JPH0933257A - Magnetic direction sensor - Google Patents
Magnetic direction sensorInfo
- Publication number
- JPH0933257A JPH0933257A JP7207672A JP20767295A JPH0933257A JP H0933257 A JPH0933257 A JP H0933257A JP 7207672 A JP7207672 A JP 7207672A JP 20767295 A JP20767295 A JP 20767295A JP H0933257 A JPH0933257 A JP H0933257A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- sensor
- magnetic field
- magnetoresistive element
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【0001】[0001]
【発明の技術分野】本発明は、磁気抵抗素子を使用した
磁気方位センサに関し、特に、周囲温度の変化、及び経
時変化に対して安定な出力を得ることができる磁気方位
センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic azimuth sensor using a magnetoresistive element, and more particularly to a magnetic azimuth sensor capable of obtaining a stable output against changes in ambient temperature and changes with time.
【0002】[0002]
【従来の技術】従来の磁気抵抗素子を使用した磁気セン
サは、前記磁気抵抗素子の磁気抵抗エレメントパターン
に対し、45度の方向から所定の直流バイアス磁界を印
加し、該直流バイアス磁界印加時の前記磁気抵抗素子の
出力を基準として、該出力の大きさ及び極性によって磁
気量、及び磁気極性を検出している。2. Description of the Related Art In a magnetic sensor using a conventional magnetoresistive element, a predetermined DC bias magnetic field is applied to the magnetoresistive element pattern of the magnetoresistive element from a direction of 45 degrees. With the output of the magnetoresistive element as a reference, the magnetic amount and magnetic polarity are detected by the magnitude and polarity of the output.
【0003】図6は、従来の磁気抵抗素子を使用した磁
気センサの磁気検出動作を示す原理図である。所定の直
流バイアス磁界を+H1とし、その時の磁気抵抗素子の
出力をV1とする。この条件で外部磁界H2sinωt
が印加された場合、磁気抵抗素子に印加される磁界は、
(H1+H2sinωt)となり、磁界(H1+H2)
の磁気抵抗素子出力をV2とすると、磁気抵抗素子出力
Voutは、(1)の式で表される。FIG. 6 is a principle diagram showing the magnetic detection operation of a conventional magnetic sensor using a magnetoresistive element. The predetermined DC bias magnetic field is + H1, and the output of the magnetoresistive element at that time is V1. Under this condition, the external magnetic field H2sinωt
Is applied, the magnetic field applied to the magnetoresistive element is
(H1 + H2sinωt), and the magnetic field (H1 + H2)
When the output of the magnetoresistive element is V2, the output of the magnetoresistive element Vout is expressed by the equation (1).
【0004】 Vout=V1+(V2−V1)sinωt ・・・・・・・・・・ (1)Vout = V1 + (V2-V1) sinωt (1)
【0005】従って、初期状態(外部磁界0直流磁界H
1のみ)における磁気抵抗素子出力V1を基準とすれ
ば、(1)式の第2項(V2−V1)sinωtによっ
て、外部磁界の磁気量、及び磁気極性を知ることが可能
となる。Therefore, the initial state (external magnetic field 0 DC magnetic field H
(1 only), the magnetic quantity and magnetic polarity of the external magnetic field can be known from the second term (V2-V1) sinωt of the equation (1).
【0006】図7は、従来の磁気方位センサの磁気抵抗
素子出力を増幅する増幅回路例を示す図である。FIG. 7 is a diagram showing an example of an amplifier circuit for amplifying the output of the magnetoresistive element of the conventional magnetic direction sensor.
【0007】通常、外部から印加される磁界は、交流磁
界と直流磁界(地磁気は直流磁界に属する)の二つであ
る。そのため、磁気検出装置にはDCレスポンスを持た
せる必要があり、(1)式で示されるVoutを直流増
幅しなければならない。Normally, two magnetic fields applied from the outside are an AC magnetic field and a DC magnetic field (geomagnetism belongs to the DC magnetic field). Therefore, it is necessary for the magnetic detection device to have a DC response, and Vout represented by the equation (1) must be DC-amplified.
【0008】又、磁気抵抗素子出力は、通常、微小な値
であるため、普通は、図7に示したような差動増幅回路
で増幅され、磁気抵抗素子出力を演算増幅器11を用い
た差動増幅器で増幅し、可変抵抗VR4、及び可変抵抗
VR5で増幅回路のオフセット電圧(外部磁界0時の出
力)を設定し、可変抵抗VR6で増幅度の設定を行って
いる。Since the magnetoresistive element output is usually a very small value, it is usually amplified by a differential amplifier circuit as shown in FIG. Amplification is performed by the dynamic amplifier, the offset voltage (output when the external magnetic field is 0) of the amplifier circuit is set by the variable resistors VR4 and VR5, and the amplification degree is set by the variable resistor VR6.
