JP2003121514A - Internal impedance measuring method for storage battery - Google Patents

Internal impedance measuring method for storage battery

Info

Publication number
JP2003121514A
JP2003121514A JP2001311716A JP2001311716A JP2003121514A JP 2003121514 A JP2003121514 A JP 2003121514A JP 2001311716 A JP2001311716 A JP 2001311716A JP 2001311716 A JP2001311716 A JP 2001311716A JP 2003121514 A JP2003121514 A JP 2003121514A
Authority
JP
Japan
Prior art keywords
measured
storage battery
storage
current
storage batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001311716A
Other languages
Japanese (ja)
Other versions
JP3904875B2 (en
Inventor
Kiyoshi Takahashi
高橋  清
Toshihiko Hoshi
俊彦 星
Isao Ichihara
功 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Docomo Engineering Hokkaido Inc
Original Assignee
Furukawa Battery Co Ltd
Docomo Engineering Hokkaido Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, Docomo Engineering Hokkaido Inc filed Critical Furukawa Battery Co Ltd
Priority to JP2001311716A priority Critical patent/JP3904875B2/en
Publication of JP2003121514A publication Critical patent/JP2003121514A/en
Application granted granted Critical
Publication of JP3904875B2 publication Critical patent/JP3904875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the internal impedance of a storage battery to be measured, even if the storage battery to be measured is cut off from load or the like. SOLUTION: A measurement current for the AC component of a constant current is passed through (n) (n>=2) storage batteries, including the storage battery 11 to be measured among a plurality of storage batteries 11-17 for measuring the electromotive force generated between both poles of the storage battery to be measured. Further, a measurement current is passed through (m) (m<n) storage batteries, to be measured among (n) storage batteries to measure the electromotive force generated between both poles of the storage battery to be measured. From the change quantity of the electromotive force, generated between both poles of the storage battery to be measured, when the measuring current is passed through (n) storage batteries and the electromotive force generated between both poles of the storage battery to be measured, when the measuring current is passed through (m) storage batteries, the electromotive force, which is generated when the measuring current is passed through the storage battery to be measured, in a state such that the storage battery to be measured is cut off from load, is calculated. The internal impedance of the storage battery to be measured is measured, on the basis of the electromotive force generated.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、蓄電池の内部イン
ピーダンス測定方法に関する。 【0002】 【従来の技術】蓄電池の内部インピーダンスを測定する
ことによって該蓄電池の寿命や残存容量を知ることは以
前から行なわれている。従来の蓄電池の内部インピーダ
ンス測定方法は、図3(a)または(b)に示すよう
に、複数(図の場合は7個)の直列接続された蓄電池1
1,12,13,14,15,16,17の中の被測定
蓄電池11の陽極と陰極との間に定電流交流発生源20
から定電流交流成分の測定電流(充放電電流)を通電
し、被測定蓄電池11の両極端子間に発生する起電力を
電圧計30で測定し、この起電力から被測定蓄電池11
の内部インピーダンスを測定するという方法であった。 【0003】この方法は、図3(a)に示すように、蓄
電池11〜16に定電圧電源40や負荷50等の機器が
接続されていない場合には、定電流交流発生源20から
の測定電流が全て被測定蓄電池11に通電されるため被
