JP2003121522A - Thin-film magnetic field sensor - Google Patents

Thin-film magnetic field sensor

Info

Publication number
JP2003121522A
JP2003121522A JP2001315935A JP2001315935A JP2003121522A JP 2003121522 A JP2003121522 A JP 2003121522A JP 2001315935 A JP2001315935 A JP 2001315935A JP 2001315935 A JP2001315935 A JP 2001315935A JP 2003121522 A JP2003121522 A JP 2003121522A
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
current
terminals
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001315935A
Other languages
Japanese (ja)
Other versions
JP4204775B2 (en
JP2003121522A5 (en
Inventor
Nobukiyo Kobayashi
伸聖 小林
Takeshi Yano
健 矢野
Kiwamu Shirakawa
究 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Electric and Magnetic Alloys
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute of Electric and Magnetic Alloys
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001315935A priority Critical patent/JP4204775B2/en
Application filed by Research Institute of Electric and Magnetic Alloys, Research Institute for Electromagnetic Materials filed Critical Research Institute of Electric and Magnetic Alloys
Priority to CNB018032648A priority patent/CN100403048C/en
Priority to AT01978911T priority patent/ATE434192T1/en
Priority to DE60139017T priority patent/DE60139017D1/en
Priority to TW090126413A priority patent/TW550394B/en
Priority to KR1020027008326A priority patent/KR100687513B1/en
Priority to PCT/JP2001/009385 priority patent/WO2002037131A1/en
Priority to EP01978911A priority patent/EP1329735B1/en
Priority to US10/225,794 priority patent/US6642714B2/en
Publication of JP2003121522A publication Critical patent/JP2003121522A/en
Publication of JP2003121522A5 publication Critical patent/JP2003121522A5/ja
Application granted granted Critical
Publication of JP4204775B2 publication Critical patent/JP4204775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin-film magnetic field sensor, using a large magnetic field resistance thin-film that eliminates measurement errors by residual magnetization, and accurately concurrently measure the strength and the direction of magnetic field. SOLUTION: The large magnetic field resistance thin-film 12 is formed between the terminals of two pieces of sensor base elements 3 via a conductor film 11. Each of soft magnetic thin films 1 is connected to the terminals 13, 14, 15, 16. A constant voltage is applied to the terminals 13, 15 in these terminals as input terminals, and then a voltage is measured with terminals 14, 16 as an output terminal. That is, a bridge circuit, that electrically forms the sensor base element 3 and the large magnetic field resistance thin-film 12 as arms, is formed. The large magnetic field resistance thin-film 12 is magnetically separated from the soft magnetic thin films 1, and then the variation of a resistance value between the sensor basic elements 3 appears, as it is, as the voltage variance between the output terminals 14, 16. A coil 7 and a terminal 8 are formed with spiraling these sensor base elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空間中の磁界を測
定する磁界センサに関し、巨大磁気抵抗薄膜、例えばナ
ノグラニュラー巨大磁気抵抗効果薄膜を用いて、磁界の
大きさと方向を精密に測定するための薄膜磁界センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field sensor for measuring a magnetic field in space, which is used for precisely measuring the magnitude and direction of a magnetic field using a giant magnetoresistive thin film, for example, a nano-granular giant magnetoresistive thin film. The present invention relates to a thin film magnetic field sensor.

【0002】[0002]

【従来の技術】図1は、本発明者らが出願した特開平1
1−87804号公報および特開平11−274599
号公報に記載された薄膜磁界センサを示す。図中、巨大
磁気抵抗薄膜と書かれた部分は、10kOeの磁界の印
加に対して、約10%の大きな電気抵抗変化を示す金属
−絶縁体ナノグラニュラー巨大磁気抵抗薄膜である。こ
の例のように、巨大磁気抵抗薄膜の場合には、一般の磁
気抵抗効果材料に比して印加磁界に対する電気抵抗値の
変化幅は大きいが、前記の通り電気抵抗変化を起こさせ
るための印加磁界は大きいので、巨大磁気抵抗薄膜のみ
を単独で用いる場合には、一般に磁界センサとして利用
されるような100Oe以下の小さな磁界での電気抵抗
値の変化は期待できない。図1の構成は、それを補うも
のである。すなわち、軟磁性薄膜は周辺の磁束を集める
役割を担っており、適切な軟磁性薄膜の寸法を選定する
ことにより、原理的には、軟磁性薄膜周辺の磁界の大小
に拘わらず、巨大磁気抵抗薄膜部分に対して軟磁性薄膜
の飽和磁束密度以内で、いかようにも大きな磁束密度を
印加することが可能である。また、図1の構成を電気抵
抗の観点から見ると、軟磁性薄膜間の電気抵抗値は、軟
磁性薄膜部分と巨大磁気抵抗薄膜部分の電気抵抗値の和
になっているが、巨大磁気抵抗薄膜の電気比抵抗の値
は、軟磁性薄膜のそれに比して100倍以上大きいた
め、実質的に軟磁性薄膜間の電気抵抗値は巨大磁気抵抗
薄膜部分の値とほぼ等しい。つまり、軟磁性薄膜間の電
気抵抗値には、巨大磁気抵抗薄膜の大きな電気抵抗値変
化が直接現れる。図2は、このような図1の構成の電気
抵抗変化の例を示すものであり、数Oeの小さな磁界に
おいて約6%の電気抵抗値変化を実現しており、従来材
料である異方的磁気抵抗効果材料に比して2倍以上大き
い。
2. Description of the Related Art FIG. 1 is a patent application filed by the present inventors.
1-87804 and JP-A-11-274599.
2 shows a thin film magnetic field sensor disclosed in Japanese Patent Publication No. In the figure, a portion written as a giant magnetoresistive thin film is a metal-insulator nanogranular giant magnetoresistive thin film that exhibits a large electric resistance change of about 10% when a magnetic field of 10 kOe is applied. As in this example, in the case of a giant magnetoresistive thin film, the change width of the electric resistance value with respect to the applied magnetic field is larger than that of a general magnetoresistive material, but as described above, the application for causing the electric resistance change occurs. Since the magnetic field is large, when only the giant magnetoresistive thin film is used alone, it is not possible to expect a change in the electric resistance value in a small magnetic field of 100 Oe or less, which is generally used as a magnetic field sensor. The configuration of FIG. 1 supplements it. That is, the soft magnetic thin film plays a role of collecting magnetic flux in the periphery, and by selecting an appropriate size of the soft magnetic thin film, in principle, regardless of the magnitude of the magnetic field around the soft magnetic thin film, the giant magnetic resistance It is possible to apply a high magnetic flux density to the thin film portion within the saturation magnetic flux density of the soft magnetic thin film. From the viewpoint of electric resistance in the configuration of FIG. 1, the electric resistance value between the soft magnetic thin films is the sum of the electric resistance values of the soft magnetic thin film portion and the giant magnetoresistive thin film portion. Since the electric resistivity of the thin film is 100 times or more larger than that of the soft magnetic thin film, the electric resistance value between the soft magnetic thin films is substantially equal to the value of the giant magnetoresistive thin film portion. That is, a large change in the electric resistance of the giant magnetoresistive thin film directly appears in the electric resistance between the soft magnetic thin films. FIG. 2 shows an example of the electric resistance change of the structure of FIG. 1 as described above, which realizes an electric resistance value change of about 6% in a small magnetic field of several Oe, which is an anisotropic material which is a conventional material. It is more than twice as large as the magnetoresistive material.

【0003】[0003]

【発明が解決しようとする課題】しかし、巨大磁気抵抗
薄膜の電気抵抗測定値をもとにして、印加された磁界の
絶対値および方向を計測する磁界センサを実現する場合
には、図1の構成では、大きな問題があることが判明し
た。
However, in the case of realizing a magnetic field sensor for measuring the absolute value and the direction of the applied magnetic field based on the measured electric resistance value of the giant magnetoresistive thin film, the method shown in FIG. The configuration turned out to be a big problem.

【0004】第一の問題は、巨大磁気抵抗薄膜の電気抵
抗変化が磁界の方向に依存せず、等方的な特性を有する
ことである。すなわち、図2に示されるように、図1の
構成では、磁界の正負の2つの方向に対して同じ電気抵
抗変化を示し、磁界の方向を特定することが出来ない。
図1の構成のままでは、磁界の大きさのみを検出するセ
ンサとしては利用できるが、磁界の方向を特定する必要
のある、地磁気の方向を読み取る方位センサや、着磁し
た磁性体の相対角度を読み取る角度センサなどには用い
ることが出来ない。
The first problem is that the electric resistance change of the giant magnetoresistive thin film does not depend on the direction of the magnetic field and has isotropic characteristics. That is, as shown in FIG. 2, in the configuration of FIG. 1, the same electric resistance change is shown in two positive and negative directions of the magnetic field, and the direction of the magnetic field cannot be specified.
The configuration shown in FIG. 1 can be used as a sensor that detects only the magnitude of a magnetic field, but it is necessary to specify the direction of the magnetic field. A direction sensor that reads the direction of the geomagnetism and a relative angle of the magnetized magnetic body It cannot be used as an angle sensor for reading.

【0005】第二の問題は、磁界検出精度の一層の向上
を図る必要があることである。図1の構成で磁界強度を
読み取るには両側の軟磁性薄膜に接続された電気端子間
の抵抗絶対値を読み取り、その値から磁界強度を決定す
る必要があるが、抵抗絶対値には、例えば温度変化、経
時的な変化等不確定な要因を含み易く、その結果読み取
られた磁界強度には誤差を含み易い。
The second problem is that it is necessary to further improve the magnetic field detection accuracy. In order to read the magnetic field strength with the configuration of FIG. 1, it is necessary to read the absolute resistance value between the electric terminals connected to the soft magnetic thin films on both sides and determine the magnetic field strength from that value. Uncertain factors such as temperature changes and changes over time are likely to be included, and as a result, the read magnetic field strength is likely to include errors.

【0006】第三の問題は、軟磁性薄膜に残留する磁化
にともなう誤差を低減する必要があることである。図1
に用いられる軟磁性薄膜には、残留磁化の可及的に少な
い磁性材料が選択されるが、それでも素子が磁界中に置
かれた場合には、その磁界強度に応じて何がしかの残留
磁化が残ってしまう。この残留磁化は、あたかも外部の
磁界強度が変化したのと同様の効果を巨大磁気抵抗薄膜
の抵抗値に与えるため、結果的に、残留磁化に対応する
磁界強度は読み取りの誤差となる。
The third problem is that it is necessary to reduce the error due to the magnetization remaining in the soft magnetic thin film. Figure 1
For the soft magnetic thin film used for the magnetic material, a magnetic material with as little remanent magnetization as possible is selected, but when the element is placed in a magnetic field, the remanent magnetization of some degree depends on the magnetic field strength. Will remain. This remanent magnetization has the same effect as if the external magnetic field strength were changed, on the resistance value of the giant magnetoresistive thin film, and as a result, the magnetic field strength corresponding to the remanent magnetization causes a reading error.

【0007】そこで、本発明は、磁界センサの残留磁気
の影響を排除して、磁界の強度と方向を正確に測定する
ことができる磁界センサを提供することを課題としてい
る。
Therefore, an object of the present invention is to provide a magnetic field sensor which can eliminate the influence of the residual magnetism of the magnetic field sensor and accurately measure the strength and direction of the magnetic field.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、第一発明は、空隙によって2分割された軟磁性薄
膜、該空隙を埋めるように形成された巨大磁気抵抗薄
膜、2分割された該軟磁性薄膜の各々に電気的に接続さ
れた電気端子、該軟磁性薄膜および該巨大磁気抵抗薄膜
を周回して巻かれたコイル、該電気端子間の抵抗値測定
手段、および該コイルに所定の電流値を流す手段からな
ることを特徴とする薄膜磁界センサに関する。
In order to solve the above-mentioned problems, the first invention is divided into two parts, a soft magnetic thin film divided by a space, a giant magnetoresistive thin film formed so as to fill the space, and a two-part structure. An electric terminal electrically connected to each of the soft magnetic thin films, a coil wound around the soft magnetic thin film and the giant magnetoresistive thin film, a resistance value measuring means between the electric terminals, and a predetermined coil. And a thin film magnetic field sensor.

【0009】第二発明は、電気端子がブリッジ回路の一
つのアームを形成してなり、該電気端子間の抵抗値の計
測がブリッジ出力電圧の計測により行われることを特徴
とする薄膜磁界センサに関する。
A second aspect of the present invention relates to a thin-film magnetic field sensor characterized in that the electric terminals form one arm of a bridge circuit, and the resistance value between the electric terminals is measured by measuring the bridge output voltage. .

【0010】第三発明は、コイルが、前記軟磁性薄膜お
よび巨大磁気抵抗薄膜を周回して巻かれた導体薄膜より
なることを特徴とする薄膜磁界センサに関する。
A third aspect of the present invention relates to a thin film magnetic field sensor in which a coil is composed of a conductor thin film wound around the soft magnetic thin film and the giant magnetoresistive thin film.

【0011】第四発明は、コイルに流す電流が、軟磁性
薄膜の磁化が飽和に達しない範囲の絶対値が実質的に相
等しく、且つ方向が正および負方向の2つの電流であっ
て、正方向の電流を流した時の電気端子間の抵抗値Rp
と負方向の電流を流した時の該電気端子間の抵抗値Rm
の差(Rp−Rm)をもって、磁界センサ周辺の磁界強
度の絶対値および極性を決定することを特徴とする薄膜
磁界センサに関する。
According to a fourth aspect of the present invention, the currents flowing through the coils are two currents whose absolute values are substantially equal to each other in a range in which the magnetization of the soft magnetic thin film does not reach saturation, and whose directions are positive and negative. Resistance value Rp between electrical terminals when a positive current is applied
And the resistance value Rm between the electric terminals when a negative current is applied
The present invention relates to a thin film magnetic field sensor characterized in that the absolute value and the polarity of the magnetic field strength around the magnetic field sensor are determined by the difference (Rp-Rm).

【0012】第五発明は、コイルに流す電流値が、軟磁
性薄膜の磁化を実質的に飽和させる電流値を含むことを
特徴とする薄膜磁界センサに関する。
A fifth aspect of the present invention relates to a thin film magnetic field sensor characterized in that the value of the current passed through the coil includes a value of current that substantially saturates the magnetization of the soft magnetic thin film.

【0013】第六発明は、コイルに、先ず軟磁性薄膜の
磁化が実質的に飽和する正方向の電流を流し、続いて飽
和に達しない範囲の所定の正の電流を流した時の端子間
抵抗値をRppおよび所定の負の電流を流した時の該端
子間抵抗値Rpmを計測し、ついで軟磁性薄膜の磁化が
実質的に飽和する負の方向の電流を流し、さらに飽和に
達しない範囲の所定の負の電流を流した時の該端子間抵
抗値Rmmおよび所定の正の電流を流した時の該端子間
抵抗値Rmpを計測し、これらの抵抗値から、((Rp
p+Rmp)/2−(Rpm+Rmm)/2)をもっ
て、磁界センサ周辺の磁界強度絶対値および極性を決定
することを特徴とする薄膜磁界センサに関する。
According to a sixth aspect of the invention, first, a current is applied to the coil in a positive direction in which the magnetization of the soft magnetic thin film is substantially saturated, and then a predetermined positive current in a range not reaching saturation is applied between the terminals. The resistance value Rpm and the resistance value Rpm between the terminals when a predetermined negative current is applied are measured, and then a current in the negative direction in which the magnetization of the soft magnetic thin film is substantially saturated is applied, and further saturation is not reached. The resistance value Rmm between the terminals when a predetermined negative current in the range is applied and the resistance value Rmp between the terminals when a predetermined positive current is applied are measured, and from these resistance values, ((Rp
p + Rmp) / 2- (Rpm + Rmm) / 2) to determine the absolute value and polarity of the magnetic field strength around the magnetic field sensor.

【0014】[0014]

【作用】本発明の作用は下記の通りである。第一発明の
構成は、図1の構成の磁界センサを周回するコイルおよ
びそのコイルに所定の電流を流す手段を設けたものであ
る。
The operation of the present invention is as follows. The configuration of the first invention is provided with a coil that surrounds the magnetic field sensor having the configuration of FIG. 1 and a means for supplying a predetermined current to the coil.

【0015】この様にコイルに所定の電流を流すことに
よる利点の第一は、正確な値の磁界を軟磁性薄膜および
巨大磁気抵抗薄膜に作用させることができることであ
る。つまり、第一発明の様に空芯のコイル中に流れる電
流によって生じる磁界は、ビオ・サバールの法則に従う
のみであり、コイルの形状さえ安定していれば温度、経
時変化を含めて常に一定の磁界を作用させることが可能
である。この正確な値の磁界をもとにし、これを参照し
て周辺の磁界強度を決定することができる。この場合、
コイルは線状の導体または薄膜状の導体でも良い。
The first advantage of passing a predetermined current through the coil in this manner is that an accurate magnetic field can be applied to the soft magnetic thin film and the giant magnetoresistive thin film. That is, as in the first invention, the magnetic field generated by the current flowing in the air-core coil only follows the Biot-Savart law, and as long as the coil shape is stable, it always has a constant value including temperature and aging. It is possible to apply a magnetic field. Based on this accurate value of the magnetic field, it is possible to determine the surrounding magnetic field strength by referring to this. in this case,
The coil may be a linear conductor or a thin film conductor.

【0016】利点の第二は、電流の方向を正負に変える
ことにより、軟磁性薄膜および巨大磁気抵抗薄膜に作用
する磁界の方向を選択できることである。これを参照し
て周辺磁界の方向判定を行うことが可能である。
The second advantage is that the direction of the magnetic field acting on the soft magnetic thin film and the giant magnetoresistive thin film can be selected by changing the direction of the current to positive or negative. It is possible to determine the direction of the peripheral magnetic field with reference to this.

【0017】利点の第三は、残留磁化による誤差の解消
である。コイルに流す電流を実質的に軟磁性薄膜の磁化
を実質的に飽和させる値の電流とすることにより、残留
磁界の値は強制的に定まった磁化の値とすることができ
る。
The third advantage is elimination of errors due to residual magnetization. By setting the current flowing through the coil to a value that substantially saturates the magnetization of the soft magnetic thin film, the value of the residual magnetic field can be forcibly determined.

【0018】第二発明は、電気端子間の抵抗値の計測手
段として、直接抵抗値を測ることなく、ブリッジ回路の
一つのアームにこの電気端子を置いて、ブリッジ出力電
圧を計測することにより、抵抗値の計測を、より容易な
電圧の計測に置き換えるものである。
According to the second aspect of the present invention, as a means for measuring the resistance value between the electric terminals, the electric terminal is placed on one arm of the bridge circuit and the bridge output voltage is measured without directly measuring the resistance value. It replaces resistance measurement with easier voltage measurement.

【0019】第三発明は、コイルの実現方法として、軟
磁性薄膜および巨大磁気抵抗薄膜を周回して巻かれた導
体薄膜技術を適用するものである。この様な導体薄膜技
術を適用することにより、軟磁性薄膜および巨大磁気抵
抗薄膜に接近した形でのコイルを実現することができ
る。コイルに、ある電流を流した場合に発生する磁界強
度は、コイルとの距離に反比例するので、軟磁性薄膜お
よび巨大磁気抵抗薄膜に所定の磁界強度を与えるに必要
な電流の値は、コイルが接近する方が少なくて済む。セ
ンサとしての消費電力はコイルに流す電流が支配要因で
あるので、このコイル技術により、消費電力の少ない、
小型の磁界センサの実現が可能となる。
The third invention applies a conductor thin film technique in which a soft magnetic thin film and a giant magnetoresistive thin film are wound around a coil as a method for realizing a coil. By applying such conductor thin film technology, it is possible to realize a coil close to the soft magnetic thin film and the giant magnetoresistive thin film. Since the magnetic field strength generated when a certain current is applied to the coil is inversely proportional to the distance from the coil, the value of the current required to give a predetermined magnetic field strength to the soft magnetic thin film and the giant magnetoresistive thin film is The number of people approaching is small. The power consumption as a sensor is dominated by the current flowing through the coil, so this coil technology reduces power consumption.
A small magnetic field sensor can be realized.

【0020】第四発明は、磁界の正確な値と方向を決定
する具体的な構成を表している。つまり、電流値として
は、前記軟磁性薄膜および巨大磁気抵抗薄膜が飽和に達
しない範囲の、絶対値が実質的に相等しく、方向が正お
よび負方向の2つの電流を流した時の抵抗値の差をもと
にして、磁界強度と方向を決定するものである。この様
な構成とすることにより、抵抗値の絶対値の変動は抵抗
値の差によって除外される。また、この抵抗値の差の符
号は外部から印加された磁界の符号に一致するため、磁
界の方向判定は容易に実現できることになる。
The fourth aspect of the present invention represents a specific configuration for determining the accurate value and direction of the magnetic field. In other words, as the current value, the resistance value when two currents having positive and negative directions in which absolute values are substantially equal to each other in a range in which the soft magnetic thin film and the giant magnetoresistive thin film do not reach saturation The magnetic field strength and the direction are determined based on the difference of. With such a configuration, fluctuations in the absolute value of the resistance value are excluded by the difference in the resistance value. Further, since the sign of this difference in resistance value matches the sign of the magnetic field applied from the outside, the direction of the magnetic field can be easily determined.

【0021】第五発明は、残留磁化による誤差の解消の
具体的構成を示している。つまり、コイルに流す電流を
実質的に軟磁性薄膜および巨大磁気抵抗薄膜を飽和させ
る値の電流とすることにより、残留磁界の値は強制的に
定まった磁化の値とすることができる。
The fifth aspect of the present invention shows a specific configuration for eliminating an error due to residual magnetization. That is, the value of the residual magnetic field can be forcibly determined by setting the current flowing in the coil to a value that substantially saturates the soft magnetic thin film and the giant magnetoresistive thin film.

【0022】第六発明は、外部磁界の正確な値と方向を
決定すると同時に、残留磁化による誤差の解消を行う具
体的構成を示している。つまり、前記コイルには、先
ず、軟磁性薄膜および巨大磁気抵抗薄膜が実質的に飽和
する様な正方向の電流をコイルに与える。この操作によ
り、軟磁性薄膜および巨大磁気抵抗薄膜中には既に存在
していた磁化を解消して強制的に、一つの方向の磁化が
与えられる。続いて、前記飽和の電流から飽和しない範
囲の所定の正の電流に連続的に電流を減少させ、その状
態での端子間抵抗値をRppとする。引き続き、所定の
負の電流まで連続的に電流を変化させ、その状態での端
子間抵抗値Rpmを計測する。ついで、軟磁性薄膜およ
び巨大磁気抵抗薄膜が実質的に飽和する様な負の方向の
電流を与える。この操作により、軟磁性薄膜および巨大
磁気抵抗薄膜中には前記磁化を解消して強制的に、逆の
方向の磁化が与えられる。続いて飽和に達しない範囲の
所定の負の電流を与え、その状態での端子間抵抗値Rm
mを測定する。さらに、所定の正の電流まで、電流値を
連続的に変化させ、この状態での端子間抵抗値Rmpを
計測する。これ等の抵抗値から、((Rpp+Rmp)
/2−(Rpm+Rmm)/2)をもって、磁界センサ
周辺の磁界強度絶対値および極性を決定することによ
り、磁化の影響を除外した上で、外部磁界の正確な値と
方向を決定することが可能である。
The sixth aspect of the present invention shows a specific structure for determining an accurate value and direction of the external magnetic field and, at the same time, eliminating an error due to residual magnetization. That is, first, the coil is supplied with a positive current so that the soft magnetic thin film and the giant magnetoresistive thin film are substantially saturated. By this operation, the magnetization existing in the soft magnetic thin film and the giant magnetoresistive thin film is canceled to forcibly give the magnetization in one direction. Then, the current is continuously reduced from the saturated current to a predetermined positive current in the non-saturated range, and the resistance value between terminals in this state is set to Rpp. Subsequently, the current is continuously changed to a predetermined negative current, and the inter-terminal resistance value Rpm in that state is measured. Then, a negative current is applied so that the soft magnetic thin film and the giant magnetoresistive thin film are substantially saturated. By this operation, the magnetization is canceled in the soft magnetic thin film and the giant magnetoresistive thin film to forcibly give the magnetization in the opposite direction. Then, a predetermined negative current in a range that does not reach saturation is applied, and the inter-terminal resistance value Rm in that state is given.
Measure m. Further, the current value is continuously changed up to a predetermined positive current, and the inter-terminal resistance value Rmp in this state is measured. From these resistance values, ((Rpp + Rmp)
/ 2- (Rpm + Rmm) / 2) determines the absolute value and the polarity of the magnetic field strength around the magnetic field sensor, thereby eliminating the influence of magnetization and determining the exact value and direction of the external magnetic field. Is.

【0023】[0023]

【発明の実施の形態】以下、図面を参照して、本発明の
実施形態について説明する。図3は第一の実施形態を示
している。1は例えば、Co77FeSiの組
成を有する軟磁性薄膜である。この材料は飽和磁束密度
が12kGと極めて大きく、他方保磁力は0.07Oe
と極めて小さい特長を有している。それ等軟磁性薄膜の
間には細いスリットが設けられており、そのスリットを
埋める様に、例えばCo391447の成分を持つ
巨大磁気抵抗薄膜2が形成されている。軟磁性薄膜1と
巨大磁気抵抗薄膜2で構成する部分をセンサ基本素子3
と呼ぶ。軟磁性薄膜1の比抵抗の値は巨大磁気抵抗薄膜
2の比抵抗よりも100分の1以下の低い値であるた
め、軟磁性薄膜1に付けられた端子5、5’の間で測定
した電気抵抗の値は、実質的に巨大磁気抵抗薄膜2の抵
抗値に等しい。6はこの抵抗値の測定部であり、定電流
を流した場合の端子間の発生電圧を計測することにより
測定される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows the first embodiment. Reference numeral 1 is, for example, a soft magnetic thin film having a composition of Co 77 Fe 5 Si 9 B 8 . This material has an extremely high saturation magnetic flux density of 12 kG, while the coercive force is 0.07 Oe.
And has extremely small features. A thin slit is provided between the soft magnetic thin films, and a giant magnetoresistive thin film 2 having a component of, for example, Co 39 Y 14 O 47 is formed so as to fill the slit. The sensor element 3 is a part formed by the soft magnetic thin film 1 and the giant magnetoresistive thin film 2.
Call. Since the value of the specific resistance of the soft magnetic thin film 1 is lower than the specific resistance of the giant magnetoresistive thin film 1/100 or less, it was measured between the terminals 5 and 5 ′ attached to the soft magnetic thin film 1. The electric resistance value is substantially equal to the resistance value of the giant magnetoresistive thin film 2. 6 is a measuring unit for this resistance value, which is measured by measuring the voltage generated between the terminals when a constant current is applied.

【0024】センサ基本素子3を周回してコイル7が形
成されている。コイル7の両端は端子8、8’に接合さ
れている。9は所定の電流を流すための電流発生部(定
電流源)である。
A coil 7 is formed around the sensor basic element 3. Both ends of the coil 7 are joined to the terminals 8 and 8 '. Reference numeral 9 is a current generator (constant current source) for supplying a predetermined current.

【0025】図4は第二の実施形態を表す。巨大磁気抵
抗薄膜2を挟んで2つの軟磁性薄膜1により、全体とし
てセンサ基本素子3を形成している。センサ基本素子3
を周回して例えば、銅の導体薄膜7が形成されている。
これ等は一連の薄膜プロセスにより形成される。
FIG. 4 shows a second embodiment. The two basic soft magnetic thin films 1 sandwich the giant magnetoresistive thin film 2 to form the sensor basic element 3 as a whole. Sensor basic element 3
The conductor thin film 7 made of, for example, copper is formed by wrapping around.
These are formed by a series of thin film processes.

【0026】例えば、基板10の上に、先ずセンサ基本
素子の下側部分の導体薄膜7が、適宜フォトレジストお
よびスパッタを用いて枕木状に形成される。枕木の間を
埋める様に、また枕木の上を覆うように図示しない絶縁
膜例えば、SiOがスパッタにより形成される。Si
が形成されたままでは、SiOの上部の面は枕木
パターンのままの凹凸が残るので、SiOの面はラッ
ピングにより平坦化される。その上から軟磁性薄膜1お
よび巨大磁気抵抗薄膜2がフォトレジストおよびスパッ
タにより形成される。導体薄膜7の端部は柱状に導体膜
がスパッタにより積み上げられる。その上から再び図示
しない絶縁膜がスパッタ形成される。更にその上に導体
薄膜7の上側部分がスパッタ形成される。
For example, on the substrate 10, first, the conductive thin film 7 in the lower portion of the sensor basic element is formed in a sleeper shape by using photoresist and sputtering appropriately. An insulating film (not shown) such as SiO 2 is formed by sputtering so as to fill the space between the sleepers and cover the sleepers. Si
While O 2 is formed, the upper surface of the SiO 2 because remains uneven remains of sleepers pattern, the surface of SiO 2 is planarized by lapping. A soft magnetic thin film 1 and a giant magnetoresistive thin film 2 are formed thereon by photoresist and sputtering. At the end of the conductor thin film 7, a conductor film is stacked in a columnar shape by sputtering. An insulating film (not shown) is again formed by sputtering from above. Further, the upper portion of the conductor thin film 7 is sputtered thereon.

【0027】図5は第三の実施形態である。この場合に
は、2個のセンサ基本素子3が用いられている。それ等
センサ基本素子の端子間に導体膜11を介して巨大磁気
抵抗薄膜12が形成されている。各軟磁性薄膜には端子
13、14、15、16が接続されている。これ等端子
の中で、端子13、15間には入力端子として一定電圧
が印加され、端子14、16間は出力端子として電圧を
計測する様になっている。つまり、電気的にはセンサ基
本素子3と、巨大磁気抵抗薄膜12を導体膜11で挟ん
だ素子とをアームとするブリッジ回路が形成されてい
る。
FIG. 5 shows a third embodiment. In this case, two sensor basic elements 3 are used. A giant magnetoresistive thin film 12 is formed between terminals of these sensor basic elements via a conductor film 11. Terminals 13, 14, 15, and 16 are connected to each soft magnetic thin film. Among these terminals, a constant voltage is applied as an input terminal between the terminals 13 and 15, and a voltage is measured as an output terminal between the terminals 14 and 16. That is, electrically, a bridge circuit having the sensor basic element 3 and an element in which the giant magnetoresistive thin film 12 is sandwiched between the conductor films 11 as an arm is formed.

【0028】巨大磁気抵抗薄膜12は磁気的には軟磁性
薄膜1と分離されており、センサ基本素子間の抵抗値変
化はそのまま出力端子14、16間の電圧変化として現
れる。これ等センサ基本素子を周回してコイル7および
端子8、8’が形成されている。図5においてコイル7
は薄膜コイルであるが、簡単のため実線で表している。
The giant magnetoresistive thin film 12 is magnetically separated from the soft magnetic thin film 1, and the change in resistance between the sensor basic elements appears as it is as a change in voltage between the output terminals 14 and 16. A coil 7 and terminals 8 and 8'are formed around these sensor basic elements. Coil 7 in FIG.
Is a thin film coil, but is shown by a solid line for simplicity.

【0029】第四の実施形態を説明するのが図6〜8で
ある。図6は、図3の構成について、コイルの電流が零
の場合に電気抵抗値が外部磁界強度によってどう変化す
るかの一例を示したものである。
The fourth embodiment will be described with reference to FIGS. FIG. 6 shows an example of how the electric resistance value changes depending on the external magnetic field strength when the coil current is zero in the configuration of FIG.

【0030】図6の例では、磁界強度零の時の抵抗値は
約250kΩ、磁界強度を増すに従って抵抗値は暫減
し、5Oeの場合には約240kΩとなる。
In the example of FIG. 6, the resistance value when the magnetic field strength is zero is about 250 kΩ, and the resistance value is temporarily reduced as the magnetic field strength is increased, and becomes about 240 kΩ in the case of 5 Oe.

【0031】一方、図7は外部磁界強度が零の場合にコ
イルに電流を流した場合の抵抗値変化を示している。図
6と図7は横軸を1Oe=5mAで置き換えるとほぼ完
全に一致する。つまり、外部からの磁界変化とコイルに
流す電流の作る磁界はほぼ等価となる。
On the other hand, FIG. 7 shows a change in resistance value when a current is passed through the coil when the external magnetic field strength is zero. 6 and 7 are almost completely the same when the horizontal axis is replaced with 1 Oe = 5 mA. That is, the change in the magnetic field from the outside and the magnetic field generated by the current flowing through the coil are almost equivalent.

【0032】ここで、図8は、外部磁界強度1Oe中に
置いて電流を流した場合の抵抗値変化を示している。図
8によれば、電流が−5mAの時に発生する磁界強度は
−1Oeとなり、この場合には外部からの磁界を丁度キ
ャンセルすることが分かる。従って、図8に示す様に、
−5mAのバイアスを持った形となることが言える。
Here, FIG. 8 shows a change in resistance value when a current is flown in the external magnetic field strength of 1 Oe. According to FIG. 8, the magnetic field intensity generated when the current is -5 mA is -10 Oe, and in this case, the magnetic field from the outside is just canceled. Therefore, as shown in FIG.
It can be said that the shape has a bias of -5 mA.

【0033】ここで、仮に正および負方向の電流Im
(この場合には8mA)を流した場合には、抵抗値は各
々Rp、およびRmとなる。このRmとRpの差を取れ
ば、その量は外部から印加された磁界強度がある限界内
の場合には磁界強度と比例関係にある。
Here, if the current Im in the positive and negative directions is assumed.
When (8 mA in this case) is applied, the resistance values become Rp and Rm, respectively. If the difference between Rm and Rp is taken, the amount is proportional to the magnetic field strength when the magnetic field strength applied from the outside is within a certain limit.

【0034】例えば、図9はΔR=(Rm−Rp)と外
部磁界強度との関係を示すもので、±2Oeまではリニ
アな関係になっている。ここで特筆すべきは、Hが±2
Oeの場合には、Hが正、負に対応して(Rm−Rp)
も正、負となり、符号も含めてリニアな関係になってい
ることである。つまり、本発明がめざした、磁界強度の
絶対値および符号の検出が可能になっている。ここで、
磁界強度を検出する時に流す電流値の選択については、
図7において、電流値と抵抗値がリニアに変化している
部分のほぼ中央を狙えば、磁界強度の測定範囲のリニア
な部分を最大化することができる。
For example, FIG. 9 shows the relationship between ΔR = (Rm-Rp) and the external magnetic field strength, and has a linear relationship up to ± 2 Oe. It should be noted that H is ± 2
In the case of Oe, H corresponds to positive and negative (Rm-Rp)
Is positive and negative, and the relationship is linear, including the sign. That is, it is possible to detect the absolute value of the magnetic field strength and the sign, which is the aim of the present invention. here,
For the selection of the current value to flow when detecting the magnetic field strength,
In FIG. 7, the linear portion of the magnetic field strength measurement range can be maximized by aiming at the approximate center of the portion where the current value and the resistance value change linearly.

【0035】第五の実施形態は、軟磁性薄膜に何らかの
原因で残留磁化が残ってしまった場合の対処である。コ
イルに実質的に軟磁性薄膜を飽和させる様な電流を流す
ことにより、意図的に軟磁性材料をある方向に磁化させ
ることにより一つの安定状態にすることが可能である。
仮に何がしかの残留磁化が残っていても、コイルに強制
的にある磁化方向に飽和させる様な電流を流すことによ
り、一つの安定状態となる。また、飽和させる様な電流
を逆に流してやれば、逆方向に磁化されたもうひとつの
安定状態になる。つまり、飽和させる電流を流すこと
は、過去の履歴をすべて忘れさせる効果がある。
The fifth embodiment deals with the case where residual magnetization remains in the soft magnetic thin film for some reason. A stable state can be brought about by intentionally magnetizing the soft magnetic material in a certain direction by passing a current through the coil so as to substantially saturate the soft magnetic thin film.
Even if some residual magnetization remains, one stable state is achieved by forcing a current to flow into the coil to saturate it in a certain magnetization direction. Also, if a current that causes saturation is applied in the opposite direction, another stable state is obtained in which the magnet is magnetized in the opposite direction. In other words, flowing a saturation current has the effect of forgetting all past history.

【0036】第六の実施形態は、図10に示される。先
ず、軟磁性薄膜を飽和させる電流Isを流す。Isを流
した後は、そのまま、飽和に達しない電流+Imに下げ
る。これは図10において、IsからImに向かう矢印
にそって移動することを意味している。ここで、抵抗値
Rppの測定を行う。続いて、電流値を+Imから−I
mまで連続的に変化させる。そこでの抵抗値をRpmと
する。次に、飽和させる電流Isを逆方向に流す。−I
sから今度は徐々に零に向かって電流値を減少させ、−
Imの電流値での抵抗値をRmmとする。更に、−Im
から+Imに連続的に電流を変化させてRmpを測定す
る。この操作では、いわゆるBHカーブのヒステリシス
曲線の丁度境界線上を移動することに相当するので、軟
磁性材料がそれ以前に保有していた残留磁化の影響はす
べてキヤンセルされる。その様にして得られた抵抗値に
つき、(Rmm+Rpm)/2と、(Rmp+Rpp)
/2の差をとってやることにより、残留磁化の影響を除
外して純粋な外部の磁界強度の測定が可能になる。
A sixth embodiment is shown in FIG. First, a current Is for saturating the soft magnetic thin film is passed. After flowing Is, the current is lowered to a current + Im that does not reach saturation. This means moving in the direction of the arrow from Is to Im in FIG. Here, the resistance value Rpp is measured. Subsequently, the current value is changed from + Im to −I.
Change continuously up to m. The resistance value there is Rpm. Next, the saturation current Is is passed in the opposite direction. -I
The current value gradually decreases from s to zero,
The resistance value at the current value of Im is Rmm. Furthermore, -Im
Rmp is measured by continuously changing the current from + Im to + Im. This operation is equivalent to moving on the boundary line of the so-called BH curve hysteresis curve, so that the effect of remanent magnetization held by the soft magnetic material before that is all canceled. The resistance value thus obtained is (Rmm + Rpm) / 2 and (Rmp + Rpp)
By taking the difference of / 2, it becomes possible to measure the pure external magnetic field strength by excluding the influence of remanent magnetization.

【0037】[0037]

【発明の効果】以上説明した本発明によれば、外部磁界
の正確な値と方向を決定すると同時に、残留磁化による
測定誤差の解消を行うことができる。
According to the present invention described above, it is possible to determine the accurate value and direction of the external magnetic field and at the same time eliminate the measurement error due to the residual magnetization.

【0038】又、本発明によれば、軟磁性薄膜及び巨大
磁気抵抗薄膜を周回する薄膜コイルを使用するので、消
費電力の少ない、小型の磁界センサの実現が可能とな
る。
Further, according to the present invention, since the thin film coil that surrounds the soft magnetic thin film and the giant magnetoresistive thin film is used, it is possible to realize a small magnetic field sensor with low power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の薄膜磁界センサの斜視図FIG. 1 is a perspective view of a conventional thin film magnetic field sensor.

【図2】図1の従来の薄膜磁界センサにおける電気抵抗
変化率と磁界の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the electric resistance change rate and the magnetic field in the conventional thin film magnetic field sensor of FIG.

【図3】第一の実施形態の薄膜磁界センサの斜視図。FIG. 3 is a perspective view of the thin-film magnetic field sensor of the first embodiment.

【図4】薄膜コイルを備えた第二の実施形態の薄膜磁界
センサの斜視図。
FIG. 4 is a perspective view of a thin film magnetic field sensor of a second embodiment including a thin film coil.

【図5】ブリッジ回路を形成した第三の実施形態の斜視
図。
FIG. 5 is a perspective view of a third embodiment in which a bridge circuit is formed.

【図6】図3の第一の実施形態の薄膜磁界センサにおい
て、コイルの電流が零の時の電気抵抗値と磁界の関係を
示すグラフ。
6 is a graph showing the relationship between the electric resistance value and the magnetic field when the coil current is zero in the thin film magnetic field sensor of the first embodiment of FIG.

【図7】図3の第一の実施形態の薄膜磁界センサにおい
て、磁界が零の時の電気抵抗値とコイル電流の関係を示
すグラフ。
FIG. 7 is a graph showing the relationship between the electric resistance value and the coil current when the magnetic field is zero in the thin film magnetic field sensor of the first embodiment shown in FIG.

【図8】図3の第一の実施形態の薄膜磁界センサにおい
て、磁界が1Oeの時の電気抵抗値とコイル電流の関係
を示すグラフ。
8 is a graph showing the relationship between the electric resistance value and the coil current when the magnetic field is 10 Oe in the thin film magnetic field sensor of the first embodiment of FIG.

【図9】第四の実施形態において、ΔRと磁界の関係を
示すグラフ。ここに、ΔRは、コイルに流す電流が、軟
磁性薄膜の磁化が飽和に達しない範囲の絶対値が実質的
に相等しく且つ方向が正および負方向の2つの電流であ
って、正方向の電流を流した時の該電気端子間の抵抗値
Rpと負方向の電流を流した時の電気端子間の抵抗値R
mの差(Rm−Rp)である。
FIG. 9 is a graph showing the relationship between ΔR and the magnetic field in the fourth embodiment. Here, ΔR is two currents in which the absolute value of the current flowing through the coil is substantially equal to each other in the range where the magnetization of the soft magnetic thin film does not reach saturation and the directions are positive and negative. Resistance value Rp between the electric terminals when an electric current is applied and resistance value R between the electric terminals when an electric current is applied in the negative direction
It is the difference of m (Rm-Rp).

【図10】第六の実施形態において、6残留磁化の影響
を除外して純粋な外部の磁界強度の測定を行う方法を説
明するための電気抵抗値とコイル電流の関係を示すグラ
フ。
FIG. 10 is a graph showing a relationship between an electric resistance value and a coil current for explaining a method of measuring pure external magnetic field strength by excluding the influence of 6 remanent magnetization in the sixth embodiment.

【符号の説明】[Explanation of symbols]

1、12;軟磁性薄膜 2;巨大磁気抵抗薄膜 3;センサ基本素子 7;導体薄膜 8、8’;コイル端子 11;導体膜 13、14、15、16;端子 1, 12; Soft magnetic thin film 2; Giant magnetoresistive thin film 3; Sensor basic element 7; Conductor thin film 8, 8 '; coil terminal 11; Conductor film 13, 14, 15, 16; terminals

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G017 AA01 AA02 AA03 AD55 AD65 5D034 BA03 BA08 BB14    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G017 AA01 AA02 AA03 AD55 AD65                 5D034 BA03 BA08 BB14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 空隙によって2分割された軟磁性薄膜
と、 該空隙を埋めるように形成された巨大磁気抵抗薄膜と、 2分割された該軟磁性薄膜の各々に電気的に接続された
電気端子と、 該軟磁性薄膜および該巨大磁気抵抗薄膜を周回して巻か
れたコイルと、 該電気端子間の抵抗値測定手段と、 および該コイルに所定の電流値を流す手段からなること
を特徴とする薄膜磁界センサ。
1. A soft magnetic thin film divided into two by a void, a giant magnetoresistive thin film formed so as to fill the void, and an electric terminal electrically connected to each of the two divided soft magnetic thin films. A coil wound around the soft magnetic thin film and the giant magnetoresistive thin film, resistance value measuring means between the electric terminals, and means for supplying a predetermined current value to the coil. Thin film magnetic field sensor.
【請求項2】 電気端子がブリッジ回路の一つのアーム
を形成してなり、該電気端子間の抵抗値の計測がブリッ
ジ出力電圧の計測により行われることを特徴とする請求
項1記載の薄膜磁界センサ。
2. The thin-film magnetic field according to claim 1, wherein the electric terminals form one arm of a bridge circuit, and the resistance value between the electric terminals is measured by measuring the bridge output voltage. Sensor.
【請求項3】 コイルが、軟磁性薄膜および巨大磁気抵
抗薄膜を周回して巻かれた導体薄膜よりなることを特徴
とする請求項1又は2のいずれか1項記載の薄膜磁界セ
ンサ。
3. The thin-film magnetic field sensor according to claim 1, wherein the coil comprises a conductor thin film wound around a soft magnetic thin film and a giant magnetoresistive thin film.
【請求項4】 コイルに流す電流が、軟磁性薄膜の磁化
が飽和に達しない範囲の絶対値が実質的に相等しく且つ
方向が正および負方向の2つの電流であって、 正方向の電流を流した時の電気端子間の抵抗値Rpと負
方向の電流を流した時の該電気端子間の抵抗値Rmの差
(Rm−Rp)をもって、磁界センサ周辺の磁界強度の
絶対値および極性を決定することを特徴とする請求項1
乃至3のいずれか1項記載の薄膜磁界センサ。
4. The current flowing in the coil is two currents whose absolute values are substantially equal to each other in a range where the magnetization of the soft magnetic thin film does not reach saturation and whose directions are positive and negative. The difference between the resistance value Rp between the electric terminals when the current flows and the resistance value Rm between the electric terminals when the current flows in the negative direction (Rm-Rp) is the absolute value and the polarity of the magnetic field strength around the magnetic field sensor. 2. The method according to claim 1, wherein
4. The thin film magnetic field sensor according to any one of items 1 to 3.
【請求項5】 コイルに流す電流値が、軟磁性薄膜の磁
化を実質的に飽和させる電流値を含むことを特徴とする
請求項1乃至4のいずれか1項記載の薄膜磁界センサ。
5. The thin-film magnetic field sensor according to claim 1, wherein the current value passed through the coil includes a current value that substantially saturates the magnetization of the soft magnetic thin film.
【請求項6】 コイルに、先ず軟磁性薄膜の磁化が実質
的に飽和する正方向の電流を流し、 続いて飽和に達しない範囲の所定の正の電流を流した時
の端子間抵抗値Rppおよび所定の負の電流を流した時
の該端子間抵抗値Rpmを計測し、 ついで軟磁性薄膜の磁化が実質的に飽和する負の方向の
電流を流し、 さらに飽和に達しない範囲の所定の負の電流を流した時
の該端子間抵抗値Rmmおよび所定の正の電流を流した
時の端子間抵抗値Rmpを計測し、 これらの抵抗値から、((Rpp+Rmp)/2−(R
pm+Rmm)/2)をもって、磁界センサ周辺の磁界
強度絶対値および極性を決定することを特徴とする請求
項1乃至5のいずれか1項記載の薄膜磁界センサ。
6. A resistance value Rpp between terminals when a current in the positive direction in which the magnetization of the soft magnetic thin film is substantially saturated is first passed through the coil and then a predetermined positive current in a range not reaching saturation is passed. And a resistance value Rpm between the terminals when a predetermined negative current is flown, and then a current in the negative direction in which the magnetization of the soft magnetic thin film is substantially saturated is flown, and a predetermined range of saturation is not reached. The resistance value Rmm between the terminals when a negative current is applied and the resistance value Rmp between the terminals when a predetermined positive current is applied are measured, and from these resistance values, ((Rpp + Rmp) / 2- (R
6. The thin film magnetic field sensor according to claim 1, wherein the absolute value of the magnetic field strength and the polarity around the magnetic field sensor are determined by pm + Rmm) / 2).
JP2001315935A 2000-10-26 2001-10-12 Thin film magnetic field sensor Expired - Lifetime JP4204775B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001315935A JP4204775B2 (en) 2001-10-12 2001-10-12 Thin film magnetic field sensor
EP01978911A EP1329735B1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
DE60139017T DE60139017D1 (en) 2000-10-26 2001-10-25 THIN FILM MAGNETIC SENSOR
TW090126413A TW550394B (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
KR1020027008326A KR100687513B1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
PCT/JP2001/009385 WO2002037131A1 (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
CNB018032648A CN100403048C (en) 2000-10-26 2001-10-25 Thin-film magnetic field sensor
AT01978911T ATE434192T1 (en) 2000-10-26 2001-10-25 THIN FILM MAGNETIC FIELD SENSOR
US10/225,794 US6642714B2 (en) 2000-10-26 2002-08-22 Thin-film magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315935A JP4204775B2 (en) 2001-10-12 2001-10-12 Thin film magnetic field sensor

Publications (3)

Publication Number Publication Date
JP2003121522A true JP2003121522A (en) 2003-04-23
JP2003121522A5 JP2003121522A5 (en) 2005-04-07
JP4204775B2 JP4204775B2 (en) 2009-01-07

Family

ID=19134027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315935A Expired - Lifetime JP4204775B2 (en) 2000-10-26 2001-10-12 Thin film magnetic field sensor

Country Status (1)

Country Link
JP (1) JP4204775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710974A (en) * 2019-10-24 2021-04-27 Tdk株式会社 Magnetic sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743389A (en) * 1993-07-30 1995-02-14 Tokin Corp Current detector for line current detection
JPH0933257A (en) * 1995-07-21 1997-02-07 Tokin Corp Magnetic direction sensor
JPH11109006A (en) * 1997-10-01 1999-04-23 Minebea Co Ltd Magnetic impedance sensor
JPH11274599A (en) * 1998-03-18 1999-10-08 Res Inst Electric Magnetic Alloys Thin film magnetic reluctance element
JP2000180207A (en) * 1998-12-16 2000-06-30 Yazaki Corp Magnetism sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743389A (en) * 1993-07-30 1995-02-14 Tokin Corp Current detector for line current detection
JPH0933257A (en) * 1995-07-21 1997-02-07 Tokin Corp Magnetic direction sensor
JPH11109006A (en) * 1997-10-01 1999-04-23 Minebea Co Ltd Magnetic impedance sensor
JPH11274599A (en) * 1998-03-18 1999-10-08 Res Inst Electric Magnetic Alloys Thin film magnetic reluctance element
JP2000180207A (en) * 1998-12-16 2000-06-30 Yazaki Corp Magnetism sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710974A (en) * 2019-10-24 2021-04-27 Tdk株式会社 Magnetic sensor
CN112710974B (en) * 2019-10-24 2024-03-08 Tdk株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JP4204775B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
KR100687513B1 (en) Thin-film magnetic field sensor
US7504927B2 (en) Current sensor
JP4105142B2 (en) Current sensor
JP4466487B2 (en) Magnetic sensor and current sensor
JP4105145B2 (en) Current sensor
JP4131869B2 (en) Current sensor
JP3210192B2 (en) Magnetic sensing element
US20070188946A1 (en) Magnetic sensor and current sensor
JP2007108069A (en) Current sensor
KR20060050168A (en) Azimuth meter having spin-valve giant magneto-resistive elements
JP2005529338A (en) Sensor and method for measuring the flow of charged particles
JP6132085B2 (en) Magnetic detector
JP2000512763A (en) Magnetic field sensor with Wheatstone bridge
JP2001281313A (en) Magnetic field sensor, magnetic encoder using it, and magnetic head
JPH11101861A (en) Magneto-resistance effect type sensor
US5982177A (en) Magnetoresistive sensor magnetically biased in a region spaced from a sensing region
JP2004340953A (en) Magnetic field sensing element, manufacturing method therefor, and device using them
JP2002131407A5 (en)
JP4204775B2 (en) Thin film magnetic field sensor
JP2002131407A (en) Thin film magnetic field sensor
JP2000091664A (en) Magnetic device
JP2001305163A (en) Current sensor
JPH10270775A (en) Magneto-resistance effect element and revolution sensor using the same
JP2923959B2 (en) Magnetic bearing detector
JP3360172B2 (en) Magnetic impedance head module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4204775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250