【0009】[0009]
【発明が解決しようとする課題】磁気抵抗素子は、それ
ぞれ抵抗温度特性を持っており、その結果、磁気抵抗素
子のオフセット出力電圧(バイアス磁界0の時の磁気抵
抗素子の出力電圧)が温度によって変化する。又、経時
変化によっても同様に、磁気抵抗素子のオフセット出力
電圧が変化する。この変化は、(1)式において、磁気
抵抗素子出力V1及びV2両方に寄与し、磁気抵抗素子
のオフセット出力電圧の変化量を△Vとするなら、磁気
抵抗素子出力Voutは、(2)式で表される。The magnetoresistive elements each have a resistance temperature characteristic, and as a result, the offset output voltage of the magnetoresistive element (the output voltage of the magnetoresistive element when the bias magnetic field is 0) varies depending on the temperature. Change. In addition, the offset output voltage of the magnetoresistive element also changes with time. This change contributes to both the magnetoresistive element outputs V1 and V2 in the equation (1), and if the change amount of the offset output voltage of the magnetoresistive element is ΔV, the magnetoresistive element output Vout is the equation (2). It is represented by.
【0010】 Vout=(V1+△V)+[(V2+△V)−(V1+△V)]sinωt =(V1+△V)+(V2−V1)sinωt ・・・・・・・・・・ (2)Vout = (V1 + ΔV) + [(V2 + ΔV) − (V1 + ΔV)] sinωt = (V1 + ΔV) + (V2-V1) sinωt (2) )
【0011】磁気抵抗素子の出力Voutは、(2)式
から明かなように、磁気抵抗素子の外部磁界0における
基準電圧に誤差が生じた場合、基準電圧の誤差をそのま
ま増幅回路が増幅してしまい、これが磁気抵抗素子のオ
フセット出力電圧誤差となって現れてしまう欠点を有し
ている。又、前記磁気抵抗素子のオフセット出力電圧の
温度変化、及び経時変化は、変化する極性が正及び負の
両方あり得るため、補正することが困難である。従っ
て、オフセット出力電圧の出力誤差を多く含んだ磁気抵
抗素子を用いた磁気方位センサでは、正確な方位を求め
ることが困難となる。As is clear from the equation (2), when the reference voltage in the external magnetic field 0 of the magnetoresistive element has an error, the output Vout of the magnetoresistive element is directly amplified by the amplifier circuit. However, there is a drawback that this appears as an offset output voltage error of the magnetoresistive element. Further, it is difficult to correct the temperature change and the time-dependent change of the offset output voltage of the magnetoresistive element because the changing polarity can be both positive and negative. Therefore, it is difficult to obtain an accurate azimuth with a magnetic azimuth sensor using a magnetoresistive element including a large output error of the offset output voltage.
【0012】本発明の課題は、磁気抵抗素子から構成さ
れる磁気センサの温度変化、及び経時変化による誤差要
因を除去し、周囲の環境条件の変化に対し、正確で、安
定した出力特性を示す磁気方位センサを提供することで
ある。An object of the present invention is to eliminate an error factor due to a temperature change and a time change of a magnetic sensor composed of a magnetoresistive element, and to show an accurate and stable output characteristic with respect to a change of surrounding environmental conditions. A magnetic orientation sensor is provided.
【0013】[0013]
【課題を解決するための手段】本発明によれば、特性の
整合した二つの磁気抵抗素子を、その磁界検出方向が互
いに逆向きになるように一体に構成した磁気センサから
なることを特徴とする磁気方位センサが得られる。According to the present invention, two magnetic resistance elements having matching characteristics are integrally formed so that their magnetic field detection directions are opposite to each other. A magnetic azimuth sensor that operates is obtained.
【0014】又、本発明によれば、上記磁気センサを2
個、X方向、Y方向に、互いに90度の角度に配置し構
成したことを特徴とする磁気方位センサが得られる。According to the present invention, the magnetic sensor is
A magnetic azimuth sensor is obtained, which is characterized by being arranged at an angle of 90 degrees with respect to each other in the X direction and the Y direction.
【0015】又、本発明によれば、上記磁気センサにお
いて、各方向の磁気センサにバイアスコイルを巻装し、
該バイアスコイルに矩形波の交流電流を流し、矩形波の
交流磁界を印加し、前記矩形波の交流磁界の正負方向の
各最大値が磁気抵抗素子の磁気特性の最大傾斜の特性点
まで印加することを特徴とする磁気方位センサが得られ
る。Further, according to the present invention, in the above magnetic sensor, a bias coil is wound around the magnetic sensor in each direction,
A rectangular-wave AC current is applied to the bias coil, a rectangular-wave AC magnetic field is applied, and each maximum value in the positive and negative directions of the rectangular-wave AC magnetic field is applied up to the characteristic point of the maximum inclination of the magnetic characteristics of the magnetoresistive element. A magnetic azimuth sensor characterized by the above is obtained.