測定蓄電池11の内部インピーダンスを精度よく測定で
きるが、図3(b)に示すように、蓄電池11〜16に
定電圧電源40や負荷50等の機器が接続されていた場
合には、定電流交流発生源20からの測定電流の一部が
定電圧電源40や負荷50等の機器に流れ込んでしまう
ため、被測定蓄電池11の内部インピーダンスを正確に
測定することはできなかった。 【0004】このため、被測定蓄電池11を定電圧電源
40や負荷50等の機器から切り離して該被測定蓄電池
11の内部インピーダンスを測定することが精度の面か
らみて好ましいが、実際に使用されている蓄電池は定電
圧電源40や負荷50等の機器に接続されており、蓄電
池をこれらの機器からわざわざ切り離して内部インピー
ダンスを測定することは、保守管理の簡素化や蓄電池の
有効利用の面を考慮すると好ましくなかった。 【0005】 【発明が解決しようとする課題】上述したように、従来
の蓄電池の内部インピーダンス測定方法においては、被
測定蓄電池11を定電圧電源40や負荷50等の機器か
ら切り離さないで測定した場合に測定誤差を生じ、正確
に内部インピーダンスを測定できないという問題があっ
た。 【0006】本発明はこのような事情に基づいてなされ
たもので、その目的とするところは、ことができる蓄電
池の内部インピーダンス測定方法を提供しようとするも
のである。 【0007】 【課題を解決するための手段】請求項1に係る発明は、
複数の直列接続された蓄電池に負荷を接続した状態で、
該蓄電池の内部インピーダンスを測定する方法におい
て、複数の蓄電池のうち被測定蓄電池を含むn(n≧
2)個の蓄電池に定電流交流成分の測定電流を通電して
被測定蓄電池の両極間に生じる起電力を測定するととも
に、n個の蓄電池の中の被測定蓄電池を含むm(m<
n)個の蓄電池に定電流交流成分の測定電流を通電して
被測定蓄電池の両極間に生じる起電力を測定し、n個の
蓄電池に定電流交流成分の測定電流を通電したときの被
測定蓄電池の両極間に生じる起電力とm個の蓄電池に定
電流交流成分の測定電流を通電したときの被測定蓄電池
の両極間に生じる起電力との変化量とから、被測定蓄電
池を負荷から切り離した状態で該被測定蓄電池に測定電
流を通電したときの発生起電力を算出し、この発生起電
力に基づいて被測定蓄電池の内部インピーダンスを測定
するようにしたものである。 【0008】 【発明の実施の形態】以下、本発明に関わる蓄電池の内
部インピーダンス測定方法の一実施の形態を、図1及び
図2を用いて説明する。 【0009】なお、この実施の形態は、図1に示すよう
に、7個の直列接続された蓄電池11,12,13,1
4,15,16,17に定電圧電源40と負荷50がそ
れぞれ並列に接続された状態で、被測定蓄電池11の内
部インピーダンスを測定する場合である。 【0010】はじめに、本実施の形態は、第1のステッ
プとして、7個の直列接続された蓄電池11〜17のう
ち被測定蓄電池11を含むn(n≧2)個の連続する蓄
電池(図では蓄電池11,12,13の3個とする)の
両極間に切替スイッチ60を介して定電流交流発生源2
0を接続する。そして、定電流交流発生源20から定電
流交流成分の測定電流をn個の蓄電池11,12,13
に通電して、該蓄電池11,12,13毎にその両極間
に生じる起電力V31,V32,V33をそれぞれ電圧
計31,32,33で測定する。 【0011】次に、第2のステップとして、前記切替ス
イッチ60を切替えて、上記n個の蓄電池11,12,
13の中の被測定蓄電池11を含むm(m<n)個の蓄
電池(図では被測定蓄電池11の1個する)の両極間に
前記定電流交流発生源20を接続する。そして、定電流
交流発生源20から定電流交流成分の測定電流を被測定
蓄電池11に通電して、該蓄電池11の両極間に生じる
起電力V11を電力計31で測定する。 【0012】なお、上記第1のステップと第2のステッ
プは、その順番を入れ替えてもよい。つまり、先に第2
のステップを実行し、その後、切替スイッチ60を切替
えて第1のステップを実行してもよい。 【0013】次に、第3のステップとして、n個の蓄電
池11,12,13に定電流交流成分の測定電流を通電
したときの被測定蓄電池11の両極間に生じる起電力V
31と、m個の蓄電池11に定電流交流成分の測定電流
を通電したときの被測定蓄電池11の両極間に生じる起
電力V11との変化量とから、定電圧電源40及び負荷
50を切り離した状態で被測定蓄電池11に測定電流を
通電したときの発生起電力V0を算出する。 【0014】しかる後、第4のステップとして、この発
生起電力V0に基づいて被測定蓄電池11の内部インピ
ーダンスを測定するというものである。 【0015】仮に、蓄電池11〜17を定電圧電源40
及び負荷50から切り離した状態で、上記のように、n
個の蓄電池11,12,13に定電流交流成分の測定電
流を通電したときと、m個の蓄電池11に定電流交流成
分の測定電流を通電したときとでは、被測定蓄電池11
の両極間に生じる起電力V31及びV11は一致する。
このときの起電力をV0とする。 【0016】これに対し、蓄電池11〜17を定電圧電
源40及び負荷50に接続した状態で、n個の蓄電池1
1,12,13に定電流交流成分の測定電流を通電する
と、この測定電流が通電された各蓄電池11,12,1
3ではそれぞれ内部インピーダンス値r1(蓄電池11
の内部インピーダンス値),r2(蓄電池12の内部イ
ンピーダンス値),r3(蓄電池13の内部インピーダ
ンス値)に比例した起電力が発生する。これにより、直
列に接続された蓄電池11〜17の合計電圧が変動す
る。同様に、蓄電池11〜17を定電圧電源40及び負
荷50に接続した状態で、m個の蓄電池11に定電流交
流成分の測定電流を通電した場合も、この蓄電池11で
は内部インピーダンス値r1に比例した起電力が発生す
るので、その分、蓄電池11〜17の合計電圧が変動す
る。この場合において、蓄電池11〜17の合計電圧の
変動は、内部インピーダンス値が大きい分、n個の蓄電
池11,12,13に定電流交流成分の測定電流を通電
したときの方が、m個の蓄電池11に定電流交流成分の
測定電流を通電したときよりも大きい。 【0017】このように、蓄電池11〜17の合計電圧
が変動すると、定電圧電源40はこの合計電圧を一定に
保つように制御が働き、定電圧電源40から蓄電池11
〜17に流れる電流が変動する。この変動は、蓄電池の
内部インピーダンスの和に比例する。つまり、n個の蓄
電池11,12,13に定電流交流成分の測定電流を通
電した場合には、そのn個の蓄電池11,12,13の
内部インピーダンス値r1,r2,r3の和に比例して
定電圧電源40からの電流が変動し、m個の蓄電池11
に定電流交流成分の測定電流を通電した場合には、その
m個の蓄電池11の内部インピーダンス値r1に比例し
て定電圧電源40からの電流が変動する。これらの定電
圧電源40からの電流の変動は、定電流交流発生源20
からの測定電流の流れ込みを生じさせ、結果的に蓄電池
に流れる測定電流を減少させる方向に働く。 【0018】すなわち、n個の蓄電池11,12,13
