JP2003119577A - Electromagnetic wave shielding film - Google Patents
Electromagnetic wave shielding filmInfo
- Publication number
- JP2003119577A JP2003119577A JP2001313926A JP2001313926A JP2003119577A JP 2003119577 A JP2003119577 A JP 2003119577A JP 2001313926 A JP2001313926 A JP 2001313926A JP 2001313926 A JP2001313926 A JP 2001313926A JP 2003119577 A JP2003119577 A JP 2003119577A
- Authority
- JP
- Japan
- Prior art keywords
- film
- electromagnetic wave
- layer coating
- plastic molded
- molded product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プラスチック成形
品の表面に形成され、電磁波シールド特性、密着性およ
び耐食性に優れる電磁波シールド膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shielding film formed on the surface of a plastic molded product and having excellent electromagnetic wave shielding properties, adhesion and corrosion resistance.
【0002】[0002]
【従来の技術】従来、電気・電子機器や携帯電話などの
電波を発信受信する機器には、機器の誤動作を避けるた
めに、筺体のプラスチック成形品やその内側に、電磁波
シールド処理を施している。この電磁波シールド処理の
方法には、次の方法が知られている。すなわち、(1)プ
ラスチック成形品の中に導電性金属を混入する方法、
(2)プラスチック成形品の表面に導電性塗料を塗布する
方法、(3)湿式メッキ法により、プラスチック成形品の
表面に、金属薄膜を形成する方法、(4)イオン化して成
膜するイオンプレーティング法、真空蒸着法などの真空
工法により、プラスチック成形品の表面に、金属薄膜を
形成する方法である。2. Description of the Related Art Conventionally, in devices for transmitting and receiving electric waves such as electric / electronic devices and mobile phones, in order to avoid malfunction of the devices, a plastic molding of the housing and the inside thereof are subjected to electromagnetic wave shielding treatment. . The following method is known as a method of this electromagnetic wave shield treatment. That is, (1) a method of mixing a conductive metal into a plastic molded product,
(2) A method of applying a conductive paint to the surface of the plastic molded product, (3) A method of forming a metal thin film on the surface of the plastic molded product by the wet plating method, (4) Ionization for film formation by ionization It is a method of forming a metal thin film on the surface of a plastic molded product by a vacuum method such as a coating method or a vacuum deposition method.
【0003】湿式メッキ法による成膜では、無電解メッ
キ法が用いられている。この方法では、クロム酸エッチ
ング、パラジウム触媒付加などを行うため、プラスチッ
ク成形品と金属薄膜との密着は強固である。しかし、
(1)廃液処理を行う必要がある、(2)処理時間が長い、
(3)プラスチック成形品の両面にメッキされる、などの
欠点がある。In the film formation by the wet plating method, the electroless plating method is used. In this method, chromic acid etching, addition of a palladium catalyst, etc. are performed, so that the plastic molded article and the metal thin film are firmly attached to each other. But,
(1) Waste liquid treatment is required, (2) Treatment time is long,
(3) There are drawbacks such as plating on both sides of a plastic molded product.
【0004】真空工法は、生産性に優れている。そし
て、真空工法では、(1)アルミニウム(Al)を2〜3μm形成
する方法、(2)銅(Cu)を第1層にニッケル(Ni)などを保
護膜として第2層に成膜する方法が一般的である。The vacuum method is excellent in productivity. In the vacuum method, (1) a method of forming aluminum (Al) in a thickness of 2 to 3 μm, and (2) a method of forming copper (Cu) in the first layer and nickel (Ni) or the like as a protective film in the second layer Is common.
【0005】しかし、Alを形成する方法は電子銃や抵抗
加熱方式では蒸発しないので、フラッシュ蒸着という特
殊な方法を用いなければならないという欠点がある。ま
た、Cuを第1層にNiを第2層に成膜する方法は、Alを形
成する方法が有する上記欠点はないが、融点が高くて蒸
発時間が長いNiのため生産性が低いという欠点がある。
そこで、Niに替わる膜が、特開平6-157797号公報や特開
平7-35497号公報に開示されている。However, since the method of forming Al does not evaporate by an electron gun or a resistance heating method, there is a drawback that a special method called flash evaporation must be used. In addition, the method of forming Cu on the first layer and Ni on the second layer does not have the above-mentioned drawbacks of the method of forming Al, but has the drawback of low productivity due to Ni having a high melting point and a long evaporation time. There is.
Therefore, a film replacing Ni is disclosed in JP-A-6-157797 and JP-A-7-35497.
【0006】特開平6-157797号公報には、高周波プラズ
マによりCuを成膜した後に0.05〜2.0μmの錫(Sn)膜を配
設した電磁波シールド膜が提案されている。しかしなが
ら、この電磁波シールド膜は、(1)Sn膜が柱状化または
針状化し易いため、耐食性が劣る、(2)真空蒸着法によ
り成膜すると、Cu膜とSn膜との密着が悪くなる、という
欠点がある。Japanese Unexamined Patent Publication (Kokai) No. 6-157797 proposes an electromagnetic wave shielding film in which a Cu (Cu) film is formed by high-frequency plasma and then a tin (Sn) film of 0.05 to 2.0 μm is arranged. However, this electromagnetic wave shield film, (1) Sn film is easily columnar or needle-like, corrosion resistance is poor, (2) when formed by a vacuum deposition method, the adhesion between the Cu film and the Sn film becomes poor, There is a drawback that.