【0016】又、本発明によれば、上記各磁気センサを
構成する磁気抵抗素子の二つの出力信号を増幅する二つ
の入力端子を持つ増幅器とからなる上記磁気方位センサ
が得られる。Further, according to the present invention, there can be obtained the above magnetic azimuth sensor including an amplifier having two input terminals for amplifying two output signals of the magnetoresistive elements constituting each of the magnetic sensors.
【0017】本発明において、特性の整合した二つの磁
気抵抗素子を、その磁界検出方向が互いに逆向きになる
ように構成し、その磁気センサ2個が、X方向、Y方向
にそれぞれ互いに90度の角度に配置された磁気方位セ
ンサで、前記2個の磁気センサにバイアスコイルを巻装
し、該バイアスコイルに矩形波の交流電流を流し、矩形
波の交流磁界を印加し、前記矩形波の交流磁界の正負方
向の各最大値が、センサの磁気特性の最大傾斜の特性点
まで印加し、磁気センサを構成する二つの磁気抵抗素子
の出力電圧を各々ハイパスフィルタを含む二つの入力端
子を持つ増幅回路で増幅し、その出力を二つの同期検波
回路で検波し、検波された二つの同期信号の差を求める
ことにより、前記二つの磁気センサの出力の誤差がなく
なり、正確な方位角度を磁気方位センサで求めることが
できる。この構成により、磁気抵抗素子のオフセット出
力電圧の温度ドリフトや経時変化等、周囲の環境条件の
変化に影響されない、正確で安定した出力特性を示す磁
気方位センサを得ることができる。In the present invention, two magnetoresistive elements having matching characteristics are constructed so that their magnetic field detection directions are opposite to each other, and the two magnetic sensors are respectively 90 degrees in the X and Y directions. In the magnetic azimuth sensor arranged at an angle of, a bias coil is wound around the two magnetic sensors, a rectangular-wave alternating current is applied to the bias coils, and a rectangular-wave alternating magnetic field is applied. Each maximum value of the AC magnetic field in the positive and negative directions is applied up to the characteristic point of the maximum inclination of the magnetic characteristics of the sensor, and the output voltage of the two magnetoresistive elements that compose the magnetic sensor has two input terminals each including a high-pass filter. Amplification by the amplifier circuit, the output is detected by the two synchronous detection circuits, the difference between the two detected synchronous signals is obtained, the error of the output of the two magnetic sensors is eliminated, and the correct azimuth is obtained. It is possible to obtain the degree in magnetic direction sensor. With this configuration, it is possible to obtain a magnetic azimuth sensor that exhibits accurate and stable output characteristics, which is not affected by changes in surrounding environmental conditions such as temperature drift and temporal change of the offset output voltage of the magnetoresistive element.
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0019】図2は、本発明による前記磁気センサをX
方向、Y方向と2個使用した磁気方位センサの原理図で
ある。2個の磁気センサa、及びbは、図2(a)、図
2(b)に示すように、X方向、Y方向に特性の整合し
た二つの磁気抵抗素子2a,2bを、その磁界検出方向
[図2(b)にて矢印で示す]が互いに逆向きになるよ
うに配置構成し、X方向、Y方向に互いに90度の角度
に配置されている。磁気センサaの出力をVa、磁気セ
ンサbの出力をVbとした場合、磁気方向に対する磁気
方位センサcの角度は、(3)式で表される。FIG. 2 shows the magnetic sensor according to the present invention as X.
It is a principle view of the magnetic direction sensor which used two directions, a direction and a Y direction. As shown in FIGS. 2 (a) and 2 (b), the two magnetic sensors a and b detect two magnetic resistance elements 2a and 2b whose characteristics are matched in the X direction and the Y direction by detecting their magnetic fields. The directions [indicated by arrows in FIG. 2B] are arranged so as to be opposite to each other, and are arranged at an angle of 90 degrees in the X direction and the Y direction. When the output of the magnetic sensor a is Va and the output of the magnetic sensor b is Vb, the angle of the magnetic azimuth sensor c with respect to the magnetic direction is expressed by equation (3).
【0020】 θ=tan-1(Vb/Va) ・・・・・・・・・・ (3)Θ = tan −1 (Vb / Va) (3)
【0021】従って、磁気センサa及びbの出力を
(3)式に代入すれば、磁気方位が明らかとなる。θは
外部磁界(例えば、地磁気の水平成分)との角度であ
る。Therefore, by substituting the outputs of the magnetic sensors a and b into the equation (3), the magnetic orientation becomes clear. θ is an angle with an external magnetic field (for example, a horizontal component of the earth's magnetism).