に定電流交流成分の測定電流を通電した場合には、その
n個の蓄電池11,12,13の内部インピーダンス値
r1,r2,r3の和に比例して測定電流が減少し、そ
れに対応して被測定蓄電池11に発生する起電力V31
が小さくなる。一方、m個の蓄電池11に定電流交流成
分の測定電流を通電した場合には、そのm個の蓄電池1
1の内部インピーダンス値r1に比例して測定電流が減
少し、それに対応して被測定蓄電池11に発生する起電
力V11が小さくなる。 【0019】以上の関係を、縦軸Yを被測定蓄電池11
の起電力とし、横軸Xを測定電流が流れる蓄電池の数と
してグラフ化すると、蓄電池11〜17を定電圧電源4
0及び負荷50から切り離した状態においては、図2中
Aに示すように、被測定蓄電池11の起電力は、測定電
流が流れる蓄電池の数に拘らず一定の特性を有するグラ
フとなるが、蓄電池11〜17を定電圧電源40及び負
荷50に接続した状態においては、図2中Bに示すよう
に、被測定蓄電池11の起電力は、測定電流が流れる蓄
電池の数の増加つまり内部インピーダンスの増加に対し
て反比例の特性をもって減少するグラフとなる。 【0020】ここに、反比例の特性をもつグラフBは、
その傾きをaとし、ゼロ切片をbとしたとき、下記
(1)式で表される。 【0021】Y=−aX+b …(1) ここで、傾きaは、下記(2)式で表される。 【0022】 a=(V11−V31)/(m−n) …(2) 今、(1)式において、m個の蓄電池11に定電流交流
成分の測定電流を通電したときの被測定蓄電池11の起
電力V11を求めるとすると、 Y=V11=(―a×ΣVm/ΣVn)+b …(3) となる。ここで、ΣVnはn個の蓄電池11〜13に定
電流交流成分の測定電流を通電したときの各蓄電池11
〜13にそれぞれ生じた起電力V31,V32,V33
の総和であり、ΣVmはn個の蓄電池11〜13に定電
流交流成分の測定電流を通電したときのm個の蓄電池1
1に生じた起電力V31の和である。 【0023】また、(1)式において、n個の蓄電池1
1〜13に定電流交流成分の測定電流を通電したときの
被測定蓄電池11の起電力V31を求めるとすると、 Y=V31=(―a×ΣVn/ΣVn)+b …(4) となる。 【0024】そこで、第1のステップで測定した起電力
V31,V32,V33と、第2のステップで測定した
起電力V11とを上記(3)式及び(4)式に代入する
ことによって、ゼロ切片bを求めることができる。この
ゼロ切片bが定電圧電源40及び負荷50を切り離した
状態で被測定蓄電池11に測定電流を通電したときの発
生起電力V0となる。 【0025】これにより、被測定蓄電池11の内部イン
ピーダンスr1は、起電力V0を定電流交流発生源20
からの出力電流値で除算することによって求めることが
できる。 【0026】以上のように本実施の形態によれば、蓄電
池11〜17を定電圧電源40や負荷50から切り離さ
なくても、精度よく被測定蓄電池11の内部インピーダ
ンスr1を測定することができる。 【0027】なお、前記一実施の形態では、7個の直列
接続された蓄電池11,12,13,14,15,1
6,17のうち被測定蓄電池11の内部インピーダンス
を測定する場合において、n=3,m=1として説明し
たが、nが2以上でありかつmがm<nの関係を有する
場合であれば、直列接続される蓄電池の数に拘らず本発
明の作用効果を奏するものである。 【0028】 【発明の効果】以上詳述したように本発明によれば、被
測定蓄電池を負荷等から切り離さなくても精度よく被測
定蓄電池の内部インピーダンスを測定することができる
蓄電池の内部インピーダンス測定方法を提供できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the internal impedance of a storage battery. 2. Description of the Related Art It has long been known to measure the internal impedance of a storage battery to determine the life and remaining capacity of the storage battery. As shown in FIG. 3A or 3B, a conventional method for measuring the internal impedance of a storage battery includes a plurality (seven in the case of FIG. 3) of storage batteries 1 connected in series.
A constant current AC source 20 is connected between the anode and the cathode of the storage battery 11 in 1, 12, 13, 14, 15, 16, and 17.
, A measuring current (charging / discharging current) of a constant current AC component is supplied thereto, and an electromotive force generated between the two terminals of the storage battery 11 to be measured is measured by a voltmeter 30.
The method was to measure the internal impedance of the device. In this method, as shown in FIG. 3 (a), when no device such as a constant voltage power supply 40 or a load 50 is connected to the storage batteries 11 to 16, measurement from the constant current AC generation source 20 is performed. Since all the current flows through the storage battery 11 to be measured, the internal impedance of the storage battery 11 to be measured can be accurately measured. However, as shown in FIG. If the device is connected, a part of the measured current from the constant current AC source 20 flows into the device such as the constant voltage power supply 40 and the load 50, so that the internal impedance of the storage battery 11 to be measured is accurately measured. It could not be measured. For this reason, it is preferable to separate the storage battery 11 to be measured from the constant voltage power supply 40 and the load 50 and other devices to measure the internal impedance of the storage battery 11 from the viewpoint of accuracy. The storage battery is connected to devices such as the constant voltage power supply 40 and the load 50, and measuring the internal impedance by separately separating the storage battery from these devices takes into account the simplification of maintenance management and the effective use of the storage battery. Then it was not desirable. As described above, in the conventional method for measuring the internal impedance of a storage battery, when the storage battery 11 to be measured is measured without disconnecting it from devices such as the constant voltage power supply 40 and the load 50, There is a problem in that a measurement error occurs and the internal impedance cannot be measured accurately. [0006] The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for measuring the internal impedance of a storage battery that can be performed. Means for Solving the Problems The invention according to claim 1 is:
With a load connected to a plurality of storage batteries connected in series,
In the method for measuring the internal impedance of the storage battery, n (n ≧ n) including the storage battery to be measured among the plurality of storage batteries
2) A measurement current of a constant current AC component is supplied to the storage batteries to measure an electromotive force generated between both poles of the storage battery to be measured, and m (m <m including the storage batteries to be measured among the n storage batteries)
n) A measurement current of a constant current AC component is applied to the number of storage batteries to measure an electromotive force generated between both poles of the storage battery to be measured, and a measurement is performed when the measurement current of the constant current AC component is applied to the n storage batteries. The measured storage battery is separated from the load from the amount of change between the electromotive force generated between the two electrodes of the storage battery and the electromotive force generated between the both electrodes of the measured storage battery when the measurement current of the constant current AC component is applied to the m storage batteries. In this state, the generated electromotive force when the measured current is supplied to the measured storage battery is calculated, and the internal impedance of the measured storage battery is measured based on the generated electromotive force. An embodiment of a method for measuring the internal impedance of a storage battery according to the present invention will be described below with reference to FIGS. 1 and 2. In this embodiment, as shown in FIG. 1, seven batteries 11, 12, 13, 1 connected in series are connected.
In this case, the internal impedance of the storage battery 11 to be measured is measured in a state where the constant voltage power supply 40 and the load 50 are connected in parallel to 4, 15, 16, and 17, respectively. First, in the present embodiment, as a first step, n (n ≧ 2) continuous storage batteries (in the figure, including the storage battery 11 to be measured) among the seven series-connected storage batteries 11 to 17 are illustrated. Between the two poles of the storage batteries 11, 12, and 13) via the changeover switch 60
0 is connected. Then, the measured current of the constant current AC component is supplied from the constant current AC source 20 to the n storage batteries 11, 12, 13.
And the electromotive force V31, V32, V33 generated between both electrodes of each of the storage batteries 11, 12, 13 is measured by voltmeters 31, 32, 33, respectively. Next, as a second step, the changeover switch 60 is switched to set the n storage batteries 11, 12,.
The constant current AC source 20 is connected between both poles of m (m <n) storage batteries (one of the storage batteries 11 to be measured in the figure) including the storage battery 11 in 13. Then, a measurement current of a constant current AC component is supplied from the constant current AC generation source 20 to the storage battery 11 to be measured, and an electromotive force V11 generated between both poles of the storage battery 11 is measured by the wattmeter 31. The order of the first step and the second step may be changed. In other words, the second
After that, the first step may be executed by switching the changeover switch 60. Next, as a third step, an electromotive force V generated between both poles of the storage battery 11 when a measurement current of a constant current AC component is applied to the n storage batteries 11, 12, 13 is measured.
The constant-voltage power supply 40 and the load 50 were separated from the reference voltage 31 and the amount of change in the electromotive force V11 generated between the poles of the measured storage battery 11 when the measurement current of the constant current AC component was supplied to the m storage batteries 11. In the state, the generated electromotive force V0 when the measured current is supplied to the storage battery 11 to be measured is calculated. Thereafter, as a fourth step, the internal impedance of the storage battery 11 to be measured is measured based on the generated electromotive force V0. It is assumed that the storage batteries 11 to 17 are connected to a constant voltage power supply 40.
And with the load 50 disconnected, as described above, n
When the measured current of the constant current AC component is applied to the storage batteries 11, 12, and 13, and when the measured current of the constant current AC component is applied to the m storage batteries 11, the storage battery 11 to be measured is changed.
The electromotive forces V31 and V11 generated between the two electrodes coincide with each other.
The electromotive force at this time is defined as V0. On the other hand, when the storage batteries 11 to 17 are connected to the constant voltage power supply 40 and the load 50, the n storage batteries 1 to 17 are connected.
When a measurement current of a constant current AC component is supplied to the storage batteries 1, 12, and 13, the storage batteries 11, 12, 1 to which the measurement current is supplied are supplied.
3, the internal impedance value r1 (the storage battery 11
, R2 (the internal impedance value of the storage battery 12), and r3 (the internal impedance value of the storage battery 13). Thereby, the total voltage of the storage batteries 11 to 17 connected in series varies. Similarly, when the storage batteries 11 to 17 are connected to the constant-voltage power supply 40 and the load 50 and a measurement current of a constant current AC component is applied to the m storage batteries 11, the storage batteries 11 are proportional to the internal impedance value r1. Since the generated electromotive force is generated, the total voltage of the storage batteries 11 to 17 fluctuates accordingly. In this case, the fluctuation of the total voltage of the storage batteries 11 to 17 is larger when the measurement current of the constant current AC component is applied to the n storage batteries 11, 12, and 13 because the internal impedance value is larger. It is larger than when the measured current of the constant current AC component is supplied to the storage battery 11. As described above, when the total voltage of the storage batteries 11 to 17 fluctuates, the constant voltage power supply 40 controls the constant voltage power supply 40 so as to keep the total voltage constant.
To 17 vary. This variation is proportional to the sum of the internal impedance of the storage battery. That is, when a measurement current of a constant current AC component is applied to the n storage batteries 11, 12, and 13, the internal impedance values r1, r2, and r3 of the n storage batteries 11, 12, and 13 are proportional to the sum. The current from the constant voltage power supply 40 fluctuates, and the m storage batteries 11
When a measurement current of a constant current AC component is applied to the m storage batteries 11, the current from the constant voltage power supply 40 fluctuates in proportion to the internal impedance value r1 of the m storage batteries 11. The fluctuation of the current from the constant voltage power supply 40 is
This causes the measurement current to flow into the storage battery, and consequently acts to reduce the measurement current flowing to the storage battery. That is, n storage batteries 11, 12, 13
When a measurement current of a constant current AC component is applied to the storage battery, the measurement current decreases in proportion to the sum of the internal impedance values r1, r2, and r3 of the n storage batteries 11, 12, and 13. Electromotive force V31 generated in storage battery 11 to be measured
Becomes smaller. On the other hand, when a measurement current of a constant current AC component is applied to the m storage batteries 11, the m storage batteries 1
The measured current decreases in proportion to the internal impedance value r1 of 1, and the electromotive force V11 generated in the storage battery 11 to be measured correspondingly decreases. In the above relationship, the vertical axis Y is plotted on the storage battery 11 to be measured.
When the horizontal axis X is graphed as the number of storage batteries through which the measured current flows, the storage batteries 11 to 17 are connected to the constant voltage power supply 4.
In the state separated from the load 0 and the load 50, as shown in FIG. 2A, the electromotive force of the storage battery 11 to be measured is a graph having a constant characteristic regardless of the number of storage batteries through which the measured current flows. In a state where the power supply 11 to 17 are connected to the constant voltage power supply 40 and the load 50, as shown in B in FIG. 2, the electromotive force of the storage battery 11 to be measured increases the number of storage batteries through which the measurement current flows, that is, increases the internal impedance. Is a graph that decreases in inverse proportion to Here, the graph B having the inversely proportional characteristic is as follows.
When the slope is a and the zero intercept is b, it is expressed by the following equation (1). Y = −aX + b (1) Here, the slope a is expressed by the following equation (2). A = (V11−V31) / (m−n) (2) Now, in the equation (1), the measured storage battery 11 when the measurement current of the constant current AC component is applied to the m storage batteries 11 If the electromotive force V11 is obtained, Y = V11 = (− a × ΔVm / ΔVn) + b (3) Here, ΔVn is the value of each storage battery 11 when a measurement current of a constant current AC component is applied to n storage batteries 11 to 13.
To V13, V32, V33,
ΔVm is the number of storage batteries 1 when a measurement current of a constant current AC component is applied to the n storage batteries 11 to 13
1 is the sum of the electromotive forces V31 generated. In the equation (1), n storage batteries 1
Assuming that the electromotive force V31 of the storage battery 11 to be measured when the measurement current of the constant current AC component is supplied to 1 to 13 is obtained, Y = V31 = (− a × ΔVn / ΔVn) + b (4) Therefore, by substituting the electromotive forces V31, V32, V33 measured in the first step and the electromotive force V11 measured in the second step into the above equations (3) and (4), zero An intercept b can be determined. This zero intercept b becomes the generated electromotive force V0 when the measured current is applied to the storage battery 11 under the condition that the constant voltage power supply 40 and the load 50 are disconnected. Thus, the internal impedance r1 of the storage battery 11 to be measured changes the electromotive force V0 from the constant current AC source 20
Can be obtained by dividing by the output current value from. As described above, according to the present embodiment, the internal impedance r1 of the storage battery 11 to be measured can be accurately measured without disconnecting the storage batteries 11 to 17 from the constant voltage power supply 40 and the load 50. In the above-described embodiment, seven storage batteries 11, 12, 13, 14, 15, 1 connected in series are connected.
In the case where the internal impedance of the storage battery 11 to be measured is measured among the samples 6 and 17, n = 3 and m = 1 have been described. However, if n is 2 or more and m has a relationship of m <n. The effects of the present invention can be obtained regardless of the number of storage batteries connected in series. As described above in detail, according to the present invention, the internal impedance of a storage battery can be accurately measured without disconnecting the storage battery from a load or the like. We can provide a method.

