JPH0770345A - Electromagnetic shielded plastic molding - Google Patents

Electromagnetic shielded plastic molding

Info

Publication number
JPH0770345A
JPH0770345A JP22263893A JP22263893A JPH0770345A JP H0770345 A JPH0770345 A JP H0770345A JP 22263893 A JP22263893 A JP 22263893A JP 22263893 A JP22263893 A JP 22263893A JP H0770345 A JPH0770345 A JP H0770345A
Authority
JP
Japan
Prior art keywords
film
water
plastic molded
molded product
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22263893A
Other languages
Japanese (ja)
Inventor
Akira Motoki
詮 元木
Yoichi Murayama
洋一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO INGUSU KK
Original Assignee
TOKYO INGUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO INGUSU KK filed Critical TOKYO INGUSU KK
Priority to JP22263893A priority Critical patent/JPH0770345A/en
Priority to US08/149,533 priority patent/US5462771A/en
Priority to EP93308934A priority patent/EP0597670B1/en
Priority to DE69317035T priority patent/DE69317035T2/en
Publication of JPH0770345A publication Critical patent/JPH0770345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the title molding which has an excellent electromagnetic- shielding effect and high adhesion strength, is satisfactory in corrosion resistance, water resistance, and heat shock resistance, and combines high strength and excellent flexibility by a resource-saving process utilizing vapor deposition. CONSTITUTION:The surface of a filled plastic molding is coated with a water- based coating composition at a thickness of 1-30mum, and the coating is dried at 100 deg.C or lower to form a primer layer. A 0.6-5.0mum-thick aluminum film or a 0.7-5.0mum-thick copper film is deposited on the primed molding in a vacuum chamber from a plasma generated by high-frequency excitation to obtain the title molding. A 0.05-3.0mum-thick metal or alloy film may further be deposited in an organic gas atmosphere according to need.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電磁波シールドプラ
スチック成形品に関するものである。さらに詳しくは、
電気機器、計算機、計測機器等の電磁波シールド効果に
優れ、しかも簡便で、低コスト生産が可能な、耐久性、
耐食性、強度等の良好な高性能電磁波シールドプラスチ
ック成形品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shielding plastic molded product. For more details,
Excellent electromagnetic wave shielding effect for electrical equipment, calculators, measuring equipment, etc.
The present invention relates to a high performance electromagnetic wave shielding plastic molded product having good corrosion resistance and strength.

【0002】[0002]

【従来の技術とその課題】従来より、各種の電気・電子
機器、通信機器等には、様々な電磁波シールド構造が採
用されてきており、このような構造の一つとして、プラ
スチック成形品の表面に銅、ニッケル、アルミニウム等
の金属薄膜を無電解メッキや真空成膜等により配設した
ものが知られている。
2. Description of the Related Art Conventionally, various electromagnetic wave shield structures have been adopted for various electric / electronic devices, communication devices, etc. One of such structures is the surface of a plastic molded product. It is known that a metal thin film of copper, nickel, aluminum or the like is provided by electroless plating or vacuum film formation.

【0003】なかでも真空蒸着による方法は、メッキ法
とは異なって環境問題への影響が少ないため注目されて
おり、具体的にも真空蒸着によるアルミニウム成膜法
は、気相成膜としての特徴を有し、今後の発展が期待さ
れているものである。しかしながら、電気回路の小型
化、高密度化が進む今日、無電解メッキによるものと同
等のシールド特性を得るためには3〜4μmの膜厚のア
ルミニウムの成膜が必要とされているが、このアルミニ
ウムの真空蒸着によるシールド構造においては、3μm
厚以上の膜厚にすると柱状構造が著しく成長し、実際に
は、鉛筆硬度2H以上の強度が必要とされるにもかかわ
らず、この水準の強度を実現することは極めて困難な状
況にある。
Among them, the vacuum deposition method attracts attention because it has little influence on environmental problems unlike the plating method. Specifically, the aluminum deposition method by vacuum deposition is characterized as a vapor phase deposition. It has the following characteristics and is expected to grow in the future. However, in today's miniaturization and high density of electric circuits, it is necessary to form an aluminum film having a thickness of 3 to 4 μm in order to obtain the same shield characteristics as those obtained by electroless plating. 3 μm in a shield structure formed by vacuum deposition of aluminum
When the film thickness is made thicker than that, the columnar structure remarkably grows, and in reality, it is extremely difficult to achieve this level of strength even though the pencil hardness of 2H or more is required.

【0004】また、環境信頼性試験、たとえば耐湿試験
(65℃×95%RH、168時間)、耐塩水噴霧(J
IS Z2371に準拠:5%NaCl溶液、35℃、
8時間噴霧、16時間休止のサイクルを4サイクル実
施)に耐えられない状況にあり、密着性試験(ASTM
D3559−78)においてもクラス3以下になって
しまうという欠点がある。
Environmental reliability tests such as humidity resistance test (65 ° C. × 95% RH, 168 hours), salt spray resistance (J
According to IS Z2371: 5% NaCl solution, 35 ° C,
We are unable to withstand 8 cycles of spraying for 8 hours and 16 cycles of rest for 4 cycles), and the adhesion test (ASTM
D3559-78) also has a drawback that it becomes class 3 or lower.

【0005】しかも、アルミニウムの真空蒸着膜の場合
には、空気中で酸化皮膜(不動態層)が形成され、この
皮膜には絶縁性があるためにシールドに必要な他の金属
との接点の導通が不充分になるという欠点がある。さら
に、従来のアルミニウム真空蒸着膜は、連続して水分濃
度の高い環境にさらされると、MIL F−15072
A(EL)1969Kで示されるように、他の金属、た
とえばCu,Niとの接点をとる場合には電池作用によ
り腐食を促進することがある。
Moreover, in the case of a vacuum deposited film of aluminum, an oxide film (passivation layer) is formed in the air, and since this film has an insulating property, the contact with other metal necessary for shielding is formed. There is a drawback that conduction is insufficient. Furthermore, the conventional aluminum vacuum-deposited film, when exposed to an environment having a high water concentration continuously, has no MIL F-15072.
As shown by A (EL) 1969K, when a contact is made with another metal, such as Cu or Ni, corrosion may be promoted by the cell action.

【0006】もちろん、真空蒸着の蒸発材料としては、
シールド特性を考慮するとアルミニウム以外にも、金、
銀、銅、ニッケル、クロム等が考えられる。しかし、
金、銀は高価であって現実的ではない。一方、銅は、導
電性に優れており、コスト的にも使用可能であるが、高
温多湿の環境テストで酸化が著しく、シールド効果を急
速に失うという問題がある。すなわち、銅は、アルミニ
ウムのような不動態層としての酸化皮膜を形成しないた
め、酸化腐食が著しい。
Of course, as the evaporation material for vacuum deposition,
Considering the shield characteristics, in addition to aluminum, gold,
Silver, copper, nickel, chromium, etc. are considered. But,
Gold and silver are expensive and unrealistic. On the other hand, although copper is excellent in conductivity and can be used in terms of cost, there is a problem that the shielding effect is rapidly lost due to remarkable oxidation in a high temperature and high humidity environmental test. That is, copper does not form an oxide film as a passivation layer like aluminum, so that oxidative corrosion is remarkable.

【0007】そこで、この銅の酸化防止策として、ニッ
ケル(Ni)、金(Au)、銀(Ag)、クロム(C
r)等の被覆が考えられるが、実際に真空蒸着によって
銅膜の上にこれらの金属膜を成膜してみると、初期密着
性は良好であるものの、耐湿試験(60℃×95%×2
40hr)後の密着性は悪く、実用化することはできな
い。
Therefore, as a measure for preventing the oxidation of copper, nickel (Ni), gold (Au), silver (Ag), chromium (C
Although a coating such as r) may be considered, when actually depositing these metal films on the copper film by vacuum deposition, the initial adhesion is good, but the humidity resistance test (60 ° C x 95% x Two
Adhesion after 40 hr) is poor and cannot be put to practical use.

【0008】このような密着性の点での欠点を解消する
手段の一つとして、真空蒸着に変えてプラズマ蒸着法を
採用することが考えられる。つまり、低圧グロー放電プ
ラズマ成膜である。確かに、このプラズマ成膜により、
真空蒸着に比べて、密着性は向上し、さらにサーマルシ
ョックに強い成膜が得られ、耐食性がより向上すること
も期待される。そして、近年、電磁波シールドは、ノー
トパソコン、携帯電話等への応用が進み、軽量化が図ら
れ、成形品の薄肉化が進んでいることから、プラズマ成
膜はこれらの動向に沿ったものとも考えられる。しかし
ながら、実際には、これまでのプラズマ成膜品の場合に
は、薄肉化とともに、強度と柔軟性とを兼備えることは
充分ではなかった。
[0008] As one of means for eliminating such a drawback in terms of adhesion, it is conceivable to adopt a plasma vapor deposition method instead of vacuum vapor deposition. That is, low pressure glow discharge plasma film formation. Certainly, with this plasma film formation,
It is expected that the adhesion will be improved, a film resistant to thermal shock will be obtained, and the corrosion resistance will be further improved, as compared with vacuum deposition. In recent years, electromagnetic wave shields are being applied to notebook computers, mobile phones, etc., and are being made lighter, and molded products are becoming thinner, so plasma film formation is also in line with these trends. Conceivable. However, in the case of the conventional plasma film-formed products, it was not sufficient to have both strength and flexibility in addition to thinning.

【0009】そこで、このような従来技術の欠点を解消
するものとして、この発明の発明者は、高周波励起プラ
ズマにより成膜し、優れた密着強度と、薄膜特性を有す
る電磁波シールドを実現することを可能とし、耐食性を
も向上されることを可能としてきた(特願平4−233
81号、特願平4−317380号、特願平4−298
90号、特願平5−29215号、特願平5−2921
6号および特願平5−29217号)。
Therefore, as a solution to the above-mentioned drawbacks of the prior art, the inventor of the present invention intends to realize an electromagnetic wave shield having excellent adhesion strength and thin film characteristics by forming a film by high frequency excitation plasma. It has become possible to improve corrosion resistance (Japanese Patent Application No. 4-233).
No. 81, Japanese Patent Application No. 4-317380, Japanese Patent Application No. 4-298.
No. 90, Japanese Patent Application No. 5-29215, Japanese Patent Application No. 5-2921
6 and Japanese Patent Application No. 5-29217).

【0010】この高周波励起プラズマ法による電磁波シ
ールド膜の成膜は極めて有益なものであって、今後の中
核的技術になるものと期待されるものである。そこでこ
の発明者は、さらに多種多様な態様へのこの方法の適用
を検討してきた。この過程において、発明者は、プラス
チック成形品としてある種のものを対象とする場合に
は、あらかじめプライマー処理することが望しいことを
見出した。
The formation of the electromagnetic wave shield film by the high frequency excitation plasma method is extremely useful and is expected to become a core technology in the future. Therefore, the inventor has examined the application of this method to a wider variety of modes. In this process, the inventor has found that it is desirable to carry out a primer treatment in advance when a certain type of plastic molded product is targeted.

【0011】すなわち、電子機器筐体等のプラスチック
成形品についてもさらなる軽薄短少化が急速に進むとと
もに、成形品の強度向上等のために、ポリカーボネー
ト、ポリカーボネート/ABSアロイ樹脂などの成形材
料とともにガラス繊維、カーボン繊維などのフィラーが
混入される場合が多くなっている。このようなフィラー
含有のプラスチック成形品の場合には、たとえ高周波励
起プラズマによる成膜であっても、成形品そのものの表
面でのフィラーの露出による表面の粗雑さによって、一
部での表層剥離の発生により金属製膜の剥離が避けられ
なかった。
That is, with respect to plastic molded products such as electronic equipment casings, further reduction in weight, thinness and shortening is rapidly progressing, and in order to improve the strength of the molded products, glass fibers are used together with molding materials such as polycarbonate and polycarbonate / ABS alloy resin. In many cases, fillers such as carbon fiber are mixed. In the case of such a filler-containing plastic molded product, even if the film is formed by high-frequency excited plasma, the surface roughness of a part of the molded product itself due to the exposure of the filler on the surface of the molded product causes the peeling of the surface layer. Due to the occurrence, peeling of the metal film was unavoidable.

【0012】また、フィラーを配合する場合には成形性
をよくするため、一般の成形材料よりも樹脂の成形流動
性をよくするためステアリン酸亜鉛のような金属セッケ
ンが多く含まれている。このため、真空中でこれら成分
が成形品表面に移行(ブリードアウト)して金属膜と成
形品表面間で剥離が発生しやすくなる。さらに電子機器
の筐体の内壁面には外壁に比べて、複雑構造になってお
り、金型の押出ピン、斜傾ピン等から摺動油が付着し、
あるいはまた、成形品表層部が油分に含浸されたり、ゲ
ート付近のコールドスラッグが付着したりして密着不良
を起す場合もある。
Further, when a filler is blended, a metal soap such as zinc stearate is contained in a large amount in order to improve the moldability and to improve the molding fluidity of the resin as compared with general molding materials. Therefore, in vacuum, these components migrate (bleed out) to the surface of the molded product and peeling easily occurs between the metal film and the surface of the molded product. Furthermore, the inner wall surface of the housing of the electronic device has a more complicated structure than the outer wall, and sliding oil adheres from the extrusion pin of the mold, the inclined pin, etc.,
Alternatively, the surface layer of the molded product may be impregnated with oil, or cold slugs near the gate may adhere to cause poor adhesion.

【0013】このような事情から、成膜法として優れた
特徴を有する高周波励起プラズマによって高性能シール
ド膜を成膜する際には、プラスチック表面の前処理とし
て、プライマーコートを配設することが望しいことが見
出された。だが一方で、電子機器などのプラスチック筐
体の内壁面は、プリント基板などの電子部品を固定させ
るインサート金具、アンダーカット形状、リブといった
複雑形状を有するため、成形品の成形歪が大きく、プラ
イマーコートを配設した場合、プライマーコートに含ま
れる有機溶剤により、クラック(ヒビ割れ)が発生した
り、落球衝撃(銅球落下テスト)特性がプライマーコー
トを配設しないものに比較して著しく低下しやすいとい
う問題がある。
Under these circumstances, it is desirable to dispose a primer coat as a pretreatment on the plastic surface when a high-performance shield film is formed by high-frequency excitation plasma, which has excellent characteristics as a film forming method. A new thing was found. However, on the other hand, the inner wall surface of plastic housings for electronic devices has complicated shapes such as insert fittings for fixing electronic parts such as printed circuit boards, undercut shapes, and ribs, so molding distortion of molded products is large, and primer coating , The organic solvent contained in the primer coat is more likely to cause cracks and the drop impact (copper ball drop test) characteristics to be significantly reduced compared to those without the primer coat. There is a problem.

【0014】このような有機溶剤による欠点を解消する
ためにはプライマーを水溶性とすることが考えられる
が、水溶性とする場合には、水分の除去が充分に行われ
ない場合にはかえって耐水生や薄膜特性を損い、実際に
もプラスチック成形品は金属基板の場合とは異なって高
温乾燥が難しく、水分の除去が充分に行われにくいこと
からも、水溶性プライマーコートを採用することは難し
いのが実情であった。
In order to eliminate the drawbacks caused by such organic solvents, it is conceivable to make the primer water-soluble. However, when the primer is made water-soluble, if the water is not sufficiently removed, the water resistance is rather increased. It is difficult to adopt a water-soluble primer coat because it impairs raw and thin film properties, and in fact plastic molded products are difficult to dry at high temperature unlike metal substrates and it is difficult to remove water sufficiently. The reality was that it was difficult.

【0015】この発明は、以上の通りの事情に鑑みてな
されたものであって、従来の電磁波シールドの欠点を解
消し、気相成膜の特徴を生かしつつ、しかも、その付着
強度や耐久性、耐水性、耐食性、耐サーマルショック等
の特性に優れ、かつ、生産性も良好で、フィラー含有の
プラスチック成形品であっても優れた溥膜特性が実現さ
れる新規な電磁波シールドプラスチック成形品を提供す
ることを目的としている。
The present invention has been made in view of the circumstances as described above, and eliminates the drawbacks of the conventional electromagnetic wave shield and makes the best use of the characteristics of vapor phase film formation, and further, its adhesion strength and durability. , A new electromagnetic wave shielding plastic molded product that has excellent properties such as water resistance, corrosion resistance, and thermal shock resistance, and has good productivity, and even if it is a plastic molded product containing a filler, excellent shielding film properties are realized. It is intended to be provided.

【0016】[0016]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、プラスチック成形品表面に水溶
性塗料からなるプライマーコート層を1〜30μmの膜
厚で配設し、100℃以下での低温乾燥の後に真空槽内
において高周波励起プラズマにより0.6〜5.0μm
の膜厚のアルミニウム膜を配設してなる電磁波シールド
プラスチック成形品を提供する。
In order to solve the above-mentioned problems, the present invention has a primer coat layer made of a water-soluble paint having a film thickness of 1 to 30 μm on the surface of a plastic molded article, and the temperature is 100 ° C. or less. 0.6 ~ 5.0μm by high frequency excitation plasma in a vacuum chamber after low temperature drying at
Provided is an electromagnetic wave shielding plastic molded product provided with an aluminum film having a thickness of.

【0017】また、この発明は、プラスチック成形品表
面に水溶性塗料からなるプライマーコート層を1〜30
μmの膜厚で配設し、100℃以下での低温乾燥の後に
真空槽内において高周波励起プラズマにより0.7〜
5.0μmの膜厚の銅膜を配設し、さらに0.05〜
3.0μmの膜厚の耐蝕性の金属または合金膜を配設し
てなる電磁波シールドプラスチック成形品をも提供す
る。
Further, according to the present invention, a primer coating layer made of a water-soluble paint is formed on the surface of a plastic molded product in an amount of 1 to 30.
It is arranged with a film thickness of μm, and after low temperature drying at 100 ° C. or less, 0.7 to
A copper film with a thickness of 5.0 μm is provided,
There is also provided an electromagnetic wave shielding plastic molded product provided with a corrosion-resistant metal or alloy film having a film thickness of 3.0 μm.

【0018】もちろん、この発明の電磁波シールドプラ
スチック成形品は、各種のプラスチックの射出成形、押
出成形、注型成形、あるいはそれらの表面成形したもの
を含み、その目的、用途に応じて、ガラス繊維、カーボ
ン繊維等のフィラーを含有することができる。通常、プ
ライマーコートに使用される水溶性塗料は、対象とする
基板が鉄板、アルミダイカストなどの金属の場合には、
高温乾燥(たとえば150℃以上)されるため、その塗
料の硬化が十分なため水分による悪影響はないが、プラ
スチック筐体の場合には、前記の通り高温乾燥が困難な
ため、プライマー塗膜に存在する水分が、蒸着工程での
真空中で露出し、密着不良が生じやすい。
Of course, the electromagnetic wave shielding plastic molded article of the present invention includes various plastics that are injection molded, extrusion molded, cast molded, or surface-molded thereof. Depending on the purpose and use, glass fiber, It may contain a filler such as carbon fiber. Normally, the water-soluble paint used for primer coating is used when the target substrate is a metal such as an iron plate or aluminum die casting.
Since it is dried at a high temperature (for example, 150 ° C or higher), the paint is sufficiently cured so that there is no adverse effect due to moisture, but in the case of a plastic housing, it is difficult to dry at a high temperature as described above, so it is present in the primer coating film. Moisture to be exposed is exposed in a vacuum in the vapor deposition process, and poor adhesion tends to occur.

【0019】しかしながら、この発明のように、100
℃以下の低温乾燥の後に、真空中で高周波励起プラズマ
によって成膜する場合にはこのような不都合は生じな
い。これは、高周波励起プラズマによる表面ボンバード
効果が予期し得ない優れた作用を働き、優れた密着特性
を実現するものと考えられる。水溶性塗料としては、ア
クリルエマルジョン系のものをその代表的なものとして
例示することができるが、これに限定されることはな
い。この水溶性塗料によるプライマーコートは、1〜3
0μm程度の膜厚とするのが好ましく、また、その低温
乾燥は、100℃以下、より好ましくは60〜85℃程
度において数10分〜4時間程度で行うようにする。
However, as in the present invention, 100
Such a disadvantage does not occur when a film is formed by high frequency excitation plasma in vacuum after drying at a low temperature of ℃ or less. It is considered that this is because the surface bombardment effect by the high-frequency excited plasma exerts an unexpectedly excellent action and realizes an excellent adhesion property. As the water-soluble paint, an acrylic emulsion-based paint can be illustrated as a typical one, but the water-soluble paint is not limited thereto. The primer coat with this water-soluble paint is 1 to 3
The film thickness is preferably about 0 μm, and the low temperature drying is performed at 100 ° C. or lower, more preferably at 60 to 85 ° C. for several tens of minutes to 4 hours.

【0020】1μm未満、30μmを超える成膜は、付
着強度を損なうことになる。水溶性塗料であるため、有
機溶媒を用いるプライマーコートとは異って、大気汚染
の心配がないため、環境問題においても有意義である。
高周波励起プラズマによる成膜は、たとえば1×10-4
〜1×10-5Torr水準の真空度とした真空槽におい
て、高周波電源からの電圧印加によって1×10-4〜1
×10-3程度の分圧のアルゴン、ヘリウム等の不活性ガ
ス導入にともなうプラズマ励起によって可能となる。い
わゆるRF低圧グロー放電プラズマである。成膜材料と
してのアルミニウム、銅、さらには耐蝕性の金属または
合金は、抵抗加熱、誘導加熱、電子ビーム照射、さらに
はホロカソード放電等による適宜な手段で蒸発させるこ
とができる。これらの蒸発粒子を高周波励起によりイオ
ン化してプラスチック成形品表面等に付着成膜させる。
Film formation of less than 1 μm or more than 30 μm impairs adhesion strength. Since it is a water-soluble paint, unlike primer coating using an organic solvent, there is no concern about air pollution, which is also significant in terms of environmental problems.
Film formation by high-frequency excitation plasma is, for example, 1 × 10 −4
In a vacuum chamber having a vacuum degree of up to 1 × 10 -5 Torr, 1 × 10 -4 to 1 by applying a voltage from a high frequency power source.
This can be achieved by plasma excitation accompanying the introduction of an inert gas such as argon or helium with a partial pressure of about × 10 -3 . This is so-called RF low pressure glow discharge plasma. Aluminum, copper, and a corrosion-resistant metal or alloy as a film forming material can be vaporized by an appropriate means such as resistance heating, induction heating, electron beam irradiation, and hollow cathode discharge. These evaporated particles are ionized by high-frequency excitation and adhered to the surface of the plastic molded product to form a film.

【0021】蒸着する耐蝕性の金属または合金として
は、Au,Ag,Ni,Cr,W,Zr,Sn,Co等
の各種の金属またはそれらの合金が使用できる。そし
て、これらの金属または合金の高周波励起蒸着は、有機
ガスの雰囲気中において行うが、この際のガスは、炭化
水素、たとえばメタン、エタン、エチレン、プロピレン
等の飽和もしくは不飽和の炭化水素、そのヒドロキシ、
アルコキシ、カルボニル等の置換体化合物等から適宜に
選択されて使用される。
As the corrosion-resistant metal or alloy to be deposited, various metals such as Au, Ag, Ni, Cr, W, Zr, Sn and Co or alloys thereof can be used. Then, the high frequency excitation vapor deposition of these metals or alloys is performed in an atmosphere of an organic gas, and the gas at this time is a hydrocarbon, for example, a saturated or unsaturated hydrocarbon such as methane, ethane, ethylene, propylene, or the like. Hydroxy,
It is used after being appropriately selected from substituted compounds such as alkoxy and carbonyl.

【0022】これらの有機ガスの使用によって、金属ま
たは合金と有機ガス化合物とは組織的に複雑な混合膜を
形成し、耐蝕性、耐ヒートショック性をより大きく向上
させることになる。有機ガス成分は、通常1×10-4
1×10-2Torr程度の分圧として導入することがで
きる。その割合は、金属または合金の組成割合に応じて
選択することができる。
By using these organic gases, the metal or alloy and the organic gas compound form a systematically complex mixed film, and the corrosion resistance and heat shock resistance are further improved. The organic gas component is usually 1 × 10 -4 ~
It can be introduced as a partial pressure of about 1 × 10 -2 Torr. The ratio can be selected according to the composition ratio of the metal or alloy.

【0023】従来では、前記の通り、環境試験において
銅膜の上のニッケル等の膜は剥離したが、この発明の高
周波励起プラズマ方法による場合には、プラズマによっ
て銅表面が活性化され、密着性が大きく向上し、付着強
度の増大が図られる。しかも、この発明の場合には、塩
水噴霧、亜硫酸ガス中で著しく耐食性もが向上する。サ
ーマルショックに強い成膜が得られる。そして、強度と
ともに柔軟性も良好な成膜が可能となる。
Conventionally, as described above, the film of nickel or the like on the copper film was peeled off in the environmental test, but in the case of the high frequency excitation plasma method of the present invention, the copper surface is activated by the plasma and the adhesion is improved. Is greatly improved, and the adhesion strength is increased. Moreover, in the case of the present invention, the corrosion resistance is remarkably improved in salt water spray and sulfurous acid gas. A film that is resistant to thermal shock can be obtained. Further, it is possible to form a film having good strength and flexibility.

【0024】なお、アルミニウム膜の成膜は、電磁波シ
ールド効果の観点から、0.6〜5.0μmの膜厚に、
また、銅は0.7〜5.0μm、および耐蝕性金属また
は合金は0.05〜3.0μmの膜厚とする。もちろん
この発明の高周波励起プラズマについては、これまで公
知の技術を踏まえつつ、適宜に実施することができる。
The aluminum film is formed to a thickness of 0.6 to 5.0 μm from the viewpoint of the electromagnetic wave shielding effect.
Further, the thickness of copper is 0.7 to 5.0 μm, and the thickness of the corrosion-resistant metal or alloy is 0.05 to 3.0 μm. Of course, the high-frequency excited plasma of the present invention can be appropriately implemented while taking into consideration known techniques.

【0025】成膜はバッチ方式、あるいは連続方式のい
ずれでも可能である。さらにまた、この発明では、必要
に応じて、さらに金属、無機物、ポリマー等の保護膜を
配設することもできる。電解メッキ、気相蒸着、いずれ
の方法によって形成してもよい。以下、実施例を示し、
さらに詳しくこの発明について説明する。
The film formation can be performed by either a batch method or a continuous method. Furthermore, in the present invention, a protective film made of a metal, an inorganic substance, a polymer or the like can be further provided, if necessary. It may be formed by any of electrolytic plating and vapor deposition. Examples are shown below,
The present invention will be described in more detail.

【0026】[0026]

【実施例】実施例1 ポリカーボネート(PC)/ABS樹脂=70/30の
組成比で、10重量%のガラス繊維配合の成形材料によ
り、ノートパソコンの底ケース内面成形品を成形し、ア
クリルエマルジョン系塗料からなる水性塗料を塗布し、
85℃の温度において60分間熱風乾燥させた。これに
より膜厚15μmのプライマーコート層を成膜した。
EXAMPLES Example 1 An inner surface molded article of a bottom case of a notebook computer was molded with a molding material containing polycarbonate (PC) / ABS resin = 70/30 and 10% by weight of glass fiber, and an acrylic emulsion system was used. Apply a water-based paint consisting of paint,
It was dried with hot air at a temperature of 85 ° C. for 60 minutes. As a result, a primer coat layer having a film thickness of 15 μm was formed.

【0027】真空蒸着槽内で、その到達真空度を3×1
-5Torrとし、アルゴンを1×10-4Torrの分
圧として導入し、コイル状高周波励起(13.56MH
z)電極によって生成させたグロープラズマに5分間放
置し、直ちに2×10-4Torrのアルゴン分圧で2.
0μm厚のアルミニウムを成膜した。60℃の水中に2
4時間放置した後においても、アルミニウム膜の外観、
密着性および抵抗値の劣化は生じなかった。
In the vacuum vapor deposition tank, the ultimate vacuum is 3 × 1.
0 and -5 Torr, argon was introduced as a partial pressure of 1 × 10 -4 Torr, coiled RF excitation (13.56MH
z) Leave for 5 minutes in the glow plasma generated by the electrode, and immediately under an argon partial pressure of 2 × 10 −4 Torr to 2.
A 0 μm thick aluminum film was formed. 2 in 60 ° C water
The appearance of the aluminum film, even after standing for 4 hours,
Adhesion and resistance did not deteriorate.

【0028】また、アドバンテストによる電界波測定の
結果、無電解メッキ(Cu)1.3μm厚の場合と同等
のシールド効果が得られた。比較例1 実施例1において、高周波励起プラズマに代えてHCD
(ホロカソード)プラズマを用いた。
Further, as a result of electric field wave measurement by the Advantest, a shielding effect equivalent to that in the case of electroless plating (Cu) having a thickness of 1.3 μm was obtained. Comparative Example 1 In Example 1, HCD was used instead of the high frequency excitation plasma.
(Holocathode) plasma was used.

【0029】同様に60℃の水中に、24時間放置した
ところ、アルミニウム膜の部分剥離が生じ、抵抗値の増
大が認められた。比較例2 実施例1において、水溶性塗料によるプライマーコート
を行わずにアルミニウムの成膜を行った。
Similarly, when the aluminum film was allowed to stand in water at 60 ° C. for 24 hours, partial peeling of the aluminum film occurred and an increase in resistance value was observed. Comparative Example 2 In Example 1, the aluminum film was formed without performing the primer coating with the water-soluble paint.

【0030】60℃水中に24時間放置したところ、微
小な局所剥離の発生が認められた。 実施例2 8重量%炭素繊維配合のポリカボネート(PC)成形材
料により成形した携帯電話のシールド板に、アクリルエ
マルジョン系塗料で塗装し、80℃の温度で60分間熱
風乾燥し、20μm厚のプライマーコート層を配設し
た。
When left in water at 60 ° C. for 24 hours,
Occurrence of small local exfoliation was observed. Example 2 Polycarbonate (PC) molding compound containing 8 wt% carbon fiber
Acrylic coating on the shield plate
Apply Maruzon paint and heat at 80 ℃ for 60 minutes
Air-dry and apply a 20 μm thick primer coat layer
It was

【0031】次いで、真空層内(到達真空度3×10-5
Torr)において、アルゴン圧7×10-4Torrの
高周波励起プラズマ(13.56MHz)に6分間放置
し、2×10-4Torrアルゴン圧で1μm厚の銅を製
膜し、直ちに0.2μm厚のニッケルを成膜した。60
℃水中に24時間放置しても、外観、密着性、抵抗値の
劣化は認められなかった。実施例3 実施例2において、銅膜を成膜後、さらにプラズマを2
分間放置し、1.5×10-4Torrエチレンガス雰囲
気中で、0.2μm厚のNi60:Cr40のニッケル
−クロム合金膜を成膜した。
Then, in the vacuum layer (attainment vacuum degree of 3 × 10 -5
In a high frequency excited plasma (13.56 MHz) with an argon pressure of 7 × 10 −4 Torr, the copper film having a thickness of 1 μm is immediately formed at a pressure of 2 × 10 −4 Torr with an argon pressure of 0.2 μm. Of nickel was deposited. 60
No deterioration in appearance, adhesiveness, or resistance value was observed even when left in water at ℃ for 24 hours. Example 3 In Example 2, after forming the copper film, plasma was further applied for 2 times.
After being left standing for 1 minute, a nickel-chromium alloy film of Ni60: Cr40 having a thickness of 0.2 μm was formed in an ethylene gas atmosphere of 1.5 × 10 −4 Torr.

【0032】同様に、60℃水中に24時間放置した後
にも、外観、密着性、抵抗値の変化は認められなかっ
た。実施例1および2と同様に、シールド効果は良好で
あった。比較例3 実施例2において、有機溶剤型プライマーコートを行っ
て成膜した。
Similarly, no change in appearance, adhesion, or resistance value was observed even after standing in water at 60 ° C. for 24 hours. Similar to Examples 1 and 2, the shield effect was good. Comparative Example 3 In Example 2, an organic solvent type primer coat was applied to form a film.

【0033】60℃水中に24時間放置したところ、局
所的クラックの発生が認められた。シールド効果も低下
していた。
When left in water at 60 ° C. for 24 hours, local cracking was observed. The shield effect was also reduced.

【0034】[0034]

【発明の効果】この発明によって、気相成膜の特徴を生
かしつつ、フィラー配合のプラスチック成形品の場合で
あっても、(1)電磁気シールド効果に優れ、(2)省
資源の薄膜で、(3)付着膜強度が大きく、(4)耐食
性、耐水性、耐ヒートショック性に優れ、(5)強度と
ともに柔軟性も良好な、(6)その成膜工程が環境への
影響の少ない電磁気シールドプラスチック成形品が提供
される。
According to the present invention, while utilizing the characteristics of vapor phase film formation, even in the case of a plastic molded product containing a filler, (1) an electromagnetic shielding effect is excellent, and (2) a resource-saving thin film, (3) High adhesion film strength, (4) Excellent corrosion resistance, water resistance, heat shock resistance, (5) Good strength and flexibility, (6) Electromagnetic field with little impact on the environment A shielded plastic molding is provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プラスチック成形品表面に水溶性塗料か
らなるプライマーコート層を1〜30μmの膜厚で配設
し、100℃以下での低温乾燥の後に真空槽内において
高周波励起プラズマにより0.6〜5.0μmの膜厚の
アルミニウム膜を配設してなる電磁波シールドプラスチ
ック成形品。
1. A surface of a plastic molded article is provided with a primer coat layer composed of a water-soluble paint in a film thickness of 1 to 30 μm, and after low temperature drying at 100 ° C. or less, 0.6 is generated by high frequency excitation plasma in a vacuum chamber. An electromagnetic wave shielding plastic molded product provided with an aluminum film having a thickness of up to 5.0 μm.
【請求項2】 プラスチック成形品表面に水溶性塗料か
らなるプライマーコート層を1〜30μmの膜厚で配設
シ、100℃以下での低温乾燥の後に真空槽内において
あらかじめ高周波励起プラズマによる0.7〜5.0μ
mの膜厚の銅膜を配設し、さらに0.05〜3.0μm
厚の耐蝕性の金属または合金膜を配設してなる電磁波シ
ールドプラスチック成形品。
2. A primer coat layer made of a water-soluble paint having a film thickness of 1 to 30 μm is provided on the surface of a plastic molded product, and after being dried at a low temperature of 100 ° C. or lower, it is preliminarily applied with a high-frequency excited plasma in a vacuum chamber to a density of 0.1. 7-5.0μ
A copper film having a thickness of m is arranged, and further 0.05 to 3.0 μm.
Electromagnetic wave shielding plastic molded product with thick corrosion resistant metal or alloy film.
【請求項3】 耐蝕性の金属または合金膜を有機ガス雰
囲気下に配設してなる請求項2の電磁波シールドプラス
チック成形品。
3. The electromagnetic wave shielding plastic molded product according to claim 2, wherein a corrosion-resistant metal or alloy film is arranged in an organic gas atmosphere.
JP22263893A 1992-11-09 1993-09-07 Electromagnetic shielded plastic molding Pending JPH0770345A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22263893A JPH0770345A (en) 1993-09-07 1993-09-07 Electromagnetic shielded plastic molding
US08/149,533 US5462771A (en) 1992-11-09 1993-11-09 Method of manufacturing electromagnetic wave shielding plastic molding
EP93308934A EP0597670B1 (en) 1992-11-09 1993-11-09 Method of manufacturing electromagnetic wave shielding plastic molding
DE69317035T DE69317035T2 (en) 1992-11-09 1993-11-09 Manufacturing process of a molded plastic body with electromagnetic shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22263893A JPH0770345A (en) 1993-09-07 1993-09-07 Electromagnetic shielded plastic molding

Publications (1)

Publication Number Publication Date
JPH0770345A true JPH0770345A (en) 1995-03-14

Family

ID=16785598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22263893A Pending JPH0770345A (en) 1992-11-09 1993-09-07 Electromagnetic shielded plastic molding

Country Status (1)

Country Link
JP (1) JPH0770345A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939936A (en) * 1998-01-06 1999-08-17 Intel Corporation Switchable N-well biasing technique for improved dynamic range and speed performance of analog data bus
US5947770A (en) * 1996-12-24 1999-09-07 Yazaki Corporation Electric wire connection structure
US5954549A (en) * 1996-12-26 1999-09-21 Yazaki Corporation Electric wire connection structure
US5957735A (en) * 1996-12-26 1999-09-28 Yazaki Corporation Electric-wire connection structure of connector
US5959253A (en) * 1997-01-09 1999-09-28 Yazaki Corporation Wire connection structure
US5997340A (en) * 1996-12-26 1999-12-07 Yazaki Corporation Wire connecting structure of connector and production method thereof
US6012955A (en) * 1997-01-09 2000-01-11 Yazaki Corporation Terminal for ultrasonic connection and ultrasonic connection structure
US6018127A (en) * 1997-01-09 2000-01-25 Yazaki Corporation Wire connection structure
US6019628A (en) * 1996-12-26 2000-02-01 Yazaki Corporation Electric-wire connection structure of connector
US6021565A (en) * 1997-01-09 2000-02-08 Yazaki Corporation Wire connecting structure and method of connecting wire
US6059617A (en) * 1997-06-18 2000-05-09 Yazaki Corporation Connection structure of electric wire and terminal
US6099364A (en) * 1997-01-09 2000-08-08 Yazaki Corporation Ultrasonic welding terminal
US6142838A (en) * 1997-01-09 2000-11-07 Yazaki Corporation Connecting structure between covered wire and terminal
US6239375B1 (en) 1997-01-09 2001-05-29 Yazaki Corporation Terminal for connection by ultrasonic wave and a structure therefor
US6261135B1 (en) 1997-01-09 2001-07-17 Yazaki Corporation Connection structure for connecting a covered wire and terminal and a connection method thereof
JP2002001880A (en) * 2000-06-20 2002-01-08 Inoac Corp Conductive plastic molded article and method for manufacturing the same
US6482051B1 (en) 1998-07-09 2002-11-19 Yazaki Corporation Connection structure for clad electric wire

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947770A (en) * 1996-12-24 1999-09-07 Yazaki Corporation Electric wire connection structure
US6019628A (en) * 1996-12-26 2000-02-01 Yazaki Corporation Electric-wire connection structure of connector
US5954549A (en) * 1996-12-26 1999-09-21 Yazaki Corporation Electric wire connection structure
US5957735A (en) * 1996-12-26 1999-09-28 Yazaki Corporation Electric-wire connection structure of connector
US6195885B1 (en) 1996-12-26 2001-03-06 Yazaki Corporation Method of making wire connecting structure
US5997340A (en) * 1996-12-26 1999-12-07 Yazaki Corporation Wire connecting structure of connector and production method thereof
US5959253A (en) * 1997-01-09 1999-09-28 Yazaki Corporation Wire connection structure
US6018127A (en) * 1997-01-09 2000-01-25 Yazaki Corporation Wire connection structure
US6012955A (en) * 1997-01-09 2000-01-11 Yazaki Corporation Terminal for ultrasonic connection and ultrasonic connection structure
US6021565A (en) * 1997-01-09 2000-02-08 Yazaki Corporation Wire connecting structure and method of connecting wire
US6099364A (en) * 1997-01-09 2000-08-08 Yazaki Corporation Ultrasonic welding terminal
US6142838A (en) * 1997-01-09 2000-11-07 Yazaki Corporation Connecting structure between covered wire and terminal
US6239375B1 (en) 1997-01-09 2001-05-29 Yazaki Corporation Terminal for connection by ultrasonic wave and a structure therefor
US6261135B1 (en) 1997-01-09 2001-07-17 Yazaki Corporation Connection structure for connecting a covered wire and terminal and a connection method thereof
US6059617A (en) * 1997-06-18 2000-05-09 Yazaki Corporation Connection structure of electric wire and terminal
US5939936A (en) * 1998-01-06 1999-08-17 Intel Corporation Switchable N-well biasing technique for improved dynamic range and speed performance of analog data bus
US6482051B1 (en) 1998-07-09 2002-11-19 Yazaki Corporation Connection structure for clad electric wire
DE19932237B4 (en) * 1998-07-09 2007-07-05 Yazaki Corp. Connection method and connection arrangement for sheathed electrical wires
JP2002001880A (en) * 2000-06-20 2002-01-08 Inoac Corp Conductive plastic molded article and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0770345A (en) Electromagnetic shielded plastic molding
US5462771A (en) Method of manufacturing electromagnetic wave shielding plastic molding
US4582564A (en) Method of providing an adherent metal coating on an epoxy surface
JP2982851B2 (en) Method of manufacturing electronic component including organic polymer substrate coated with copper, and electronic component including the organic polymer substrate
CN101175394A (en) Anti-electromagnetic interference multilayer composite material and method for producing the same
US5461203A (en) Electronic package including lower water content polyimide film
JPH07504944A (en) Pretreatment method for the surface of plastic products
Kupfer et al. Plasma and ion beam assisted metallization of polymers and their application
JP2011153372A (en) Metal multilayer laminated electrical insulator, and method for producing the same
JPS61210183A (en) Method for providing metal film to surface of polymer
KR101363771B1 (en) Two-layer flexible substrate and process for producing same
CN101572993B (en) Method for forming conducting wire on insulated heat-conducting metal substrate in a vacuum sputtering way
JP2817891B2 (en) Manufacturing method of electromagnetic wave shielding plastic molded products
JP2007335619A (en) Manufacturing method of electromagnetic wave shield molding
KR100376960B1 (en) Method for forming of the EMI protecting layer on a plastic substrate and an EMI protecting layer thereof
Fessmann et al. Adherent metallization of carbon-fibre-reinforced plastic composites using a combined vacuum/electrochemical deposition process
JP2561992B2 (en) Electromagnetic wave shield plastic molding
JP2561993B2 (en) Electromagnetic wave shield plastic molding
JPH06240035A (en) Electromagnetic-wave-shielding molded plastic article
JP2003119577A (en) Electromagnetic wave shielding film
JP2001135979A (en) Electromagnetic wave preventing plastic material and method of manufacturing the same
JP2008071802A (en) High corrosion resistant electromagnetic wave shield molding and its production process
JP2001019784A (en) Electromagnetic shielding plastic material and its production
JPH06240034A (en) Electromagnetic-wave-shielding molded plastic article
JPH06240027A (en) Electromagnetic-wave-shielding plastic molding