【0022】図3は、本発明の磁気方位センサ内の磁気
センサに外部磁界が0の場合の磁気検出動作を示す原理
図である。磁界検出方向が、互いに逆向きの二つの磁気
抵抗素子からなるので、Vout軸に対して左右の特性
曲線となる。各方向の磁気センサa,bにバイアスコイ
ルを巻装し、該バイアスコイルに矩形の交流電流を流
し、矩形波の交流磁界を印加する。磁気抵抗素子には、
磁界量H1から−H1の交流矩形波バイアス磁界が印加
される。従って、前記矩形波の交流磁界の正負方向の最
大値が磁気抵抗素子の磁気特性の最大傾斜の特性点(出
力V1となる特性点)で印加するように設定する。磁気
抵抗素子の磁界に対する出力電圧特性は、図3に示すよ
うに、特性の整合した磁気抵抗素子は、出力電圧Vou
t軸に対して対称形をなしており、正負同一磁界量の場
合の磁気抵抗素子の出力電圧は同一値が得られる。FIG. 3 is a principle diagram showing the magnetic detection operation when the external magnetic field is zero in the magnetic sensor in the magnetic direction sensor of the present invention. Since the magnetic field detection directions are composed of two magnetoresistive elements that are opposite to each other, the characteristic curves are left and right with respect to the Vout axis. A bias coil is wound around the magnetic sensors a and b in each direction, a rectangular alternating current is passed through the bias coil, and a rectangular wave alternating magnetic field is applied. For the magnetoresistive element,
An AC rectangular wave bias magnetic field of −H1 is applied from the magnetic field amount H1. Therefore, the maximum value in the positive and negative directions of the rectangular-wave AC magnetic field is set so as to be applied at the characteristic point of the maximum inclination of the magnetic characteristic of the magnetoresistive element (the characteristic point that becomes the output V1). The output voltage characteristic of the magnetoresistive element with respect to the magnetic field is shown in FIG.
It has a symmetrical shape with respect to the t-axis, and the same output voltage of the magnetoresistive element can be obtained when the positive and negative magnetic fields are the same.
【0023】従って、交流矩形波バイアス磁界が+H1
時の磁気抵抗素子の出力をVout1、交流矩形波バイ
アス磁界が−H1時の磁気抵抗素子の出力をVout2
とした場合、外部磁界が0である図3の場合の磁気抵抗
素子の出力電圧は、正負バイアス磁界共に、バイアス磁
界H1に相当する磁気抵抗素子の出力電圧V1が得ら
れ、(4)式及び(5)式で表される。Therefore, the AC rectangular wave bias magnetic field is + H1.
The output of the magnetoresistive element is Vout1, and the output of the magnetoresistive element when the AC rectangular wave bias magnetic field is -H1 is Vout2.
When the external magnetic field is 0, the output voltage V1 of the magnetoresistive element corresponding to the bias magnetic field H1 is obtained as the output voltage V1 of the magnetoresistive element in the case of FIG. It is expressed by equation (5).
【0024】 Vout1(交流矩形波バイアス磁界 +H1時)=V1 ・・・・・ (4)Vout1 (AC rectangular wave bias magnetic field + H1) = V1 (4)
【0025】 Vout2(交流矩形波バイアス磁界 −H1時)=V1 ・・・・・ (5)Vout2 (AC rectangular wave bias magnetic field −H1) = V1 (5)
【0026】二つの磁気抵抗素子の磁界検出方向が逆構
成されているので、その出力Vout3は、(6)式で
表される。Since the magnetic field detection directions of the two magnetoresistive elements are opposite to each other, the output Vout3 is represented by the equation (6).
【0027】 Vout3=Vout1−Vout2 ・・・・・・・・・・ (6)Vout3 = Vout1-Vout2 (6)
【0028】従って、図3の場合(外部磁界0の状態)
のVout3は、Therefore, in the case of FIG. 3 (state of 0 external magnetic field)
Vout3 of
【0029】Vout3=0 ・・・・・・・・・・ (7) となる。Vout3 = 0 (7)
【0030】更に、外部環境の変化によって、磁気抵抗
素子の出力が、V1からV1+△Vと変化した場合のV
out3は、Further, when the output of the magnetoresistive element changes from V1 to V1 + ΔV due to changes in the external environment, V
out3 is
【0031】 Vout3=(V1+△V)− (V1+△V)=0 ・・・・・・・・・・ (8) となり、Vout3 = (V1 + ΔV) − (V1 + ΔV) = 0 (8)
【0032】(7)式及び(8)式より明かなように、外
部磁界0の状態のVout3は、外部環境の変化と無関
係な出力となる。As is apparent from the equations (7) and (8), Vout3 in the state where the external magnetic field is 0 is an output irrelevant to changes in the external environment.
【0033】図4は、本発明の磁気方位センサの磁気セ
ンサに外部磁界H2が加えられた場合の磁気検出動作を
示す原理図である。図3の状態に対し、外部磁界H2が
加えられたことによって、磁気抵抗素子に与えられる磁
界量が変化し、交流矩形波バイアス磁界+H1時に磁気
抵抗素子に与えられる磁界は(H1+H2)、交流矩形
バイアス磁界−H1時に磁気抵抗素子に与えられる磁界
は(−H1+H2)となる。磁界(H1+H2)時の磁
気抵抗素子の出力電圧をV2、磁界(−H1+H2)時
の磁気抵抗素子の出力電圧をV3とすると、Vout1
及びVout2は、(9)式及び(10)式で表される。FIG. 4 is a principle diagram showing a magnetic detection operation when an external magnetic field H2 is applied to the magnetic sensor of the magnetic azimuth sensor of the present invention. The external magnetic field H2 applied to the state of FIG. 3 changes the amount of magnetic field applied to the magnetoresistive element, and the magnetic field applied to the magnetoresistive element at the time of AC rectangular wave bias magnetic field + H1 is (H1 + H2) The magnetic field applied to the magnetoresistive element during the bias magnetic field −H1 is (−H1 + H2). If the output voltage of the magnetoresistive element when the magnetic field (H1 + H2) is V2 and the output voltage of the magnetoresistive element when the magnetic field (-H1 + H2) is V3, Vout1
And Vout2 are expressed by equations (9) and (10).
【0034】 Vout1=V1+(V2−V1) ・・・・・・・・・・ (9)Vout1 = V1 + (V2-V1) (9)
【0035】 Vout2=V1+(V3−V1) ・・・・・・・・・・ (10)Vout2 = V1 + (V3-V1) (10)
【0036】つまり、磁界(H1+H2)時、及び磁界
(−H1+H2)時共に、V1(外部磁界0時の磁気抵
抗素子の出力電圧)を中心として、磁気量に応じて磁気
抵抗素子の出力が変化する構成となる。That is, the output of the magnetoresistive element changes with V1 (the output voltage of the magnetoresistive element when the external magnetic field is 0) as the center both in the magnetic field (H1 + H2) and in the magnetic field (-H1 + H2). Will be configured.
【0037】ところで、外部磁界の磁気量、及び磁気極
性は、(6)式で表されるので、図4の場合のVout
3は、By the way, since the magnetic amount and magnetic polarity of the external magnetic field are expressed by the equation (6), Vout in the case of FIG.
3 is
【0038】 Vout3=V2−V3 ・・・・・・・・・・ (11) となる。Vout3 = V2-V3 (11)
【0039】更に、外部環境の変化によって、V2から
V2+△V、V3からV3+△Vと変化した場合のVo
ut3は、Furthermore, Vo when V2 changes to V2 + ΔV and V3 changes to V3 + ΔV due to changes in the external environment.
ut3 is
【0040】 Vout3=(V2+△V)−(V3+△V)=V2−V3 ・・・・・・・・ (12) となり、Vout3 = (V2 + ΔV)-(V3 + ΔV) = V2-V3 (12)
【0041】(11)式、及び(12)式より明かなよう
に、外部磁界H2時のVout3は外部環境の変化と無
関係な出力となる。As is clear from the equations (11) and (12), Vout3 at the time of the external magnetic field H2 is an output irrelevant to changes in the external environment.
【0042】従って、常に、磁気センサの出力Vout
3を測定すれば、温度変化や経時変化のような外部環境
変化に対し、影響のない磁気検出が可能となる。Therefore, the output Vout of the magnetic sensor is always
If 3 is measured, it is possible to perform magnetic detection that does not affect changes in the external environment such as changes in temperature and changes over time.
【0043】図5は、本発明の磁気センサの磁気抵抗素
子出力を増幅する増幅回路の実施例を示す図で、磁気抵
抗素子出力を抵抗R1と抵抗R2と演算増幅器9で構成
される差動直流増幅回路で初段増幅し、演算増幅器9の
出力端に接続されたコンデンサC1と抵抗R3によるハ
イパスフィルタで、演算増幅器9のオフセット電圧・磁
気抵抗素子のオフセット電圧の温度変化や経時変化等の
直流増幅電圧成分を除去し、可変抵抗VR3と抵抗R4
と演算増幅器10で構成される同相増幅回路で増幅する
2段増幅回路である。コンデンサC1と抵抗R3で構成
されるハイパスフィルタのカットオフ周波数を交流矩形
波バイアス磁界の周波数より、かなり小さく設定すれ
ば、増幅器出力は矩形波出力となり、磁気抵抗素子の出
力の増幅が可能となる。なお、可変抵抗VR1と可変抵
抗VR2は、回路のオフセット電圧を任意に設定するた
めの調整用抵抗であり、可変抵抗VR3は、前記磁気抵
抗素子の出力増幅回路の増幅度を任意に設定するための
調整用抵抗である。FIG. 5 is a diagram showing an embodiment of an amplifier circuit for amplifying the output of the magnetoresistive element of the magnetic sensor of the present invention. The output of the magnetoresistive element is made up of a resistor R1, a resistor R2 and an operational amplifier 9. A high-pass filter including a capacitor C1 and a resistor R3, which is first-stage amplified by a direct current amplifier circuit and is connected to the output terminal of the operational amplifier 9, is used for direct current change such as temperature change and temporal change of the offset voltage of the operational amplifier 9 and the offset voltage of the magnetoresistive element. Amplified voltage component is removed, and variable resistors VR3 and R4
Is a two-stage amplifier circuit that amplifies with a common-mode amplifier circuit composed of an operational amplifier 10. If the cutoff frequency of the high-pass filter composed of the capacitor C1 and the resistor R3 is set to be considerably smaller than the frequency of the AC rectangular wave bias magnetic field, the amplifier output becomes a rectangular wave output, and the output of the magnetoresistive element can be amplified. . The variable resistors VR1 and VR2 are adjusting resistors for arbitrarily setting the offset voltage of the circuit, and the variable resistor VR3 is for arbitrarily setting the amplification degree of the output amplifier circuit of the magnetoresistive element. It is a resistance for adjustment.
【0044】図1は、本発明の磁気センサの回路ブロッ
クを示す図である。磁気センサ2の二つのバイアスコイ
ルに印加する二つの交流矩形波電圧発生器(A,B)1
のどちらかの波形を基準として、90度位相及び270
度位相時に信号を出すA波90度位相変調器3、及びA
波270度位相変調器4があり、磁気センサ2の出力を
増幅する増幅回路5の出力を前記二つの変調器からの信
号によって同期検波を行う、A波90度位相同期検波器
6とA波270度位相同期検波器7の二つの同期検波器
の出力信号の差を演算する同期検波出力差演算器8を通
して、磁気センサの出力が得られる構成である。FIG. 1 is a diagram showing a circuit block of the magnetic sensor of the present invention. Two AC rectangular wave voltage generators (A, B) 1 applied to two bias coils of the magnetic sensor 2.
90 degree phase and 270
A-wave 90-degree phase modulator 3 that outputs a signal at the time of phase and A
There is a wave 270-degree phase modulator 4, and the output of the amplifier circuit 5 for amplifying the output of the magnetic sensor 2 is synchronously detected by the signals from the two modulators. A wave 90-degree phase synchronous detector 6 and A wave The configuration is such that the output of the magnetic sensor is obtained through the synchronous detection output difference calculator 8 that calculates the difference between the output signals of the two synchronous detectors of the 270-degree phase synchronous detector 7.
【0045】前記磁気センサを磁気方位センサとして使
用する場合、前記磁気センサを互いに90度の角度に配
置し、それぞれの磁気センサ出力を前記(3)式に代入
して、方位角度を求める。磁気センサ出力の誤差を補正
できるため、正確な方位角度を求めることができる。When the magnetic sensor is used as a magnetic azimuth sensor, the magnetic sensors are arranged at an angle of 90 degrees with each other and the respective magnetic sensor outputs are substituted into the equation (3) to obtain the azimuth angle. Since the error in the magnetic sensor output can be corrected, the accurate azimuth angle can be obtained.
【0046】[0046]
【発明の効果】以上説明したように、本発明によれば、
X方向、Y方向の各方向の磁気センサにバイアスコイル
を巻装し、該バイアスコイルに矩形の交流電流を流し、
矩形波の交流磁界を印加し、磁気センサ2個が、それぞ
れ互いに90度の角度で配置された磁気方位センサであ
って、磁気抵抗素子に対してバイアス磁界を印加するた
めのバイアスコイルに、互いに逆相で同レベルの二つの
交流矩形波電圧を印加し、前記矩形波の交流磁界の正負
方向の最大値が、センサの磁気特性の最大傾斜の特性点
で印加するようにし、その時の前記磁気抵抗素子の出力
電圧をハイパスフィルタを含む増幅回路で増幅し、増幅
信号を二つの同期検波回路でそれぞれ同期信号を検出す
る。磁気センサ出力の誤差がないため、正確な方位角度
を求めることができ、かつ、磁気センサのオフセット出
力電圧の温度ドリフトや経時変化等の周囲の環境条件の
変化に対して正確で安定な出力特性を示す磁気方位セン
サを提供することをが可能となる。As described above, according to the present invention,
A bias coil is wound around the magnetic sensor in each of the X and Y directions, and a rectangular alternating current is passed through the bias coil.
A magnetic azimuth sensor that applies an alternating magnetic field of a rectangular wave, and two magnetic sensors are arranged at an angle of 90 degrees to each other, and a bias coil for applying a bias magnetic field to a magnetoresistive element is connected to each other. Two alternating rectangular wave voltages of the same level are applied in anti-phase, and the maximum value in the positive and negative directions of the alternating magnetic field of the rectangular wave is applied at the characteristic point of the maximum inclination of the magnetic characteristics of the sensor. The output voltage of the resistance element is amplified by an amplifier circuit including a high-pass filter, and the amplified signal is detected by two synchronous detection circuits. Since there is no error in the magnetic sensor output, an accurate azimuth angle can be obtained, and the output characteristics are accurate and stable against changes in ambient environmental conditions such as temperature drift of the offset output voltage of the magnetic sensor and changes over time. It is possible to provide a magnetic azimuth sensor indicating
【図1】本発明の磁気方位センサの回路ブロックを示す
図。FIG. 1 is a diagram showing a circuit block of a magnetic bearing sensor of the present invention.
【図2】本発明による磁気センサを2個用いた磁気方位
センサの原理図、及び二つの磁気抵抗素子をその磁界検
出方向が互いに逆向きになるように構成した磁気センサ
を示す説明図。図2(a)は、方位測定の原理図。図2
(b)は、磁界検出方向が互いに逆向きの磁気抵抗素子
を用いた磁気センサを示す図。FIG. 2 is a principle diagram of a magnetic azimuth sensor using two magnetic sensors according to the present invention, and an explanatory diagram showing a magnetic sensor in which two magnetic resistance elements are configured so that their magnetic field detection directions are opposite to each other. FIG. 2A is a principle diagram of direction measurement. FIG.
FIG. 6B is a diagram showing a magnetic sensor using magnetic resistance elements whose magnetic field detection directions are opposite to each other.
【図3】本発明の磁気方位センサ内の磁気センサに外部
磁界0の場合の磁気検出動作を示す原理図。FIG. 3 is a principle diagram showing a magnetic detection operation when the external magnetic field is zero in the magnetic sensor in the magnetic direction sensor of the present invention.
【図4】本発明の磁気方位センサ内の磁気センサに外部
磁界H2が加えられた場合の磁気検出動作を示す原理
図。FIG. 4 is a principle diagram showing a magnetic detection operation when an external magnetic field H2 is applied to the magnetic sensor in the magnetic direction sensor of the present invention.
【図5】本発明の磁気センサを構成する磁気抵抗素子の
出力を増幅する増幅回路の実施例を示す図。FIG. 5 is a diagram showing an embodiment of an amplifier circuit for amplifying the output of a magnetoresistive element that constitutes the magnetic sensor of the present invention.
【図6】従来の磁気抵抗素子を使用した磁気センサの磁
気検出動作を示す原理図。FIG. 6 is a principle diagram showing a magnetic detection operation of a magnetic sensor using a conventional magnetoresistive element.
【図7】従来の磁気センサの磁気抵抗素子出力を増幅す
る増幅回路例を示す図。FIG. 7 is a diagram showing an example of an amplifier circuit that amplifies a magnetoresistive element output of a conventional magnetic sensor.
1 交流矩形波電圧発生器(A,B) 2 磁気センサ 2a,2b 磁気抵抗素子 3 A波90度位相変調器 4 A波270度位相変調器 5 増幅回路 6 A波90度位相同期検波器 7 A波270度位相同期検波器 8 同期検波出力差演算器 9,10,11 演算増幅器 a,b 磁気センサ c 磁気方位センサ C1 コンデンサ R1,R2,R3,R4,R5,R6,R7 抵抗 VR1,VR2,VR3,VR4,VR5,VR6
可変抵抗1 AC rectangular wave voltage generator (A, B) 2 Magnetic sensor 2a, 2b Magnetoresistive element 3 A wave 90 degree phase modulator 4 A wave 270 degree phase modulator 5 Amplification circuit 6 A wave 90 degree phase synchronous detector 7 A wave 270 degree phase synchronous detector 8 Synchronous detection output difference calculator 9, 10, 11 Operational amplifier a, b Magnetic sensor c Magnetic direction sensor C1 Capacitor R1, R2, R3, R4, R5, R6, R7 Resistance VR1, VR2 , VR3, VR4, VR5, VR6
Variable resistance
Claims (4)
その磁界検出方向が互いに逆向きになるように一体に構
成した磁気センサからなることを特徴とする磁気方位セ
ンサ。1. A magnetoresistive element having matching characteristics,
A magnetic azimuth sensor comprising a magnetic sensor integrally configured such that magnetic field detection directions thereof are opposite to each other.
X方向、Y方向に、互いに90度の角度に配置し構成し
たことを特徴とする磁気方位センサ。2. Two magnetic bearing sensors according to claim 1,
A magnetic azimuth sensor characterized by being arranged at an angle of 90 degrees in the X direction and the Y direction.
て、各方向の磁気センサにバイアスコイルを巻装し、該
バイアスコイルに矩形波の交流電流を流し、矩形波の交
流磁界を印加し、前記矩形波の交流磁界の正負方向の各
最大値が磁気抵抗素子の磁気特性の最大傾斜の特性点ま
で印加することを特徴とする磁気方位センサ。3. The magnetic azimuth sensor according to claim 2, wherein a bias coil is wound around the magnetic sensor in each direction, a rectangular wave alternating current is applied to the bias coil, and a rectangular wave alternating magnetic field is applied. A magnetic azimuth sensor characterized in that each maximum value of a square wave alternating magnetic field in the positive and negative directions is applied up to a characteristic point of a maximum inclination of magnetic characteristics of a magnetoresistive element.
磁気抵抗素子の二つの出力信号を増幅する二つの入力端
子を持つ増幅器とからなる請求項2記載の磁気方位セン
サ。4. A magnetic bearing sensor according to claim 2, comprising an amplifier having two input terminals for amplifying two output signals of the magnetoresistive element constituting each magnetic sensor according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7207672A JPH0933257A (en) | 1995-07-21 | 1995-07-21 | Magnetic direction sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7207672A JPH0933257A (en) | 1995-07-21 | 1995-07-21 | Magnetic direction sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0933257A true JPH0933257A (en) | 1997-02-07 |
Family
ID=16543660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7207672A Withdrawn JPH0933257A (en) | 1995-07-21 | 1995-07-21 | Magnetic direction sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0933257A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002037131A1 (en) * | 2000-10-26 | 2002-05-10 | The Foundation : The Research Institute For Electric And Magnetic Materials | Thin-film magnetic field sensor |
WO2003032461A1 (en) * | 2001-10-09 | 2003-04-17 | Fuji Electric Holdings Co., Ltd. | Overload current protection apparatus |
JP2003121522A (en) * | 2001-10-12 | 2003-04-23 | Res Inst Electric Magnetic Alloys | Thin-film magnetic field sensor |
JP2010206288A (en) * | 2009-02-27 | 2010-09-16 | Citizen Holdings Co Ltd | Solid vibrator oscillation circuit, and physical quantity sensor using the same |
CN110487317A (en) * | 2019-09-12 | 2019-11-22 | 株洲六零八所科技有限公司 | A kind of magnetic bearing sensor dynamic debugging device |
-
1995
- 1995-07-21 JP JP7207672A patent/JPH0933257A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002037131A1 (en) * | 2000-10-26 | 2002-05-10 | The Foundation : The Research Institute For Electric And Magnetic Materials | Thin-film magnetic field sensor |
US6642714B2 (en) | 2000-10-26 | 2003-11-04 | The Research Institute For Electric And Magnetic Materials | Thin-film magnetic field sensor |
WO2003032461A1 (en) * | 2001-10-09 | 2003-04-17 | Fuji Electric Holdings Co., Ltd. | Overload current protection apparatus |
US7031131B2 (en) | 2001-10-09 | 2006-04-18 | Fuji Electric Co., Ltd. | Overload current protection apparatus |
US7317604B2 (en) | 2001-10-09 | 2008-01-08 | Fuji Electric Co., Ltd. | Over-current protection device |
JP2003121522A (en) * | 2001-10-12 | 2003-04-23 | Res Inst Electric Magnetic Alloys | Thin-film magnetic field sensor |
JP2010206288A (en) * | 2009-02-27 | 2010-09-16 | Citizen Holdings Co Ltd | Solid vibrator oscillation circuit, and physical quantity sensor using the same |
CN110487317A (en) * | 2019-09-12 | 2019-11-22 | 株洲六零八所科技有限公司 | A kind of magnetic bearing sensor dynamic debugging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5621320A (en) | Magnetoresistance type sensor device for detecting change of magnetic field | |
JP4757260B2 (en) | Continuous calibration magnetic field sensor | |
US9645220B2 (en) | Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination | |
US4639665A (en) | Sensing system for measuring a parameter | |
US10444299B2 (en) | Magnetic field sensor's front end and associated mixed signal method for removing chopper's related ripple | |
US6956366B2 (en) | Arrangement for determining the position of a motion sensor element influencing the formation of a magnetic field of a working magnet along its motion coordinate | |
US5231351A (en) | Magnetoresistive speed sensor processing circuit utilizing a symmetrical hysteresis signal | |
US7856338B2 (en) | Apparatus and method for detecting a reversion of direction of a relative movement | |
KR100750439B1 (en) | Magnetic sensor | |
JP6958538B2 (en) | Magnetic field detector and magnetic field detection method | |
WO2007102332A1 (en) | Offset correction program and electronic compass | |
CN109116273A (en) | A kind of negative feedback type GMI magnetic field probe of quick response | |
JPH0933257A (en) | Magnetic direction sensor | |
JP2000055998A (en) | Magnetic sensor device and current sensor device | |
JP4614856B2 (en) | Magnetic detection device and electronic azimuth meter using the same | |
JPH11194160A (en) | Amplifying circuit for reluctance element | |
JPS5856408B2 (en) | magnetic sensor | |
JP2002243815A (en) | Magnetic detector | |
CA1196382A (en) | Current sensing circuit for motor controls | |
JP3318761B2 (en) | Electronic compass | |
JP2002006016A (en) | Magnetic sensor | |
JPS63212803A (en) | Measuring device for displacement | |
JP3794122B2 (en) | Magnetic detector | |
JP3396092B2 (en) | Magnetic detector | |
JP2020041945A (en) | Magnetic field detection sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050906 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20051109 |