JP2003124240A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2003124240A
JP2003124240A JP2001314895A JP2001314895A JP2003124240A JP 2003124240 A JP2003124240 A JP 2003124240A JP 2001314895 A JP2001314895 A JP 2001314895A JP 2001314895 A JP2001314895 A JP 2001314895A JP 2003124240 A JP2003124240 A JP 2003124240A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor
resin
semiconductor device
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001314895A
Other languages
Japanese (ja)
Inventor
Masashi Ogawa
正志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001314895A priority Critical patent/JP2003124240A/en
Publication of JP2003124240A publication Critical patent/JP2003124240A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device which is constituted by a package structure in which the number of using parts is small and an underfill with a resin is unnecessary after a user mounted. SOLUTION: In a method for manufacturing a semiconductor device, after a groove 3 is formed on a semiconductor wafer 1 having all electrodes 2 on the same plane by a chemical or mechanical polishing method, sealing is performed with a resin 4. Further, after the sealing with the resin, a flat part of the electrode 2 is exposed by a mechanical polishing method and a lower surface electrode 5 is newly formed on the exposed electrode. Finally, after separated into individual pieces by dicing-cutting, inspection and taping are performed to manufacture the semiconductor element.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体装置の製造
方法に関するものであり、特に実装面積を小さくする半
導体装置の電極形成方法に係わるものである。 【0002】 【従来の技術】従来の半導体装置の製造方法は、図3の
製造工程図および図4の各工程仕掛かり状態図に示すよ
うに、半導体基板に電極2を有する半導体ウェーハ1を
ダイシングカットして個々の半導体チップに分離する工
程、次に前記半導体チップをリードフレーム6にダイボ
ンドする工程、次に前記半導体チップ上の電極2とリー
ドフレーム6のリード部を金ワイヤー7でワイヤーボン
ドする工程、次に前記半導体チップ部とワイヤーボンド
部を樹脂4で封止する工程、次に前記リードの樹脂部4
から出た外部リード部をリードめっきする工程、次に前
記リード部を加工しカットして個々の半導体装置に分離
する工程、次に前記半導体装置を検査し且つテーピング
する工程とからなる半導体装置の製造方法であった。 【0003】 【発明が解決しようとする課題】このような従来の半導
体装置の製造方法では、リードフレーム、ボンディング
ワイヤーの他インターポーザー・キャリアなど使用され
るパーツ点数が多い構成の半導体装置になってしまうの
で、製造工程も必然的に長くなって従って製造コスト高
となり、また小型化の実現にも限界があった。そしてま
た、このような半導体装置が使用されるユーザ側での回
路基板実装後には、機械的ストレスの回避や信頼性確保
の為に、樹脂によるアンダーフィルなどの保護が必要で
あるという手数の掛かる問題もあった。 【0004】一方、昨今の半導体装置においては、益々
一層小型化と高信頼性が要求されていて、上述したよう
な問題のない半導体装置が切望されているのである。 【0005】そこで、本発明が解決しようとする課題
は、使用パーツ点数が多くならず、また、ユーザでの実
装後樹脂によるアンダーフィルなど必要のないパッケー
ジ構成からなる半導体装置の製造方法を提案することに
ある。 【0006】 【課題を解決するための手段】この課題を解決するため
に本発明は、同一面上に全ての電極を有する半導体ウェ
ーハを研磨して溝を形成する工程、次に前記電極および
溝を樹脂で封止する工程、次に前記樹脂封止部を研磨し
て前記電極の表面平坦部を露出させる工程、次に前記露
出電極面上に下面電極を形成する工程、次に前記溝およ
び下面電極が形成されたウエーハをダイシングカットし
て個々の半導体チップに分離する工程、次に前記半導体
チップを検査し且つテーピングする工程とからなる半導
体装置の製造方法である。 【0007】このため、このようにして完成する半導体
装置は、溝により樹脂が半導体を覆う構造となり、半導
体チップの側面における半導体の露出を極力削減する作
用がある。 【0008】 【発明の実施の形態】以下、本発明の実施の形態につい
て、図1及び図2を用いて詳しく説明する。 【0009】(実施の形態1)図1は、本発明による一
実施の形態を示す半導体装置の製造工程図である。 【0010】図2は、上記製造工程図の各工程での仕掛
かり状態を、ウェーハ中の一半導体素子の拡大断面図で
もって示したものであり、符号は各工程共通で、1は半
導体ウェーハ、2は電極、3は溝、4は樹脂、5は下面
電極である。 【0011】図1の製造工程の各工程を図2の仕掛かり
断面図と共に詳しく説明すると、図2(a)の断面図
は、図1の「電極形成済みウェーハ」工程の説明図であ
って、直径4in、厚み400μmのSi半導体基板1
の片面上に、全ての電極2が形成されていて、多数個の
半導体素子からなるウェーハの中の一個の半導体素子を
示している。 【0012】電極2のサイズは、200μm×150μ
m、電極の形成方法は真空蒸着法を用いて形成したが、
めっき法やワイヤーバンピングなどを用いてもよい。 【0013】次に、図2(b)の断面図は、図1の「溝
形成」工程の説明図であって、前記電極形成済みウェー
ハに、化学的研磨方法で各半導体素子の間に深さ約50
μm、幅150μmの溝3を形成する工程である。 【0014】ここで、化学的研磨方法は薬品やガスによ
るエッチング法を採用したが、機械的研磨方法でダイシ
ングカット法を採用してもよい。 【0015】次に、図2(c)の断面図は、図1の「樹
脂封止」工程の説明図であって、前記溝3形成済みウェ
ーハの全面を樹脂4で封止する工程である。樹脂材質は
エポキシ樹脂、樹脂封止厚みは電極2厚みより大きく1
00μmであって、封止方法は金型を用いたトランスフ
ァモールドや液状樹脂による印刷法によるものである。 【0016】次に、図2(d)の断面図は、図1の「樹
脂研磨」工程の説明図であって、前記樹脂封止済みウェ
ーハの樹脂表面をグラインダによる機械的研磨方法で研
磨して、電極2の表面平坦部を露出させた状態である。 【0017】次に、図2(e)の断面図は、図1の「下
面電極形成」工程であって、前記平坦露出電極上に下面
電極5を形成するもので、形成方法はめっき方法を採用
したが、ディップ方法でもよい。 【0018】次に、図1の「ダイシングカット」工程
は、前記下面電極形成済みウェーハを各半導体素子1個
1個に分離する工程である。カット方法はダイヤモンド
ブレードダイシングで、カット分離された半導体素子チ
ップの大きさは、横1.0mm×縦0.5mm×厚み
0.4mmである。 【0019】そして最後の、図1の「検査/テーピン
グ」工程は、前記半導体素子チップが1個1個検査され
ながら同時にテーピング包装される工程である。 【0020】このようにして製造される半導体チップ
は、従来の半導体パッケージに使用されるリードフレー
ム、ワイヤーの他インターポーザー・キャリアなどを一
切使用せずにパッケージが構成されるので、使用パーツ
点数が少ないパッケージ構成になり、低コスト化と小型
化を実現できる。 【0021】また、このような半導体チップは、ユーザ
側でプリント基板に表面実装される際、図5に断面図で
示したようなインターポーザー8を介して基板10には
んだ付け後樹脂によるアンダーフィル9を施して補強し
ている現状を、図6に断面図で示したようにインターポ
ーザーもアンダーフィルも必要ない状態の実装方法に改
善できるので、本チップを使用する部品実装メーカーに
とって作業能率が大きくアップでき、コスト低減を実現
できる。 【0022】なお、以上の説明ではダイオードの2端子
で構成したものを示したが、その他の半導体装置につい
ても同様に実施可能である。 【0023】 【発明の効果】以上のように本発明の半導体装置の製造
方法によれば、同一面上に全電極を有する半導体ウェー
ハに、溝を形成した後、樹脂封止を行い、その後電極の
平坦部を露出させ、この電極上に下面電極を形成し、そ
の後ダイシングカットにより個々に分離、検査およびテ
ーピングを行い半導体素子を製造し半導体装置を形成す
る製造方法であるから、従来の半導体パッケージに使用
されるリードフレーム、ワイヤーの他インターポーザー
・キャリアなどを一切使用せずにパッケージが構成でき
ると共に、下面に下面電極のみが露出する構造の為、ユ
ーザでの実装後、樹脂によるアンダーフィルなどが不要
になるなど、メーカー、ユーザー両方にとって大変有利
な効果をもたらす発明である。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming an electrode of a semiconductor device which reduces a mounting area. 2. Description of the Related Art A conventional method for manufacturing a semiconductor device is to dice a semiconductor wafer 1 having an electrode 2 on a semiconductor substrate, as shown in a manufacturing process diagram of FIG. A step of cutting and separating into individual semiconductor chips, then a step of die-bonding the semiconductor chip to a lead frame 6, and then wire bonding the electrodes 2 on the semiconductor chip and the leads of the lead frame 6 with gold wires 7. A step of sealing the semiconductor chip portion and the wire bond portion with a resin 4;
A step of lead plating an external lead portion coming out of the semiconductor device, then a step of processing and cutting the lead portion to separate the semiconductor device into individual semiconductor devices, and a step of inspecting and taping the semiconductor device. It was a manufacturing method. [0003] In such a conventional method for manufacturing a semiconductor device, a semiconductor device having a large number of parts used, such as a lead frame, a bonding wire, and an interposer carrier, is obtained. As a result, the manufacturing process is inevitably lengthened, so that the manufacturing cost is increased, and there is a limit in realizing miniaturization. In addition, after mounting the circuit board on the user side in which such a semiconductor device is used, it is troublesome to protect the resin from underfill or the like in order to avoid mechanical stress and secure reliability. There were also problems. On the other hand, in recent semiconductor devices, further miniaturization and higher reliability have been demanded, and a semiconductor device which does not have the above-mentioned problems has been eagerly desired. Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor device having a package structure in which the number of parts used does not increase and the user does not need to underfill with resin after mounting. It is in. SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides a method of forming a groove by polishing a semiconductor wafer having all electrodes on the same surface, and then forming the electrode and the groove. A step of exposing a flat surface portion of the electrode by polishing the resin sealing portion, then a step of forming a lower surface electrode on the exposed electrode surface, then the groove and A method for manufacturing a semiconductor device, comprising: a step of dicing and cutting a wafer on which a lower electrode is formed to separate the wafer into individual semiconductor chips; and a step of inspecting and taping the semiconductor chips. For this reason, the semiconductor device completed in this way has a structure in which the resin covers the semiconductor with the groove, and has an effect of minimizing the exposure of the semiconductor on the side surface of the semiconductor chip. An embodiment of the present invention will be described below in detail with reference to FIGS. 1 and 2. (First Embodiment) FIG. 1 is a manufacturing process diagram of a semiconductor device according to an embodiment of the present invention. FIG. 2 shows an in-process state in each step of the above-mentioned manufacturing process diagram in an enlarged cross-sectional view of one semiconductor element in the wafer. 2 is an electrode, 3 is a groove, 4 is a resin, and 5 is a lower surface electrode. Each step of the manufacturing process shown in FIG. 1 will be described in detail with reference to the in-process cross-sectional view of FIG. 2. The cross-sectional view of FIG. Semiconductor substrate 1 having a diameter of 4 inches and a thickness of 400 μm
All the electrodes 2 are formed on one surface of the wafer, and one semiconductor element in a wafer composed of a large number of semiconductor elements is shown. The size of the electrode 2 is 200 μm × 150 μm.
m, the electrode was formed using a vacuum deposition method,
A plating method, wire bumping, or the like may be used. FIG. 2B is a sectional view of the "groove forming" step shown in FIG. 1. The wafer having the electrodes formed thereon is deeply interposed between the semiconductor elements by a chemical polishing method. About 50
In this step, a groove 3 having a width of 150 μm is formed. Here, the chemical polishing method is an etching method using a chemical or a gas, but a dicing cut method may be used as a mechanical polishing method. Next, the cross-sectional view of FIG. 2C is an explanatory view of the “resin sealing” step of FIG. 1 and is a step of sealing the entire surface of the wafer having the groove 3 formed therein with the resin 4. . Resin material is epoxy resin, resin sealing thickness is larger than electrode 2 thickness 1
The sealing method is a transfer mold using a mold or a printing method using a liquid resin. FIG. 2D is a cross-sectional view of the "resin polishing" step shown in FIG. 1. The resin surface of the resin-sealed wafer is polished by a mechanical polishing method using a grinder. Thus, a flat surface portion of the electrode 2 is exposed. Next, the cross-sectional view of FIG. 2 (e) shows the "lower electrode forming" step of FIG. 1, in which the lower electrode 5 is formed on the flat exposed electrode. Although adopted, a dip method may be used. Next, the "dicing cut" step of FIG. 1 is a step of separating the wafer on which the lower electrode has been formed into individual semiconductor elements. The cutting method is diamond blade dicing, and the size of the semiconductor element chip cut and separated is 1.0 mm wide × 0.5 mm long × 0.4 mm thick. Finally, the "inspection / taping" step of FIG. 1 is a step in which the semiconductor element chips are inspected one by one and simultaneously taped and packaged. The semiconductor chip manufactured in this way is packaged without using any interposer carrier other than the lead frame and wires used in the conventional semiconductor package. The package configuration is small, so that cost reduction and miniaturization can be realized. When such a semiconductor chip is surface-mounted on a printed circuit board on the user side, the semiconductor chip is soldered to the board 10 via an interposer 8 as shown in the sectional view of FIG. As shown in the cross-sectional view of FIG. 6, the current situation of reinforcement by applying 9 can be improved to a mounting method that does not require an interposer or an underfill. The cost can be greatly increased and the cost can be reduced. Although the above description has been made with reference to a configuration including two terminals of a diode, the present invention can be similarly applied to other semiconductor devices. As described above, according to the method of manufacturing a semiconductor device of the present invention, after a groove is formed in a semiconductor wafer having all electrodes on the same surface, resin sealing is performed, and then the electrode is formed. Is a manufacturing method in which a lower surface electrode is formed on this electrode, and then separated, inspected and taped individually by dicing cut to manufacture a semiconductor element to form a semiconductor device. The package can be configured without using any interposer / carrier other than the lead frame and wire used for the device, and the structure where only the lower electrode is exposed on the lower surface allows for underfill with resin after mounting by the user. This is an invention that has a very advantageous effect for both manufacturers and users, such as eliminating the need for.

【図面の簡単な説明】 【図1】本発明の一実施の形態による半導体装置の製造
工程図 【図2】(a)は、「電極形成済みウェーハ」工程での
仕掛かり状態でウェーハの中の一半導体素子の断面図 (b)は、「溝形成」工程での仕掛かり状態で、同様に
一半導体素子の断面図 (c)は、「樹脂封止」工程での仕掛かり状態で、同様
一素子の断面図 (d)は、「樹脂研磨」工程での仕掛かり状態で、同様
一素子の断面図 (e)は、「下面電極形成」工程での仕掛かり状態で、
一素子の断面図 【図3】従来における半導体装置の製造工程図 【図4】(a)は、「ダイシングカット」工程の仕掛か
り状態で、ウェーハからカットされた一半導体素子の断
面図 (b)は、「ダイボンド」工程の仕掛かり状態で、同様
に一素子の断面図 (c)は、「ワイヤーボンド」工程の仕掛かり状態で、
同様一素子の断面図 (d)は、「樹脂封止」工程の仕掛かり状態で、同様一
半導体素子の断面図 【図5】インターポーザーを介して基板にはんだ付け後
アンダーフィルを施して補強している現状断面図 【図6】インターポーザーもアンダーフィルも必要ない
本発明半導体装置使用の実装断面図 【符号の説明】 1 半導体ウェーハ 2 電極 3 溝 4 樹脂 5 下面電極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a manufacturing process of a semiconductor device according to an embodiment of the present invention. FIG. 2 (a) shows an in-process wafer in an “electrode-formed wafer” process. A cross-sectional view (b) of one semiconductor element is a state in progress in a “groove formation” step, and a cross-sectional view (c) of one semiconductor element is a state in progress in a “resin sealing” step. Similarly, a cross-sectional view (d) of one element is a state in progress in a “resin polishing” process, and a cross-sectional view (e) of the same element is a state in progress in a “formation of lower electrode” step.
FIG. 3A is a cross-sectional view of one semiconductor element cut from a wafer in a state in which a “dicing cut” process is in progress, and FIG. ) Is the state in process of the “die bonding” step, and similarly, the cross-sectional view of one element is the state in progress of the “wire bonding” step.
Similarly, the cross-sectional view (d) of one element is a cross-sectional view of the same semiconductor element in a state of the "resin sealing" process in progress. [FIG. 5] Reinforcement by soldering to a substrate via an interposer and then underfilling [FIG. 6] Mounting cross-sectional view using the semiconductor device of the present invention which does not require an interposer or underfill [Description of reference numerals] 1 Semiconductor wafer 2 Electrode 3 Groove 4 Resin 5 Lower electrode

Claims (1)

【特許請求の範囲】 【請求項1】同一面上に全ての電極を有する半導体ウェ
ーハを研磨して溝を形成する工程、次に前記電極および
溝を樹脂で封止する工程、次に前記樹脂封止部を研磨し
て前記電極の表面平坦部を露出させる工程、次に前記露
出電極面上に下面電極を形成する工程、次に前記溝およ
び下面電極が形成されたウエーハをダイシングカットし
て個々の半導体チップに分離する工程、次に前記半導体
チップを検査し且つテーピングする工程とからなること
を特徴とする半導体装置の製造方法。
Claims: 1. A step of forming a groove by polishing a semiconductor wafer having all electrodes on the same surface, a step of sealing the electrode and the groove with a resin, and a step of sealing the resin with the resin. Polishing a sealing portion to expose a flat surface of the electrode, then forming a lower surface electrode on the exposed electrode surface, and then dicing and cutting the wafer on which the groove and the lower surface electrode are formed. A method of manufacturing a semiconductor device, comprising: a step of separating the semiconductor chips into individual semiconductor chips; and a step of inspecting and taping the semiconductor chips.
JP2001314895A 2001-10-12 2001-10-12 Method for manufacturing semiconductor device Pending JP2003124240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314895A JP2003124240A (en) 2001-10-12 2001-10-12 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314895A JP2003124240A (en) 2001-10-12 2001-10-12 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2003124240A true JP2003124240A (en) 2003-04-25

Family

ID=19133141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314895A Pending JP2003124240A (en) 2001-10-12 2001-10-12 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2003124240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419981C (en) * 2004-05-28 2008-09-17 株式会社迪斯科 Processing method for forming electrode on plate-shape article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419981C (en) * 2004-05-28 2008-09-17 株式会社迪斯科 Processing method for forming electrode on plate-shape article

Similar Documents

Publication Publication Date Title
US7271466B2 (en) Semiconductor device with sidewall wiring
EP1360882B1 (en) Method of making a stackable microcircuit layer strating from a plastic encapsulated microcircuit
JP3420057B2 (en) Resin-sealed semiconductor device
US7335986B1 (en) Wafer level chip scale package
US6566168B2 (en) Semiconductor package having implantable conductive lands and method for manufacturing the same
US7919875B2 (en) Semiconductor device with recess portion over pad electrode
US6720206B2 (en) Method for manufacturing digital micro-mirror device (DMD) packages
JP3128878B2 (en) Semiconductor device
TW201644024A (en) Chip packaging structure and manufacture method thereof
JP2008244437A (en) Image sensor package having die receiving opening and method thereof
JPH07169796A (en) Semiconductor device and its manufacture
JP2002343924A (en) Semiconductor device and manufacturing method therefor
JP2003273279A (en) Semiconductor device and its manufacturing method
JP2004071961A (en) Compound module and manufacturing method thereof
JP3189799B2 (en) Method for manufacturing semiconductor device
JP2005294443A (en) Semiconductor device and its manufacturing method
US20100136747A1 (en) Method for manufacturing semiconductor package
JP2002134651A (en) Baseless semiconductor device and its manufacturing method
JP2003124240A (en) Method for manufacturing semiconductor device
JP2003188312A (en) Semiconductor device, laminated semiconductor unit, and its manufacturing method
JPH05326618A (en) Semiconductor device
JPH09330992A (en) Semiconductor device mounting body and its manufacture
KR100388288B1 (en) manufacturing method of semiconductor package
JP2003174107A (en) Method of assembling closed-type electronic component and enclosed saw filter
KR100704311B1 (en) Semiconductor chip package having exposed inner lead and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

A131 Notification of reasons for refusal

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040408

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511