【0007】また、特開平7-35497号公報には、高周波
プラズマによりCuを成膜した後に0.1μm以上の錫-銀合
金膜を配設した電磁波シールド膜が提案されている。し
かしながら、この電磁波シールド膜は、特開平6-157797
号公報で提案されている電磁波シールド膜の上記欠点を
解決はするが、錫-銀合金膜に含まれる銀のため、コス
トが高いという問題がある。Further, Japanese Patent Application Laid-Open No. 7-35497 proposes an electromagnetic wave shielding film in which a Cu film is formed by high-frequency plasma and a tin-silver alloy film having a thickness of 0.1 μm or more is arranged. However, this electromagnetic wave shielding film is disclosed in JP-A-6-157797.
Although the above-mentioned drawbacks of the electromagnetic wave shield film proposed in Japanese Patent Laid-Open Publication No. 2003-242242 can be solved, there is a problem that the cost is high because of the silver contained in the tin-silver alloy film.
【0008】[0008]
【発明が解決しようとする課題】そこで、本発明は、真
空工法を用いて生産性よく成膜され、電磁波シールド特
性、密着性および耐食性に優れた低コストの電磁波シー
ルド膜を提供することを目的とする。SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a low-cost electromagnetic wave shielding film which is formed by a vacuum method with high productivity and which is excellent in electromagnetic wave shielding property, adhesion and corrosion resistance. And
【0009】[0009]
【課題を解決するための手段】上記課題を解決するた
め、本発明の電磁波シールド膜は、プラスチック成形品
の表面に形成された第1層被膜および第2層被膜であ
り、該第1層被膜の材質はCu、第2層被膜の材質は、第
1発明によれば、Sn-Cu-Ni合金であり、また、第2発明
によれば、Sn-Cu-クロム(Cr)合金である。上記プラス
チック成形品の材質には、アクリロニトリル-ブタジエ
ン-スチレン樹脂(ABS)、ポリカーボネート(PC)、および
ABSとPCの混合樹脂(ABS-PC)を例示することができる。In order to solve the above problems, the electromagnetic wave shielding film of the present invention is a first layer film and a second layer film formed on the surface of a plastic molded article. Is Cu, and the material of the second layer coating is Sn-Cu-Ni alloy according to the first invention, and Sn-Cu-chromium (Cr) alloy according to the second invention. The material of the plastic molded product, acrylonitrile-butadiene-styrene resin (ABS), polycarbonate (PC), and
An example is a mixed resin of ABS and PC (ABS-PC).
【0010】第1発明および第2発明における第1層被
膜は、膜厚が0.3〜4μmであるのが好ましい。The first-layer coating in the first and second inventions preferably has a thickness of 0.3 to 4 μm.
【0011】第1発明および第2発明における第2層被
膜は、膜厚が0.1〜3μmであるのが好ましい。また、第
1発明および第2発明における第2層被膜Cu組成がSn組
成の3〜20質量%であるのが好ましく、第1発明における
第2層被膜のNi組成、および第2発明における第2層被
膜のCr組成は、Sn組成とCu組成との和の3〜30質量%であ
るのが好ましい。The second layer coating in the first and second inventions preferably has a thickness of 0.1 to 3 μm. Further, the Cu composition of the second layer coating in the first and second inventions is preferably 3 to 20 mass% of the Sn composition, and the Ni composition of the second layer coating in the first invention and the second composition of the second invention. The Cr composition of the layer coating is preferably 3 to 30 mass% of the sum of the Sn composition and the Cu composition.
【0012】本発明の電磁波シールド膜は、真空工法に
よって成膜されたものである。The electromagnetic wave shield film of the present invention is formed by a vacuum method.
【0013】[0013]
【発明の実施の形態】第1発明(第2発明)の電磁波シ
ールド膜は、プラスチック成形品の表面に形成された第
1層被膜および第2層被膜であり、該第1層被膜の材質
はCu、第2層被膜の材質はSn-Cu-Ni合金(Sn-Cu-Cr合
金)である。BEST MODE FOR CARRYING OUT THE INVENTION The electromagnetic wave shielding film of the first invention (second invention) is a first layer coating and a second layer coating formed on the surface of a plastic molded article, and the material of the first layer coating is The material of Cu and the second layer coating is Sn-Cu-Ni alloy (Sn-Cu-Cr alloy).
【0014】第1層被膜は、材質がCuである。それは、
比抵抗が小さく、安価であるからである。The material of the first layer coating is Cu. that is,
This is because the specific resistance is small and the cost is low.
【0015】第1層被膜の膜厚が0.3μm未満では、充分
な電磁波シールド特性が得られず、また、第1層被膜自
体の構造が粗になって耐食性が著しく低下する。一方、
第1層被膜の膜厚が4μmを超えると、電磁波シールド特
性は塊状の金属銅と同等であるが、密着性が低下する。
すなわち、成膜後に、自然剥離したりテープ剥離試験で
剥離したりする可能性が高くなる。それは、膜応力が高
くなるからである。さらに第1層被膜の膜厚が4μmを超
えると、成膜に時間がかかって生産性が低下する。If the film thickness of the first layer coating is less than 0.3 μm, sufficient electromagnetic wave shielding properties cannot be obtained, and the structure of the first layer coating itself becomes rough, resulting in a significant decrease in corrosion resistance. on the other hand,
When the film thickness of the first layer coating exceeds 4 μm, the electromagnetic wave shielding property is equivalent to that of massive metallic copper, but the adhesiveness deteriorates.
That is, the possibility of spontaneous peeling or peeling by a tape peeling test after the film formation increases. This is because the film stress is high. Further, if the film thickness of the first layer coating exceeds 4 μm, it takes a long time to form the film, and the productivity is lowered.
【0016】第1層被膜のプラスチック成形品に対する
密着力に応じて適宜、プラスチック成形品と第1層被膜
との間にアンダーコートを塗布してもよい。An undercoat may be applied between the plastic molded product and the first layer coating, depending on the adhesion of the first layer coating to the plastic molded product.
【0017】第2層被膜において、Cuは、次の(1)〜(3)
の作用を発揮する。すなわち、(1)電磁波シールド膜と
して必要な低比抵抗を実現する。(2)錫ウイスカーの発
生を抑える。(3)融点が300℃以下の共晶(Sn-Cu)を作っ
て簡単に早く蒸発させる。第2層被膜のCu組成がSn組成
とCu組成との和の3質量%未満では、上記Cuの作用を充分
発揮させることが困難である。一方、第2層被膜のCu組
成がSn組成の20質量%を超えると、融点が高くなって、
蒸発時間が長くなり、生産性が低下してしまう。In the second layer coating, Cu is the following (1) to (3)
Exert the effect of. That is, (1) the low specific resistance required for the electromagnetic wave shielding film is realized. (2) Suppress the generation of tin whiskers. (3) A eutectic (Sn-Cu) with a melting point of 300 ° C or less is prepared and vaporized easily and quickly. If the Cu composition of the second layer coating is less than 3% by mass of the sum of the Sn composition and the Cu composition, it is difficult to sufficiently exhibit the action of Cu. On the other hand, when the Cu composition of the second layer coating exceeds 20 mass% of the Sn composition, the melting point becomes high,
Evaporation time becomes longer and productivity is reduced.
【0018】第2層被膜において、Ni(Cr)は、耐食性、
特に耐酸化性を向上させる。この理由は、次の(1)〜(3)
のように考えられる。すなわち、(1)Ni(Cr)の蒸発量
は、融点が高いためSn-Cuと比較すると少ないが、成膜
時間とともに増す。(2)そのため、Ni濃度(Cr濃度)は、
成膜初期には、つまり第2層被膜の第1層被膜側では低
く、第2層被膜の表面に近くなるほど高くなる、(3)こ
のようなNi(Cr)の濃度勾配が耐酸化性の向上、つまり耐
食性の向上に大きく寄与する。In the second layer coating, Ni (Cr) is
Especially, the oxidation resistance is improved. The reason for this is the following (1) to (3)
Can be thought of as. That is, the evaporation amount of (1) Ni (Cr) is smaller than that of Sn-Cu because of its high melting point, but increases with the film formation time. (2) Therefore, the Ni concentration (Cr concentration) is
At the initial stage of film formation, that is, the first layer coating side of the second layer coating is low, and the closer it is to the surface of the second layer coating, the higher it is. (3) Such a concentration gradient of Ni (Cr) has oxidation resistance It greatly contributes to improvement, that is, improvement of corrosion resistance.
【0019】第2層被膜においてSn-CuにNiを添加する
と、単味のNiを成膜する従来の場合と比較して、Niが蒸
発しやすくて生産性が上がる。また、Sn-CuにCrを添加
しても、単味のCrを成膜する場合と比較して、Crが蒸発
しやすくて生産性が上がる。このようにNi(Cr)が蒸発し
やすくなる理由は、次の(1)、(2)のように考えられる。
すなわち、(1)融点の高いNi、Crを融点の低いSn
−Cu合金に微量添加すると、Sn−Cu−Ni(C
r)合金の融点がかなり下がる。(2)そのため、微量添
加した高融点のNi(Cr)もSn-Cuが蒸発している最中に徐
々に蒸発し、Sn-Cu-Ni合金(Sn-Cu-Cr合金)として成膜さ
れる。When Ni is added to Sn-Cu in the second layer coating, Ni is more likely to evaporate and productivity is increased as compared with the conventional case in which plain Ni is deposited. In addition, even if Cr is added to Sn-Cu, Cr is more likely to evaporate and productivity is improved as compared with the case where a plain Cr film is formed. The reason why Ni (Cr) easily evaporates in this way is considered to be the following (1) and (2).
That is, (1) Ni and Cr having a high melting point are replaced with Sn having a low melting point.
When added in a small amount to the -Cu alloy, Sn-Cu-Ni (C
r) The melting point of the alloy is considerably lowered. (2) Therefore, a small amount of high-melting point Ni (Cr) also gradually evaporates while Sn-Cu is evaporating, forming a film as a Sn-Cu-Ni alloy (Sn-Cu-Cr alloy). It
【0020】第2層被膜のNi組成(Cr組成)がSn組成とCu
組成との和の3質量%未満では、上記Ni(Cr)の作用を充分
発揮させることが困難である。さらにいえば、電磁波シ
ールド膜外観の一部に青白いSn-Cu合金色が表れ、その
部分の耐食性はSn-Cu合金並みに低下する。なお、Sn-Cu
合金の耐食性は比較的高いが、単味で成膜した従来のNi
と同等である。一方、第2層被膜のNi組成(Cr組成)がSn
組成とCu組成との和の30質量%を超えると、Sn-Cu-Ni合
金(Sn-Cu-Cr合金)の融点が上がりすぎるため、合金成分
を蒸発させる電子ビームの出力では融点の高いNi(Cr)が
蒸発しきらず、蒸発源のまま残ってしまう。さらにいえ
ば、Ni(Cr)はCuと比較して比抵抗が高いので第2層被膜
そのものの抵抗値が上がり、電磁波シールド特性が低下
する。The Ni composition (Cr composition) of the second layer coating is Sn composition and Cu composition.
If it is less than 3% by mass, which is the sum of the composition, it is difficult to sufficiently exert the action of Ni (Cr). Furthermore, a pale Sn-Cu alloy color appears on a part of the external appearance of the electromagnetic wave shielding film, and the corrosion resistance of that part is as low as that of the Sn-Cu alloy. Note that Sn-Cu
The corrosion resistance of the alloy is relatively high, but the conventional Ni film-formed
Is equivalent to On the other hand, the Ni composition (Cr composition) of the second layer coating is Sn
If it exceeds 30 mass% of the sum of the composition and the Cu composition, the melting point of the Sn-Cu-Ni alloy (Sn-Cu-Cr alloy) rises too much, and therefore the output of the electron beam that evaporates the alloy components has a high melting point (Cr) does not evaporate completely and remains as an evaporation source. Furthermore, since Ni (Cr) has a higher specific resistance than Cu, the resistance value of the second layer coating itself increases, and the electromagnetic wave shielding characteristics deteriorate.
【0021】第2層被膜の膜厚が0.1μm未満では、ピン
ホールが多くなり第1層被膜のCuが腐食する恐れがあ
る。また、付きまわりが悪い部分が生じたり隅に付きが
ない部分が生ずる可能性がある。一方、第2層被膜の膜
厚が3μmを超えると、膜応力が強くなって密着性が低下
するだけでなく、成膜に時間がかかって生産性が低下す
る。When the film thickness of the second layer coating is less than 0.1 μm, pinholes increase and Cu of the first layer coating may corrode. In addition, there is a possibility that a portion with poor sticking may occur or a portion with no sticking may occur in a corner. On the other hand, when the film thickness of the second layer coating exceeds 3 μm, not only the film stress becomes strong and the adhesion decreases, but also it takes time to form the film and the productivity decreases.
【0022】本発明の電磁波シールド膜を成膜するに
は、例えば、プラスチック成形品を基材とし、前処理を
適宜施した後に、真空槽に入れる。そして、プラスチッ
ク成形品の表面に、第1層被膜および第2層被膜を、各
々所望の組成・膜厚になるように、真空工法により成膜
する。To form the electromagnetic wave shielding film of the present invention, for example, a plastic molded product is used as a base material, and after appropriate pretreatment, it is placed in a vacuum chamber. Then, the first layer coating and the second layer coating are formed on the surface of the plastic molded product by a vacuum method so that each has a desired composition and film thickness.
【0023】[0023]
【実施例】[実施例1]プラスチック成形品として、AB
S製の携帯電話筺体を用いた。洗浄なしで電子ビーム方
式のイオンプレーティング装置に設置した。次に、真空
度5×10-3Paまで排気した後、Arガスを3.2×10-2Paまで
導入した。この状態で高周波出力1.0kwで励起放電を起
こし、5分間放電させて、プラスチック成形品表面を洗
浄した。続けて、1ハース当たりCuを100g充填し、5分間
で1μm成膜した。この後、1ハース当たりSn-5質量%Cu合
金を35gおよびNiを7g充填し、プラスチック成形品を自
公転させて2分間で0.6μm成膜した。このように成膜し
たプラスチック成形品に対して、外観観察、テープ剥離
試験、腐食試験および膜抵抗値測定を行った。ここで、
テープ剥離試験は、96hrの耐湿試験の前および後におい
て行った。腐食試験は、24hrの塩水噴霧試験である。ま
た、膜抵抗値測定は、携帯電話筺体のピン間抵抗を上記
腐食試験の前および後において行った。第1層被膜およ
び第2層被膜の材質および膜厚、並びにこの試験で得ら
れた結果を表1に示す。[Example] [Example 1] AB was used as a plastic molded article.
A cell phone housing made by S was used. It was installed in an electron beam ion plating device without cleaning. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. In this state, excited discharge was generated at a high frequency output of 1.0 kw and discharged for 5 minutes to wash the surface of the plastic molded product. Subsequently, 100 g of Cu was filled in each hearth to form a film of 1 μm in 5 minutes. After that, 35 g of Sn-5 mass% Cu alloy and 7 g of Ni were filled per 1 hearth, and the plastic molded product was allowed to orbit and a film thickness of 0.6 μm was formed in 2 minutes. Appearance observation, tape peeling test, corrosion test, and film resistance value measurement were performed on the plastic molded product thus formed. here,
The tape peel test was performed before and after the 96 hr moisture resistance test. The corrosion test is a 24 hr salt spray test. The membrane resistance was measured by measuring the inter-pin resistance of the mobile phone housing before and after the corrosion test. Table 1 shows the materials and film thicknesses of the first layer coating and the second layer coating, and the results obtained in this test.
【0024】[実施例2]プラスチック成形品として、
ABS-PC製の携帯電話筺体を用いた。この成形品はCuとの
密着が悪いので、アンダーコートを塗布した。この後
に、電子ビーム方式のイオンプレーティング装置に設置
した。次に、真空度5×10-3Paまで排気した後、Arガス
を3.2×10-2Paまで導入した。この状態で高周波出力1.0
kwで励起放電を起こし、5分間放電させて、プラスチッ
ク成形品表面を洗浄した。続けて、1ハース当たりCuを1
00g充填し、5分間で1μm成膜した。この後、1ハース当
たりSn-10質量%Cu合金を35gおよびNiを10g充填し、プラ
スチック成形品を自公転させて2分間で0.6μm成膜し
た。このように成膜したプラスチック成形品に対して、
外観観察、テープ剥離試験、腐食試験および膜抵抗値測
定を実施例1と同様に行った。それらの結果は実施例1
と同様であった。Example 2 As a plastic molded product,
A cell phone housing made of ABS-PC was used. Since this molded product has poor adhesion to Cu, an undercoat was applied. After that, it was installed in an electron beam type ion plating apparatus. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. High frequency output 1.0 in this state
Excited discharge was generated at kw and discharged for 5 minutes to wash the surface of the plastic molded product. Continue, Cu 1 per hearth
It was filled with 00 g and a film having a thickness of 1 μm was formed in 5 minutes. After that, 35 g of Sn-10 mass% Cu alloy and 10 g of Ni were filled per 1 hearth, and the plastic molded product was allowed to orbit and a film thickness of 0.6 μm was formed in 2 minutes. For the plastic molded product formed in this way,
Appearance observation, tape peeling test, corrosion test and film resistance value measurement were performed in the same manner as in Example 1. The results are shown in Example 1.
Was similar to.
【0025】[参考例1]プラスチック成形品として、
ABS製の携帯電話筺体を用いた。洗浄なしで電子ビーム
方式のイオンプレーティング装置に設置した。次に、真
空度5×10-3Paまで排気した後、Arガスを3.2×10-2Paま
で導入した。この状態で高周波出力1.0kwで励起放電を
起こし、5分間放電させて、プラスチック成形品表面を
洗浄した。続けて、1ハース当たりCuを100g充填し、5分
間で1μm成膜した。この後、1ハース当たりSn-5質量%Cu
合金を35gおよびNiを15g充填し、プラスチック成形品を
自公転させて、実施例1と同様0.6μmの膜厚に成膜し
た。その結果、第2層被膜の蒸着時間は5分で、実施例
1より長くかかった。また、蒸発後のハースを観察する
と、蒸発しきらなかったNiが残っていた。[Reference Example 1] As a plastic molded article,
An ABS mobile phone housing was used. It was installed in an electron beam ion plating device without cleaning. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. In this state, excited discharge was generated at a high frequency output of 1.0 kw and discharged for 5 minutes to wash the surface of the plastic molded product. Subsequently, 100 g of Cu was filled in each hearth to form a film of 1 μm in 5 minutes. After this, Sn-5 mass% Cu per 1 hearth
35 g of the alloy and 15 g of Ni were filled, and the plastic molded product was revolved around the axis to form a film having a film thickness of 0.6 μm as in Example 1. As a result, the deposition time of the second layer coating was 5 minutes, which was longer than that in Example 1. When the hearth after evaporation was observed, Ni that had not completely evaporated remained.
【0026】[参考例2]プラスチック成形品として、
ABS製の携帯電話筺体を用いた。洗浄なしで電子ビーム
方式のイオンプレーティング装置に設置した。次に、真
空度5×10-3Paまで排気した後、Arガスを3.2×10-2Paま
で導入した。この状態で高周波出力1.0kwで励起放電を
起こし、5分間放電させて、プラスチック成形品表面を
洗浄した。続けて、1ハース当たりCuを180g充填し、15
分間で4μm成膜した。この後、1ハース当たりSn-5質量%
Cu合金を35gおよびNiを7g充填し、プラスチック成形品
を自公転させて0.6μm成膜した。このように成膜した
プラスチック成形品を観察すると、該成形品の端部で基
材(ABS)と第1層被膜(Cu)との間が剥離していた。[Reference Example 2] As a plastic molded article,
An ABS mobile phone housing was used. It was installed in an electron beam ion plating device without cleaning. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. In this state, excited discharge was generated at a high frequency output of 1.0 kw and discharged for 5 minutes to wash the surface of the plastic molded product. Continue to fill 180 g of Cu per 1 h
A 4 μm film was formed in a minute. After this, Sn-5 mass% per hearth
35 g of Cu alloy and 7 g of Ni were filled, and a plastic molded product was revolved around itself to form a film having a thickness of 0.6 μm. When observing the plastic molded product thus formed, the base material (ABS) and the first layer coating (Cu) were separated at the end of the molded product.
【0027】[実施例3]プラスチック成形品として、
ABS製の携帯電話筺体を用いた。洗浄なしで電子ビーム
方式のイオンプレーティング装置に設置した。次に、真
空度5×10-3Paまで排気した後、Arガスを3.2×10-2Paま
で導入した。この状態で高周波出力1.0kwで励起放電を
起こし、5分間放電させて、プラスチック成形品表面を
洗浄した。続けて、1ハース当たりCuを100g充填し、5分
間で1μm成膜した。この後、1ハース当たりSn-5質量%Cu
合金を35gおよびCrを7g充填し、プラスチック成形品を
自公転させて2分間で0.6μm成膜した。このように成膜
したプラスチック成形品に対して、外観観察、テープ剥
離試験、腐食試験および膜抵抗値測定を実施例1と同様
に行った。第1層被膜および第2層被膜の材質および膜
厚、並びにこの試験で得られた結果を表1に示す。[Example 3] As a plastic molded article,
An ABS mobile phone housing was used. It was installed in an electron beam ion plating device without cleaning. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. In this state, excited discharge was generated at a high frequency output of 1.0 kw and discharged for 5 minutes to wash the surface of the plastic molded product. Subsequently, 100 g of Cu was filled in each hearth to form a film of 1 μm in 5 minutes. After this, Sn-5 mass% Cu per 1 hearth
35 g of the alloy and 7 g of Cr were filled, and the plastic molded product was revolved around itself to form a film of 0.6 μm in 2 minutes. The plastic molded article thus formed was subjected to appearance observation, tape peeling test, corrosion test and film resistance value measurement in the same manner as in Example 1. Table 1 shows the materials and film thicknesses of the first layer coating and the second layer coating, and the results obtained in this test.
【0028】[実施例4]プラスチック成形品として、
ABS-PC製の携帯電話筺体を用いた。この成形品はCuとの
密着が悪いので、アンダーコートを塗布した。この後
に、電子ビーム方式のイオンプレーティング装置に設置
した。次に、真空度5×10-3Paまで排気した後、Arガス
を3.2×10-2Paまで導入した。この状態で高周波出力1.0
kwで励起放電を起こし、5分間放電させて、プラスチッ
ク成形品表面を洗浄した。続けて、1ハース当たりCuを1
00g充填し、5分間で1μm成膜した。この後、1ハース当
たりSn-10質量%Cu合金を35gおよびCrを10g充填し、プラ
スチック成形品を自公転させて2分間で0.6μm成膜し
た。このように成膜したプラスチック成形品に対して、
外観観察、テープ剥離試験、腐食試験および膜抵抗値測
定を実施例1と同様に行った。それらの結果は実施例3
と同様であった。Example 4 As a plastic molded article,
A cell phone housing made of ABS-PC was used. Since this molded product has poor adhesion to Cu, an undercoat was applied. After that, it was installed in an electron beam type ion plating apparatus. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. High frequency output 1.0 in this state
Excited discharge was generated at kw and discharged for 5 minutes to wash the surface of the plastic molded product. Continue, Cu 1 per hearth
It was filled with 00 g and a film having a thickness of 1 μm was formed in 5 minutes. After that, 35 g of Sn-10 mass% Cu alloy and 10 g of Cr were filled per 1 hearth, and the plastic molded product was revolved to form a film of 0.6 μm in 2 minutes. For the plastic molded product formed in this way,
Appearance observation, tape peeling test, corrosion test and film resistance value measurement were performed in the same manner as in Example 1. The results are shown in Example 3.
Was similar to.
【0029】[参考例3]プラスチック成形品として、
ABS製の携帯電話筺体を用いた。洗浄なしで電子ビーム
方式のイオンプレーティング装置に設置した。次に、真
空度5×10-3Paまで排気した後、Arガスを3.2×10-2Paま
で導入した。この状態で高周波出力1.0kwで励起放電を
起こし、5分間放電させて、プラスチック成形品表面を
洗浄した。続けて、1ハース当たりCuを100g充填し、5分
間で1μm成膜した。この後、1ハース当たりSn-5質量%Cu
合金を35gおよびCrを15g充填し、プラスチック成形品を
自公転させて、実施例3と同様0.6μmの膜厚に成膜し
た。その結果、第2層被膜の蒸着時間は5分で、実施例
3より長くかかった。また、蒸発後のハースを観察する
と、蒸発しきらなかったCrが残っていた。[Reference Example 3] As a plastic molded article,
An ABS mobile phone housing was used. It was installed in an electron beam ion plating device without cleaning. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. In this state, excited discharge was generated at a high frequency output of 1.0 kw and discharged for 5 minutes to wash the surface of the plastic molded product. Subsequently, 100 g of Cu was filled in each hearth to form a film of 1 μm in 5 minutes. After this, Sn-5 mass% Cu per 1 hearth
35 g of the alloy and 15 g of Cr were filled, and the plastic molded product was revolved around its axis to form a film having a film thickness of 0.6 μm as in Example 3. As a result, the vapor deposition time of the second layer coating was 5 minutes, which was longer than that in Example 3. When the hearth after evaporation was observed, Cr that had not completely evaporated remained.
【0030】[参考例4]プラスチック成形品として、
ABS製の携帯電話筺体を用いた。洗浄なしで電子ビーム
方式のイオンプレーティング装置に設置した。次に、真
空度5×10-3Paまで排気した後、Arガスを3.2×10-2Paま
で導入した。この状態で高周波出力1.0kwで励起放電を
起こし、5分間放電させて、プラスチック成形品表面を
洗浄した。続けて、1ハース当たりCuを180g充填し、15
分間で4μm成膜した。この後、1ハース当たりSn-5質量%
Cu合金を35gおよびCrを7g充填し、プラスチック成形品
を自公転させて2分間で0.6μm成膜した。このように成
膜したプラスチック成形品を観察すると、該成形品の端
部で基材(ABS)と第1層被膜(Cu)との間が剥離してい
た。[Reference Example 4] As a plastic molded article,
An ABS mobile phone housing was used. It was installed in an electron beam ion plating device without cleaning. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. In this state, excited discharge was generated at a high frequency output of 1.0 kw and discharged for 5 minutes to wash the surface of the plastic molded product. Continue to fill 180 g of Cu per 1 h
A 4 μm film was formed in a minute. After this, Sn-5 mass% per hearth
35 g of Cu alloy and 7 g of Cr were filled, and the plastic molded product was allowed to revolve around itself to form a film of 0.6 μm in 2 minutes. When observing the plastic molded product thus formed, the base material (ABS) and the first layer coating (Cu) were separated at the end of the molded product.
【0031】[従来例]プラスチック成形品として、AB
S製の携帯電話筺体を用いた。洗浄なしで電子ビーム方
式のイオンプレーティング装置に設置した。次に、真空
度5×10-3Paまで排気した後、Arガスを3.2×10-2Paまで
導入した。この状態で高周波出力1.0kwで励起放電を起
こし、5分間放電させて、プラスチック成形品表面を洗
浄した。続けて、1ハース当たりCuを100g充填し、5分間
で1μm成膜した。この後、Niを充填し、プラスチック成
形品を自公転させて、15分間で0.3μm成膜した。この
ように成膜したプラスチック成形品に対して、外観観
察、テープ剥離試験、腐食試験および膜抵抗値測定を実
施例1と同様に行った。第1層被膜および第2層被膜の
材質および膜厚、並びにこの試験で得られた結果を表1
に示す。[Conventional example] As a plastic molded product, AB
A cell phone housing made by S was used. It was installed in an electron beam ion plating device without cleaning. Next, after evacuation to a vacuum degree of 5 × 10 −3 Pa, Ar gas was introduced to 3.2 × 10 −2 Pa. In this state, excited discharge was generated at a high frequency output of 1.0 kw and discharged for 5 minutes to wash the surface of the plastic molded product. Subsequently, 100 g of Cu was filled in each hearth to form a film of 1 μm in 5 minutes. After that, Ni was filled, and the plastic molded product was allowed to rotate on its axis, and a film having a thickness of 0.3 μm was formed in 15 minutes. The plastic molded article thus formed was subjected to appearance observation, tape peeling test, corrosion test and film resistance value measurement in the same manner as in Example 1. Table 1 shows the materials and film thicknesses of the first layer coating and the second layer coating, and the results obtained in this test.
Shown in.
【0032】[0032]
【表1】 [Table 1]
【0033】表1から次のことが分かる。すなわち、実
施例1および実施例3について、従来例と比較して、保
護膜としての第2層被膜の成膜時間が大きく短縮され、
生産性が向上している。また、耐食性も向上している。The following can be seen from Table 1. That is, in Example 1 and Example 3, as compared with the conventional example, the film formation time of the second layer film as the protective film was greatly shortened,
Productivity is improving. Moreover, the corrosion resistance is also improved.
【0034】[0034]
【発明の効果】本発明によれば、生産性よく成膜され、
電磁波シールド特性、密着性および耐食性に優れた低コ
ストの電磁波シールド膜を提供することができる。According to the present invention, a film can be formed with high productivity,
It is possible to provide a low-cost electromagnetic wave shielding film which is excellent in electromagnetic wave shielding properties, adhesion and corrosion resistance.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/00 H01F 10/12 5E321 10/12 H05K 9/00 W H05K 9/00 H01F 1/00 C Fターム(参考) 4F100 AB13C AB16C AB17B AB17C AB21C AB31C AK01A AK45A AK74A AL05A BA03 BA07 BA10A BA10C BA13 EH66B EH66C GB41 JA20B JB02 JD08B JD08C JK06 JL02 JM02B JM02C YY00B YY00C 4K029 AA11 BA08 BA21 BC00 BC06 CA03 EA01 FA05 4K044 AA16 AB02 BA02 BA06 BA10 BB03 BC14 CA13 5E040 CA13 5E049 AA07 BA27 5E321 BB23 BB53 GG05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 1/00 H01F 10/12 5E321 10/12 H05K 9/00 W H05K 9/00 H01F 1/00 C F Term (reference) 4F100 AB13C AB16C AB17B AB17C AB21C AB31C AK01A AK45A AK74A AL05A BA03 BA07 BA10A BA10C BA13 EH66B EH66C GB41 JA20B JB02 JD08B JA02 BC08 BA02 BA06BA02 BA04A06A04A04A04A04A4A02 CA13 5E040 CA13 5E049 AA07 BA27 5E321 BB23 BB53 GG05
Claims (8)
第1層被膜および第2層被膜であり、該第1層被膜の材
質はCu、第2層被膜の材質はSn-Cu-Ni合金である電磁波
シールド膜。1. A first layer coating and a second layer coating formed on the surface of a plastic molded article, wherein the material of the first layer coating is Cu and the material of the second layer coating is Sn-Cu-Ni alloy. An electromagnetic wave shield film.
質量%であり、Ni組成がSn組成とCu組成との和の3〜30
質量%である請求項1に記載の電磁波シールド膜。2. The second layer coating has a Cu composition of 3 to 20 and an Sn composition of 3 to 20.
% By mass, and the Ni composition is 3 to 30 of the sum of Sn composition and Cu composition.
The electromagnetic wave shield film according to claim 1, wherein the electromagnetic wave shield film is mass%.
第1層被膜および第2層被膜であり、該第1層被膜の材
質はCu、第2層被膜の材質はSn-Cu-Cr合金である電磁波
シールド膜。3. A first layer coating and a second layer coating formed on the surface of a plastic molded product, the first layer coating material being Cu, and the second layer coating material being Sn-Cu-Cr alloy. An electromagnetic wave shield film.
質量%であり、Cr組成がSn組成とCu組成との和の3〜30
質量%である請求項3に記載の電磁波シールド膜。4. The second layer coating has a Cu composition of 3 to 20 and a Sn composition of 3 to 20.
% By mass, and the Cr composition is 3 to 30 of the sum of the Sn composition and the Cu composition.
The electromagnetic wave shield film according to claim 3, wherein the electromagnetic wave shield film is mass%.
請求項1〜4のいずれかに記載の電磁波シールド膜。5. The electromagnetic wave shielding film according to claim 1, wherein the first layer film has a film thickness of 0.3 to 4 μm.
請求項1〜5のいずれかに記載の電磁波シールド膜。6. The electromagnetic wave shielding film according to claim 1, wherein the second layer film has a film thickness of 0.1 to 3 μm.
またはABS-PCである請求項1〜6のいずれかに記載の電
磁波シールド膜。7. The plastic molded product is made of ABS or PC.
Alternatively, the electromagnetic wave shielding film according to any one of claims 1 to 6, which is ABS-PC.
7のいずれかに記載の電磁波シールド膜。8. The method according to claim 1, wherein the film is formed by a vacuum method.
7. The electromagnetic wave shielding film according to any one of 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001313926A JP3775273B2 (en) | 2001-10-11 | 2001-10-11 | Electromagnetic shielding film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001313926A JP3775273B2 (en) | 2001-10-11 | 2001-10-11 | Electromagnetic shielding film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003119577A true JP2003119577A (en) | 2003-04-23 |
JP3775273B2 JP3775273B2 (en) | 2006-05-17 |
Family
ID=19132319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001313926A Expired - Fee Related JP3775273B2 (en) | 2001-10-11 | 2001-10-11 | Electromagnetic shielding film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3775273B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5534626B1 (en) * | 2013-04-24 | 2014-07-02 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
JP5534627B1 (en) * | 2013-04-24 | 2014-07-02 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
JP5619307B1 (en) * | 2014-01-06 | 2014-11-05 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
-
2001
- 2001-10-11 JP JP2001313926A patent/JP3775273B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5534626B1 (en) * | 2013-04-24 | 2014-07-02 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
JP5534627B1 (en) * | 2013-04-24 | 2014-07-02 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
JP2014216421A (en) * | 2013-04-24 | 2014-11-17 | Jx日鉱日石金属株式会社 | Electromagnetic wave shielding foil, electromagnetic wave shielding material, and shielding cable |
JP2014214335A (en) * | 2013-04-24 | 2014-11-17 | Jx日鉱日石金属株式会社 | Electromagnetic wave shielding metal foil, electromagnetic shielding material and shielded cable |
JP5619307B1 (en) * | 2014-01-06 | 2014-11-05 | Jx日鉱日石金属株式会社 | Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable |
Also Published As
Publication number | Publication date |
---|---|
JP3775273B2 (en) | 2006-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5462771A (en) | Method of manufacturing electromagnetic wave shielding plastic molding | |
JPH05106021A (en) | Improvement of adhesion between organic material and metal, polyimide film, flexible electron package and rolling and sputtering system | |
JPH0770345A (en) | Electromagnetic shielded plastic molding | |
JP2004327931A (en) | Metal coated polyimide substrate and its manufacturing method | |
JP3775273B2 (en) | Electromagnetic shielding film | |
US20120129004A1 (en) | Housing and method for manufacturing housing | |
US20040194988A1 (en) | EMI-shielding assembly and method for making same | |
JP3826756B2 (en) | Electromagnetic shielding film | |
JP2007335619A (en) | Manufacturing method of electromagnetic wave shield molding | |
JP2003115690A (en) | Electromagnetic wave shield film | |
JP2001135979A (en) | Electromagnetic wave preventing plastic material and method of manufacturing the same | |
JP2003115689A (en) | Electromagnetic wave shield film | |
JP2934263B2 (en) | Aluminum material and method of manufacturing the same | |
JP2002111176A (en) | Method of forming conduction path and substrate | |
US20150156887A1 (en) | Method of forming amorphous alloy film and printed wiring board manufactured by the same | |
JPH06145396A (en) | Electromagnetic-wave-shielding plastic molded article | |
JPS6137102B2 (en) | ||
US20080179193A1 (en) | Manufacturing method of coating target | |
JP2007311696A (en) | Electromagnetic wave shield film and method for manufacturing the same | |
JP2001019784A (en) | Electromagnetic shielding plastic material and its production | |
JP2008071802A (en) | High corrosion resistant electromagnetic wave shield molding and its production process | |
JPH07133361A (en) | Electromagnetic wave shielding plastic molding | |
JP2007332419A (en) | Method for forming electroconductive film | |
JPH10102240A (en) | Electromagenetic preventing formed body and its production | |
JPH10204621A (en) | Electromagnet preventive molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090303 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |