ga5 SiO14単結
晶である、請求項4に記載の単結晶の製造方法。
6. The method for producing a single crystal according to claim 4, wherein the single crystal is a La 3 Ga 5 SiO 14 single crystal.
JP2001324487A 2001-10-23 2001-10-23 Method for producing and apparatus for producing single crystal Pending JP2003128496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324487A JP2003128496A (en) 2001-10-23 2001-10-23 Method for producing and apparatus for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324487A JP2003128496A (en) 2001-10-23 2001-10-23 Method for producing and apparatus for producing single crystal

Publications (1)

Publication Number Publication Date
JP2003128496A true JP2003128496A (en) 2003-05-08

Family

ID=19141208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324487A Pending JP2003128496A (en) 2001-10-23 2001-10-23 Method for producing and apparatus for producing single crystal

Country Status (1)

Country Link
JP (1) JP2003128496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120789A (en) * 2008-11-18 2010-06-03 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal
WO2012090951A1 (en) * 2010-12-27 2012-07-05 住友金属工業株式会社 DEVICE FOR PRODUCING SiC SINGLE CRYSTALS, JIG USED IN SAID PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTALS
CN107604432A (en) * 2017-10-30 2018-01-19 中国电子科技集团公司第四十六研究所 A kind of thermal field structure of EFG technique large scale gallium oxide single crystal grower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120789A (en) * 2008-11-18 2010-06-03 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal
WO2012090951A1 (en) * 2010-12-27 2012-07-05 住友金属工業株式会社 DEVICE FOR PRODUCING SiC SINGLE CRYSTALS, JIG USED IN SAID PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTALS
CN107604432A (en) * 2017-10-30 2018-01-19 中国电子科技集团公司第四十六研究所 A kind of thermal field structure of EFG technique large scale gallium oxide single crystal grower

Similar Documents

Publication Publication Date Title
US20120118228A1 (en) Sapphire ingot grower
CN213866492U (en) Device for preparing high-quality and large-size silicon carbide single crystal
US8597756B2 (en) Resistance heated sapphire single crystal ingot grower, method of manufacturing resistance heated sapphire single crystal ingot, sapphire single crystal ingot, and sapphire wafer
CN101445954A (en) Method for controlling temperature gradient and thermal history of a crystal-melt interface in growth process of czochralski silicon monocrystal
JPH10101482A (en) Production unit for single crystal silicon and its production
JP2011195414A (en) Method for growing single crystal silicon having square cross section and silicon wafer having square section
JPH0769775A (en) Method and device for producing rod or ingot from semiconductor material expanded by crystallization of melt produced from granular substance upon solidification
WO2014129414A1 (en) Sapphire single crystal core and production method therefor
JP2019147698A (en) Apparatus and method for growing crystal
JP2003128496A (en) Method for producing and apparatus for producing single crystal
JP2004224663A (en) Apparatus for growing single crystal
JP2003286024A (en) Unidirectional solidified silicon ingot and manufacturing method thereof, silicon plate, substrate for solar cell and target base material for sputtering
JPH09328394A (en) Production of oxide single crystal
CN110306238A (en) A kind of crystal growing apparatus and growing method
CN114875478A (en) Heater and single crystal furnace
JPH0733587A (en) Production of single crystal and apparatus for pulling up single crystal
JP2010265150A (en) Method for producing sapphire single crystal and method for producing seed crystal
JP6593157B2 (en) Method for growing lithium tantalate single crystals
JP2000327487A (en) Method and apparatus for producing crystalline silicon
CN217869174U (en) Silicon carbide crystal growth furnace with uniform crystal thickness
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
CN219032461U (en) Crucible for silicon carbide single crystal growth and silicon carbide single crystal growth system
JP7106978B2 (en) CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD
JPH11274537A (en) Manufacture of polycrystalline silicon of large grain size