【図面の簡単な説明】 【図1】 本発明の一実施の形態における蓄電池内部イ
ンピーダンス測定方法を説明するための回路図。 【図2】 同実施の形態において蓄電池を定電圧電源及
び負荷から切り離した状態と接続した状態の被測定蓄電
池の起電力と測定電流が流れる蓄電池の数との関係を示
す図。 【図3】 従来の蓄電池内部インピーダンス測定方法を
説明するための回路図。 【符号の説明】 11〜17…蓄電池 20…定電流交流発生源 30〜33…電圧計 40…定電圧電源 50…負荷 60…切替スイッチ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram for explaining a method for measuring the internal impedance of a storage battery according to an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the electromotive force of the storage battery to be measured and the number of storage batteries through which a measurement current flows, in a state where the storage battery is disconnected from the constant voltage power supply and the load in the embodiment. FIG. 3 is a circuit diagram for explaining a conventional method for measuring the internal impedance of a storage battery. [Description of Signs] 11 to 17: storage battery 20: constant current AC generators 30 to 33: voltmeter 40: constant voltage power supply 50: load 60: changeover switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 清 栃木県今市市荊沢字上原597 古河電池株 式会社今市事業所内 (72)発明者 星 俊彦 神奈川県横浜市保土ヶ谷区星川2丁目4番 1号 古河電池株式会社内 (72)発明者 市原 功 北海道札幌市豊平区月寒中央通7丁目6番 20号 JA月寒中央ビル ドコモエンジニ アリング北海道株式会社内 Fターム(参考) 2G016 CA00 CB06 CC02 2G028 AA01 AA02 BB20 BE04 CG08 DH05 DH12 FK01 5H030 AA00 BB09 FF41    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kiyoshi Takahashi             597 Jingzawa Uehara, Imaichi City, Tochigi Prefecture Furukawa Battery Co., Ltd.             In the formula company Imaichi office (72) Inventor Toshihiko Hoshi             2-4 Hoshikawa, Hodogaya-ku, Yokohama, Kanagawa Prefecture             No. 1 Inside Furukawa Battery Co., Ltd. (72) Inventor Isao Ichihara             7-6, Tsukikan Chuo-dori, Toyohira-ku, Sapporo, Hokkaido             No.20 JA Tsukikan Chuo Building docomo Engini             Alling Hokkaido Co., Ltd. F-term (reference) 2G016 CA00 CB06 CC02                 2G028 AA01 AA02 BB20 BE04 CG08                       DH05 DH12 FK01                 5H030 AA00 BB09 FF41

Claims (1)

【特許請求の範囲】 【請求項1】 複数の直列接続された蓄電池に負荷を接
続した状態で、該蓄電池の内部インピーダンスを測定す
る方法において、 前記複数の蓄電池のうち被測定蓄電池を含むn(n≧
2)個の蓄電池に定電流交流成分の測定電流を通電して
前記被測定蓄電池の両極間に生じる起電力を測定すると
ともに、前記n個の蓄電池の中の被測定蓄電池を含むm
(m<n)個の蓄電池に前記定電流交流成分の測定電流
を通電して前記被測定蓄電池の両極間に生じる起電力を
測定し、 前記n個の蓄電池に定電流交流成分の測定電流を通電し
たときの前記被測定蓄電池の両極間に生じる起電力と前
記m個の蓄電池に前記定電流交流成分の測定電流を通電
したときの前記被測定蓄電池の両極間に生じる起電力と
の変化量とから、前記被測定蓄電池を前記負荷から切り
離した状態で該被測定蓄電池に前記測定電流を通電した
ときの発生起電力を算出し、 この発生起電力に基づいて前記被測定蓄電池の内部イン
ピーダンスを測定することを特徴とする蓄電池の内部イ
ンピーダンス測定方法。
Claims: 1. A method for measuring the internal impedance of a plurality of storage batteries connected in series with a load connected to the storage batteries, wherein n (b) includes a storage battery to be measured among the plurality of storage batteries. n ≧
2) A measurement current of a constant current AC component is supplied to the storage batteries to measure an electromotive force generated between both poles of the storage battery to be measured, and m includes the storage battery to be measured among the n storage batteries.
The measurement current of the constant current AC component is supplied to the (m <n) storage batteries to measure an electromotive force generated between both electrodes of the storage battery to be measured, and the measurement current of the constant current AC component is supplied to the n storage batteries. The amount of change between the electromotive force generated between both electrodes of the measured storage battery when energized and the electromotive force generated between the electrodes of the measured storage battery when the measurement current of the constant current AC component is applied to the m storage batteries. From the above, calculate the generated electromotive force when the measured current is applied to the measured storage battery in a state where the measured storage battery is disconnected from the load, and calculate the internal impedance of the measured storage battery based on the generated electromotive force. A method for measuring the internal impedance of a storage battery, characterized by measuring.
JP2001311716A 2001-10-09 2001-10-09 Method for measuring internal impedance of storage battery Expired - Fee Related JP3904875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001311716A JP3904875B2 (en) 2001-10-09 2001-10-09 Method for measuring internal impedance of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001311716A JP3904875B2 (en) 2001-10-09 2001-10-09 Method for measuring internal impedance of storage battery

Publications (2)

Publication Number Publication Date
JP2003121514A true JP2003121514A (en) 2003-04-23
JP3904875B2 JP3904875B2 (en) 2007-04-11

Family

ID=19130488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001311716A Expired - Fee Related JP3904875B2 (en) 2001-10-09 2001-10-09 Method for measuring internal impedance of storage battery

Country Status (1)

Country Link
JP (1) JP3904875B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011597A (en) * 2006-06-27 2008-01-17 Sony Corp Protection circuit of secondary battery and battery pack
JP2009109375A (en) * 2007-10-31 2009-05-21 Hioki Ee Corp Electronic load device and internal resistance measuring device of battery
JP5708658B2 (en) * 2010-12-10 2015-04-30 日産自動車株式会社 Stacked battery internal resistance measuring apparatus and internal resistance measuring method
CN109828216A (en) * 2019-01-30 2019-05-31 同济大学 Improve the device and method of fuel cell subregion electrochemical impedance spectroscopy accuracy of measurement
CN111157792A (en) * 2020-01-07 2020-05-15 聚融医疗科技(杭州)有限公司 High-reliability power supply impedance detection circuit system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011597A (en) * 2006-06-27 2008-01-17 Sony Corp Protection circuit of secondary battery and battery pack
JP4626578B2 (en) * 2006-06-27 2011-02-09 ソニー株式会社 Battery pack
JP2009109375A (en) * 2007-10-31 2009-05-21 Hioki Ee Corp Electronic load device and internal resistance measuring device of battery
JP5708658B2 (en) * 2010-12-10 2015-04-30 日産自動車株式会社 Stacked battery internal resistance measuring apparatus and internal resistance measuring method
CN109828216A (en) * 2019-01-30 2019-05-31 同济大学 Improve the device and method of fuel cell subregion electrochemical impedance spectroscopy accuracy of measurement
CN109828216B (en) * 2019-01-30 2021-02-02 同济大学 Device and method for improving accuracy of fuel cell partition electrochemical impedance spectrum measurement
CN111157792A (en) * 2020-01-07 2020-05-15 聚融医疗科技(杭州)有限公司 High-reliability power supply impedance detection circuit system

Also Published As

Publication number Publication date
JP3904875B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
KR20210092721A (en) Serial battery pack capacity online monitoring and charging/discharging dual state equalization circuit and method
CN103178306B (en) Equilibrium assembling method and equilibrium assembling system for lithium secondary battery
JP2007513594A (en) Method for balance charging a lithium ion or lithium polymer battery
JP2002107427A (en) Method for detecting residual capacity of secondary battery
CN108700636A (en) The degradation determination device of secondary cell
JPH08179018A (en) Residual capacity display device for secondary battery
JP2003121516A (en) Measurement device for internal resistance of storage battery
JP2003121514A (en) Internal impedance measuring method for storage battery
JP2003068369A (en) Detecting method of total capacity of secondary battery and detector of total capacity
CN104166097A (en) Battery electric quantity measuring method
JP3412355B2 (en) Nickel-based battery deterioration determination method
JP2007085843A (en) Failure detector for electric current sensor and its method
CN104577240B (en) The determination method of lithium ion accumulator and its characteristic with measurement battery
KR20210051809A (en) Method for estimating of battery&#39;s state of charge and Battery Management System
JPH0845452A (en) Ion balance measuring device and measuring method for the balance
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
JP2003243017A (en) Electric equivalent circuit model forming method for secondary battery and simulation method and program using this
JP2007311254A (en) Storage battery status monitoring device, storage battery status monitoring method, and storage battery status monitoring program
JP3346003B2 (en) Method for detecting capacity of ion secondary battery
JP3398921B2 (en) Battery internal resistance measurement device
JPH04166773A (en) Method of judging whether insulation resistance of solar cell array is good or bad
CN202205862U (en) Simulating device of battery pack
JP2001185232A (en) Battery pack
JP2018133259A (en) Battery system
JP2011033427A (en) Device and method for determining battery deterioration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Ref document number: 3904875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees