JP2003117362A - Oxygen separating apparatus - Google Patents

Oxygen separating apparatus

Info

Publication number
JP2003117362A
JP2003117362A JP2001317747A JP2001317747A JP2003117362A JP 2003117362 A JP2003117362 A JP 2003117362A JP 2001317747 A JP2001317747 A JP 2001317747A JP 2001317747 A JP2001317747 A JP 2001317747A JP 2003117362 A JP2003117362 A JP 2003117362A
Authority
JP
Japan
Prior art keywords
oxygen
self
supporting structure
thickness
mixed conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001317747A
Other languages
Japanese (ja)
Inventor
Toshiyuki Koyama
利幸 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001317747A priority Critical patent/JP2003117362A/en
Publication of JP2003117362A publication Critical patent/JP2003117362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen separating apparatus having oxygen separation ability without inconvenience caused by a supporting body. SOLUTION: The oxygen separating apparatus is constituted of a self- sustained structure composed of a dense mixed conductive metal oxide which consists essentially of lanthanum, strontium, cobalt and iron, has a molar ratio expressed by the following relation, La:Sr:Co:Fe=x:(1-x):(1-y):y (where 0<x<0.15, 0<y<0.15), and has <=2% opening porosity and 150-500 μm thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気中または酸素
含有混合ガス中の酸素を分離する酸素分離装置に関す
る。
TECHNICAL FIELD The present invention relates to an oxygen separation device for separating oxygen in air or oxygen-containing mixed gas.

【0002】[0002]

【従来の技術】空気のような酸素含有混合ガスから酸素
成分のみを選択的に輸送する物質として、混合伝導性酸
化物が広く知られている。ここで、混合伝導性酸化物と
は、電子または正孔を伝導すると同時に、酸素イオン
(酸化物イオンともいう)も伝導する酸化物のことであ
る。
2. Description of the Related Art Mixed conductive oxides are widely known as substances that selectively transport only oxygen components from an oxygen-containing mixed gas such as air. Here, the mixed conductive oxide is an oxide that conducts electrons or holes and simultaneously conducts oxygen ions (also referred to as oxide ions).

【0003】このような混合伝導性酸化物を利用して選
択的酸素輸送を工業的に行うには、その操業条件におけ
る酸素イオン導電率として、大略0.1S/cm以上必
要であり、好ましくは、0.5S/cm以上、最も好ま
しくは、1S/cm以上である。また、電子導電率とし
ては、それらと同程度ないしそれ以上の値を有すること
が必要である。すなわち、本発明が対象とする混合伝導
性酸化物とは、電子導電率および酸素イオン導電率が操
業条件において、ともに、大略0.1S/cm以上であ
る酸化物を指す。
In order to industrially carry out selective oxygen transport utilizing such a mixed conductive oxide, the oxygen ion conductivity under the operating conditions needs to be about 0.1 S / cm or more, preferably. , 0.5 S / cm or more, and most preferably 1 S / cm or more. Further, it is necessary that the electronic conductivity has a value equal to or higher than those. That is, the mixed conductive oxide targeted by the present invention refers to an oxide whose electron conductivity and oxygen ion conductivity are both about 0.1 S / cm or more under operating conditions.

【0004】この定義を満足する混合伝導性酸化物とし
て、古くは、特開昭56−92103号公報や特開昭6
1−21717号公報に開示されているように、Lax
Sr1 -xCoO3-aやLa1-xSrxCo1-yFey3-z
いったperovskite型の結晶構造を有する酸化物が知られ
ている。
As a mixed conductive oxide satisfying this definition, there have long been known Japanese Patent Laid-Open Nos. 56-92103 and 6-62.
As disclosed in JP 1-21717 A, La x
Oxides having a perovskite type crystal structure such as Sr 1 -x CoO 3 -a and La 1 -x Sr x Co 1 -y Fe y O 3 -z are known.

【0005】また、最近では、米国特許5356728
号および同5580497号に開示されているように、
代表的組成がSr4Fe6-xCoxz(13−δ≦z≦1
3+δ)で表され、主結晶相の一つが少なくとも室温付
近では非perovskite型(前記公報においてはSr4Fe6
13化合物と同じ層状perovskite型とされている)の結
晶構造であって、大気中において10〜30S/cm
(800〜950℃)程度の電子導電率を有する酸化物
が発明されている。
More recently, US Pat. No. 5,356,728.
And No. 5580497,
A typical composition is Sr 4 Fe 6-x Co x O z (13−δ ≦ z ≦ 1
3 + δ), and one of the main crystalline phases is a non-perovskite type (Sr 4 Fe 6 in the above publication) at least near room temperature.
The same layered perovskite type as the O 13 compound), and has a crystal structure of 10 to 30 S / cm in the atmosphere.
An oxide having an electronic conductivity of about (800 to 950 ° C.) has been invented.

【0006】さらに、寺岡らの学術論文(日本化学会
誌、vol.1988、No.7、pp1084-1089、1988年、「L
1-xSrxCo1-yFey3ペロブスカイト型酸化物の
酸素透過能」)には、xおよびyを0〜1.0で変化さ
せた結果、SrCoO2.5を除けば、xが大きく、か
つ、yが小さな組成、例えば、SrCo0.8Fe0.23
とすれば良好な酸素透過能が得られる旨が記載されてい
る。
Further, an academic paper by Teraoka et al. (Journal of the Chemical Society of Japan, vol.1988, No.7, pp1084-1089, 1988, "L
a 1-x Sr x Co 1-y Fe y O 3 oxygen permeation capacity of perovskite type oxide ”), as a result of changing x and y from 0 to 1.0, except for SrCoO 2.5 , x is A composition having a large y and a small y, for example, SrCo 0.8 Fe 0.2 O 3
In that case, it is described that a good oxygen permeability can be obtained.

【0007】寺岡らはさらに電気化学会第68回大会予稿
集(1J26、pp175、2001年4月1〜3日、「Sr,
Coリッチ組成域でのLa−Sr−Co−Fe系ペロブ
スカイトの合成と酸素透過能」)では、AサイトにLa
を含むことで低温での酸素透過能が向上することから、
La−Sr−Co−Feの4成分からなり、かつ、Sr
とCoの組成が可能な限り高い酸化物、例えばLa0.1
Sr0.9Co0.9Fe0.13組成とすれば良好な酸素透過
能が得られる旨を報告している。この組成とすることに
より、上記文献で最も好ましい組成とされたSrCo
0.8Fe0.23と比べて、より低温領域での酸素透過能
の向上に効果があるとしている。
[0007] Teraoka et al. Further published the proceedings of the 68th conference of the Institute of Electrochemistry (1J26, pp175, April 1-3, 2001, "Sr,
“Synthesis and oxygen permeability of La—Sr—Co—Fe-based perovskite in the Co-rich composition region”), La at the A site.
Since the oxygen permeability at low temperature is improved by containing
La-Sr-Co-Fe consisting of four components, and Sr
And Co having the highest possible composition, for example La 0.1
It has been reported that good oxygen permeability can be obtained with a composition of Sr 0.9 Co 0.9 Fe 0.1 O 3 . With this composition, SrCo which is the most preferable composition in the above literature
It is said that it is effective in improving the oxygen permeability in a lower temperature region as compared with 0.8 Fe 0.2 O 3 .

【0008】[0008]

【発明が解決しようとする課題】混合伝導性酸化物は、
当初、酸素含有混合ガスから酸素成分を分離回収するこ
とを目的に発明されたものであり、酸素の透過速度を大
きくするために厚さ1mm以下、好ましくは0.5mm
以下に薄膜化して使用するとされている。
The mixed conductive oxide is
It was originally invented for the purpose of separating and recovering an oxygen component from an oxygen-containing mixed gas, and has a thickness of 1 mm or less, preferably 0.5 mm in order to increase the oxygen permeation rate.
It is said that a thin film is used below.

【0009】事実、上述の寺岡らの電気化学会第68回大
会予稿集に記載されているLa0.1Sr0.9Co0.9Fe
0.13によって表される混合伝導性酸化物は、約1mm
の厚みとした際に、供給側に1atmの空気を、取出し
側にHeを用いて両面の酸素分圧差を約0.2atmと
すると、900℃で約2cm3・cm-2・min-1の酸
素透過能を有するが、酸素の分離回収用途や隔膜リアク
ター用途に利用する場合に、工業的に利用可能とされる
16cm3・cm-2・min-1を得るには、前記組成物
をさらに薄膜化する必要がある。
In fact, La 0.1 Sr 0.9 Co 0.9 Fe described in Teraoka et al.'S Proceedings of the 68th Annual Meeting of the Electrochemical Society of Japan.
The mixed conductive oxide represented by 0.1 O 3 is about 1 mm
Assuming that the air thickness is 1 atm on the supply side and He is used on the extraction side to make the oxygen partial pressure difference on both sides about 0.2 atm, at 900 ° C. about 2 cm 3 · cm −2 · min −1 In order to obtain 16 cm 3 · cm −2 · min −1 which has oxygen permeability but is industrially usable when used for separation and recovery of oxygen and for use as a membrane reactor, the above composition is further added. It is necessary to reduce the film thickness.

【0010】このような従来のペロブスカイト型構造を
有する組成物は一般的に機械的強度が低く、割れ易いた
め、工業的に利用可能な酸素輸送速度を実現する厚さで
は支持体上に形成せざるを得ない。
Since such a composition having a conventional perovskite structure generally has low mechanical strength and is easily cracked, it should be formed on a support at a thickness that provides an industrially applicable oxygen transport rate. I have no choice.

【0011】しかしながら、支持体は空気または酸素含
有混合ガスを透過させる必要があることから多孔質でな
ければならず、さらに混合伝導性酸化物工業的に利用可
能な選択的酸素輸送速度を得るのに必要な温度は700
〜950℃程度と高温であることから、支持体の機械的
損傷や、熱衝撃による損傷が懸念される。例えば、構造
材料として代表的なアルミナ(Al23)、ムライト(3
Al23・2SiO2)、窒化珪素(Si34)、サイアロ
ン(Si-Al-O-N固溶体)、コーディエライト(2Al
23・MgO・5SiO2)、安定化ジルコニア(CaO-
doped ZrO2またはY23-doped ZrO2)、あるいは
炭化珪素(SiC)を多孔質支持体として用いようとして
も、混合伝導性酸化物に亀裂や剥離が生じたり、混合伝
導性酸化物が多孔質支持体とともに破壊したりするなど
の不都合を生じてしまう。
However, the support must be porous as it must be permeable to air or oxygen-containing gas mixtures, and to obtain a mixed conductive oxide industrially available selective oxygen transport rate. Temperature required for 700
Since the temperature is as high as about 950 ° C., there is concern about mechanical damage to the support and damage due to thermal shock. For example, typical structural materials such as alumina (Al 2 O 3 ) and mullite (3
Al 2 O 3 .2SiO 2 ), silicon nitride (Si 3 N 4 ), sialon (Si-Al-O-N solid solution), cordierite (2Al
2 O 3 · MgO · 5SiO 2 ), stabilized zirconia (CaO-
Even if doped ZrO 2 or Y 2 O 3 -doped ZrO 2 ) or silicon carbide (SiC) is used as a porous support, cracks or peeling may occur in the mixed conductive oxide, or the mixed conductive oxide may not be formed. This causes inconvenience such as destruction with the porous support.

【0012】本発明はかかる事情に鑑みてなされたもの
であって、支持体にともなう不都合が生じず高い酸素分
離能を有する酸素分離装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an oxygen separation device having a high oxygen separation ability without causing inconvenience associated with a support.

【0013】[0013]

【課題を解決するための手段】本発明者らは、酸素透過
特性が良好なペロブスカイト型混合伝導性酸化物を用い
た酸素分離装置について検討を重ねた結果、特定の成分
組成のペロブスカイト型混合伝導性酸化物を緻密な焼結
体とすることにより、十分な酸素透過特性を得ることが
できる厚さで、しかも支持体を用いない自立構造体とし
て酸素分離装置を構成することが可能なことを見出し
た。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on an oxygen separation device using a perovskite-type mixed conductive oxide having good oxygen permeability, and as a result, have found that the perovskite-type mixed conductive oxide having a specific component composition is used. By using a dense sintered oxide as the porous oxide, it is possible to configure the oxygen separator as a self-supporting structure that does not use a support and has a thickness that allows sufficient oxygen transmission characteristics to be obtained. I found it.

【0014】本発明はこのような知見に基づいてなされ
たものであり、以下の(1)〜(7)を提供するもので
ある。
The present invention has been made on the basis of such findings, and provides the following (1) to (7).

【0015】(1) ランタン、ストロンチウム、コバ
ルトおよび鉄を主成分とし、それら成分元素のモル比が
下記(1)式で表され、開気孔率が2%以下の緻密質の
混合伝導性金属酸化物からなり、厚さが150〜500
μmの範囲である自立構造体で構成されたことを特徴と
する酸素分離装置。 La:Sr:Co:Fe=x:1−x:1−y:y ……(1) (ただし、0<x<0.15 、0<y<0.15 )
(1) Oxidized mixed conductive metal oxide containing lanthanum, strontium, cobalt and iron as main components, the molar ratio of these component elements being represented by the following formula (1), and having an open porosity of 2% or less. It is made of objects and has a thickness of 150 to 500
An oxygen separation device comprising a self-supporting structure having a range of μm. La: Sr: Co: Fe = x: 1-x: 1-y: y (1) (where 0 <x <0.15, 0 <y <0.15)

【0016】(2) 上記(1)において、前記自立構
造体の外側となる供給側酸素分圧と内側となる採取側酸
素分圧の差を0.5〜3atmとして運転されることを
特徴とする酸素分離装置。
(2) In the above (1), the operation is performed with the difference between the supply-side oxygen partial pressure on the outer side and the sampling-side oxygen partial pressure on the inner side of the self-supporting structure set to 0.5 to 3 atm. Oxygen separator.

【0017】(3) バリウム、コバルトおよび鉄を主
成分とし、それら成分元素のモル比が下記(2)式で表
され、開気孔率が3%以下の緻密質の混合伝導性金属酸
化物からなり、厚さが200〜2500μmの範囲であ
る自立構造体で構成されたことを特徴とする酸素分離装
置。 Ba:Co:Fe=1:1−y′:y′ ……(2) (ただし、0<y′<0.25 )
(3) From a dense mixed conductive metal oxide containing barium, cobalt and iron as main components, the molar ratio of the component elements is represented by the following formula (2), and the open porosity is 3% or less. And an oxygen separation device comprising a self-supporting structure having a thickness of 200 to 2500 μm. Ba: Co: Fe = 1: 1-y ': y' (2) (where 0 <y '<0.25)

【0018】(4) 上記(3)において、前記自立構
造体の外側となる供給側の酸素分圧と内側となる採取側
の酸素分圧の差を0.1〜3atmとして運転されるこ
とを特徴とする酸素分離装置。
(4) In the above (3), the operation is performed with the difference between the oxygen partial pressure on the supply side which is the outer side of the self-supporting structure and the oxygen partial pressure on the sampling side which is the inner side being 0.1 to 3 atm. Characteristic oxygen separation device.

【0019】(5) 上記(1)〜(4)のいずれかに
おいて、前記自立構造体が少なくとも一端が平板あるい
は半球殻で閉じられた円筒形状であることを特徴とする
酸素分離装置。
(5) In any one of the above (1) to (4), the self-supporting structure has a cylindrical shape with at least one end closed by a flat plate or a hemispherical shell.

【0020】[0020]

【発明の実施の形態】以下、本発明についてさらに具体
的に説明する。本発明に係る酸素分離装置は、ランタ
ン、ストロンチウム、コバルトおよび鉄を主成分とし、
それら成分元素のモル比が下記(1)式で表され、開気
孔率が2%以下の緻密質の混合伝導性金属酸化物からな
り、厚さが150〜500μmの範囲である自立構造体
で構成されている。 La:Sr:Co:Fe=x:1−x:1−y:y ……(1) (ただし、0<x<0.15 、0<y<0.15 )
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. The oxygen separator according to the present invention contains lanthanum, strontium, cobalt and iron as main components,
A self-supporting structure in which the molar ratio of the component elements is represented by the following formula (1), is composed of a dense mixed conductive metal oxide having an open porosity of 2% or less, and has a thickness in the range of 150 to 500 μm. It is configured. La: Sr: Co: Fe = x: 1-x: 1-y: y (1) (where 0 <x <0.15, 0 <y <0.15)

【0021】ここで自立構造体とは、支持体を用いるこ
となく、実質的にそのもののみで構成された構造体をい
う。
Here, the self-supporting structure means a structure substantially composed of itself without using a support.

【0022】上記混合伝導性酸化物は陽イオンがLa−
Sr−Co−Feの各成分からなる化学式ABOXと表
記することが可能な混合酸化物である。LaおよびSr
はこの化学式中Aで表記されるサイトに位置し、一方、
CoおよびFeは同Bで表されるサイトに位置する。
In the mixed conductive oxide, the cation is La-.
It is a mixed oxide which can be represented by the chemical formula ABO x, which is composed of each component of Sr—Co—Fe. La and Sr
Is located at the site denoted by A in this chemical formula, while
Co and Fe are located at the site represented by B.

【0023】Aサイト中でのLaによるSrの置換率を
xで表すと0<x<0.15となる。Laが存在しない
と500乃至900℃といった低温領域での酸素透過能
が低くなるが、xが増すにつれて全体の酸素透過能が低
下することから、高酸素透過能を得るためには上記範囲
であることが必要である。
When the substitution ratio of Sr by La in the A site is represented by x, 0 <x <0.15. When La is not present, the oxygen permeability in a low temperature range of 500 to 900 ° C. becomes low, but the overall oxygen permeability decreases as x increases. Therefore, it is within the above range to obtain high oxygen permeability. It is necessary.

【0024】Bサイト中でのFeによるCoの置換率を
yで表すと0<y<0.15となる。Feが存在しない
と結晶構造の対称性が低下して、酸化物イオンあるいは
酸素欠陥の移動が生じにくくなるために存在は必須であ
るが、ある程度以上yが増すと全体の酸素透過能が低下
することから、高酸素透過能を得るためには上記組成で
あることが必要である。
When the substitution rate of Co in the B site by Fe is represented by y, 0 <y <0.15. If Fe is not present, the symmetry of the crystal structure is lowered, and the presence of Fe is essential because migration of oxide ions or oxygen defects is less likely to occur, but if y is increased to some extent or more, the overall oxygen permeability is lowered. Therefore, in order to obtain high oxygen permeability, the above composition is required.

【0025】上記組成の混合伝導性酸化物の酸素透過能
(選択的酸素輸送速度)を高いものとするためには混合
伝導性酸化物の組成だけではなく、緻密な微構造として
酸素透過能を高めるようにすることが極めて重要であ
る。すなわち、上記組成のLa−Sr−Co−Fe系混
合伝導性酸化物の開気孔率を2%以下の緻密質とするこ
とが必要である。つまり、上記組成のLa−Sr−Co
−Fe系混合伝導性酸化物の中に物理的な空隙が多く存
在するとその空隙を通過する大気ガスが不純物として混
入し、酸素透過能を低下させてしまう。開気孔率が2%
以下であればこの不純物の混入を十分に抑制することが
できる。
In order to increase the oxygen permeability (selective oxygen transport rate) of the mixed conductive oxide having the above composition, not only the composition of the mixed conductive oxide, but also the oxygen permeability as a dense microstructure is required. It is extremely important to increase it. That is, it is necessary to make the La—Sr—Co—Fe mixed conductive oxide having the above composition have an open porosity of 2% or less. That is, La-Sr-Co having the above composition
If a large number of physical voids exist in the —Fe-based mixed conductive oxide, atmospheric gas passing through the voids will be mixed as impurities, and the oxygen permeability will be reduced. 2% open porosity
The following can sufficiently suppress the mixing of the impurities.

【0026】上記組成のLa−Sr−Co−Fe系混合
伝導性酸化物からなる自立構造体の厚さは、酸素透過速
度が拡散律速および混合律速の場合には、薄いほどよい
が、150μmより薄ければ機械的損傷を受けやすくな
る。一方、500μmよりも厚くなるとが実用レベルの
酸素透過量を確保するために非常な大きな圧力差が必要
となり、材料の破壊が起こりやすくなる。したがって、
上記組成のLa−Sr−Co−Fe系混合伝導性酸化物
からなる自立構造体の厚さは、150〜500μmの範
囲とする。工業的なレベルでの高い信頼性を保つために
は300μm以上であることが好ましい。
The thickness of the self-supporting structure composed of the La—Sr—Co—Fe mixed conductive oxide having the above composition is preferably as thin as possible when the oxygen permeation rate is diffusion-controlled and mixed-controlled, but is more than 150 μm. The thinner it is, the more susceptible it is to mechanical damage. On the other hand, when the thickness is more than 500 μm, a very large pressure difference is required to secure a practical level of oxygen permeation amount, and the material is easily broken. Therefore,
The thickness of the self-supporting structure made of the La-Sr-Co-Fe mixed conductive oxide having the above composition is in the range of 150 to 500 μm. In order to maintain high reliability on an industrial level, it is preferably 300 μm or more.

【0027】上述したように、La0.1Sr0.9Co0.9
Fe0.13組成の混合伝導性酸化物材料を、約1mmの
厚みとした際に、供給側に1atmの空気を、取出し側
にHeを用いて両面の酸素分圧差を約0.2atmとす
ると、900℃で約2cm3・cm-2・min-1の酸素
透過能を有するが、混合伝導性酸化物の酸素透過能は、
上述したようにその厚みに反比例することから、例えば
500μmの厚みで自立構造体とすることができれば、
酸素透過能は約0.4cm3・cm-2・min- 1とな
る。
As described above, La 0.1 Sr 0.9 Co 0.9
Assuming that the mixed conductive oxide material of Fe 0.1 O 3 composition has a thickness of about 1 mm, if 1 atm of air is used on the supply side and He is used on the extraction side and the oxygen partial pressure difference on both sides is about 0.2 atm. , Has an oxygen permeability of about 2 cm 3 · cm −2 · min −1 at 900 ° C, but the oxygen permeability of the mixed conductive oxide is
Since it is inversely proportional to the thickness as described above, if a self-supporting structure with a thickness of, for example, 500 μm can be formed,
Oxygen permeability is about 0.4cm 3 · cm -2 · min - a 1.

【0028】本発明の他の形態に係る酸素分離装置は、
バリウム、コバルトおよび鉄を主成分とし、それら成分
元素のモル比が下記(2)式で表され、開気孔率が3%
以下の緻密質の混合伝導性金属酸化物からなり、厚さが
200〜2500μmの範囲である自立構造体で構成さ
れている。 Ba:Co:Fe=1:1−y′:y′ ……(2) (ただし、0<y′<0.25 )
An oxygen separator according to another aspect of the present invention is
Main component is barium, cobalt and iron, the molar ratio of these component elements is expressed by the following formula (2), and the open porosity is 3%.
The self-supporting structure is composed of the following dense mixed conductive metal oxides and has a thickness in the range of 200 to 2500 μm. Ba: Co: Fe = 1: 1-y ': y' (2) (where 0 <y '<0.25)

【0029】上記混合伝導性酸化物は陽イオンがBa−
Co−Feの各成分からなる化学式ABOXと表記する
ことが可能な混合酸化物である。Baはこの化学式中A
で表記されるサイトに位置し、一方、CoおよびFeは
同Bで表されるサイトに位置する。
In the mixed conductive oxide, the cation is Ba-
It is a mixed oxide that can be represented by the chemical formula ABO x that is composed of each component of Co—Fe. Ba is A in this chemical formula
, And Co and Fe are located at the site represented by B.

【0030】Bサイト中でのFeの置換率をy′で表す
と0<y′<0.25となる。Feが存在しないと結晶
構造の対称性が低下して、酸化物イオンあるいは酸素欠
陥の移動が生じにくくなるために存在することが重要で
あるが、ある程度以上yが増すと全体の酸素透過能が低
下することから、高酸素透過能を得るためには上記範囲
であることが必要である。
When the substitution rate of Fe in the B site is represented by y ', 0 <y'<0.25. If Fe is not present, the symmetry of the crystal structure is reduced, and it is important that Fe is present because the migration of oxide ions or oxygen vacancies is less likely to occur. Since it decreases, it is necessary to be within the above range in order to obtain high oxygen permeability.

【0031】上述したように混合伝導性酸化物の酸素透
過能(選択的酸素輸送速度)を高いものとするためには
混合伝導性酸化物の組成だけではなく、緻密な微構造と
して酸素透過能を高めるようにすることが極めて重要で
あり、上記組成のBa−Co−Fe系混合伝導性酸化物
において、開気孔率が3%以下の緻密質とすることが必
要である。開気孔率が3%以下であれば不純物の混入を
十分に抑制することができる。
As described above, in order to increase the oxygen permeability (selective oxygen transport rate) of the mixed conductive oxide, not only the composition of the mixed conductive oxide, but also the oxygen permeability as a dense microstructure. It is extremely important that the Ba-Co-Fe mixed conductive oxide of the above composition has a high open porosity of 3% or less. When the open porosity is 3% or less, the mixing of impurities can be sufficiently suppressed.

【0032】上記組成のBa−Co−Fe系混合伝導性
酸化物からなる自立構造体の厚さは、酸素透過速度が拡
散律速および混合律速の場合には、薄いほどよいが、2
00μmより薄ければ機械的損傷を受けやすくなる。一
方、2500μmよりも厚くなると実用レベルの酸素透
過量を確保することが困難となる。したがって、上記組
成のBa−Co−Fe系混合伝導性酸化物からなる自立
構造体の厚さは、200〜2500μmの範囲とする。
工業的なレベルでの高い信頼性を保つためには350μ
m以上であることが好ましい。
The thickness of the self-supporting structure made of the Ba—Co—Fe mixed conductive oxide having the above composition is preferably as thin as possible when the oxygen permeation rate is diffusion rate-controlled and mixed rate-controlled.
If it is thinner than 00 μm, it is likely to be mechanically damaged. On the other hand, if the thickness is more than 2500 μm, it becomes difficult to secure a practical level of oxygen permeation amount. Therefore, the thickness of the self-supporting structure made of the Ba—Co—Fe mixed conductive oxide having the above composition is in the range of 200 to 2500 μm.
350μ to maintain high reliability at an industrial level
It is preferably m or more.

【0033】Co0.9Fe0.1x組成の混合伝導性酸化
物材料を、約1mmの厚みとした際に、供給側に1at
mの空気を、取出し側にHeを用いて両面の酸素分圧差
を約0.2atmとすると、900℃で約5cm3・c
-2・min-1の酸素透過能を有するが、混合伝導性酸
化物の酸素透過速度は、上述したようにその厚みに反比
例することから、例えば500μmの厚みで自立構造体
とすることができれば、酸素透過能は約10cm3・c
-2・min-1となる。
When a mixed conductive oxide material having a composition of Co 0.9 Fe 0.1 O x is made to have a thickness of about 1 mm, 1 at at the supply side.
m of air is about 5 cm 3 · c at 900 ° C when He is used on the extraction side and the oxygen partial pressure difference on both sides is about 0.2 atm.
Although it has an oxygen permeability of m −2 · min −1 , the oxygen transmission rate of the mixed conductive oxide is inversely proportional to its thickness as described above, and thus it is possible to form a self-supporting structure with a thickness of 500 μm, for example. If possible, oxygen permeability is about 10 cm 3 · c
It becomes m -2 · min -1 .

【0034】酸素分離装置を構成する自立構造体の形状
は特に限定されないが、一端が閉じた円筒が好ましい。
この際の端部の形状は図1の(a)に示すように平坦な
円板面で閉じた形状でも良いが、端部の面に応力が集中
して破壊する可能性があることから、端部の形状が図1
の(b)に示す半球殻となるような形状、いわゆる試験
管形状であることがより好ましい。こうした形状を得る
に際しては、一体で成形することが望ましいが、図2の
(a),(b)に示すように、円筒部と端部とを別々に
作製して、両者を接合しても良い。接合の方法として
は、一例として、支持体を構成するのと同一の材料を含
むペーストを接合面に塗布して、部材を圧着した後に熱
処理することが挙げられる。
The shape of the self-supporting structure constituting the oxygen separation device is not particularly limited, but a cylinder with one end closed is preferable.
The shape of the end portion at this time may be a shape closed by a flat disc surface as shown in FIG. 1A, but since stress may concentrate on the end surface, it may break. Figure 1 shows the shape of the end
It is more preferable that the shape is a so-called test tube shape that results in the hemispherical shell shown in (b). In order to obtain such a shape, it is desirable to integrally form it, but as shown in FIGS. 2 (a) and 2 (b), even if the cylindrical portion and the end portion are manufactured separately, they can be joined together. good. As an example of the joining method, a paste containing the same material as that of the support is applied to the joining surfaces, and the members are pressure-bonded and then heat-treated.

【0035】このような円筒状の上記組成の混合伝導性
酸化物材料からなる自立構造体により酸素の分離、すな
わち選択的酸素輸送が進行するには、混合伝導性酸化物
自立構造体の一方の表面の酸素分圧(p1)が、他方のそ
れ(p2)よりも低いことが必要であり、その酸素分圧差
が大きくなるほど選択的酸素輸送速度が増大する。酸素
透過速度は両表面での酸素分圧の比p2/p1の対数に比
例する。そのことから、酸素分圧差を10倍にすれば2
倍の酸素透過速度を得る。酸素分圧差を生じさせるに
は、一般的に、酸素供給側に空気を供給し、酸素採取側
を脱気するが、十分な酸素透過量を得るためには各々の
側での圧力差が大きくする必要があるので、自立構造体
の外側を高圧になる酸素供給側に、内側を低圧になる酸
素採取側とする。実用的な酸素分圧差は、上記組成のL
a−Sr−Co−Fe系混合伝導性酸化物からなる自立
構造体で酸素分離装置を構成する場合には0.5〜3a
tm、上記組成のBa−Co−Fe系混合伝導性酸化物
からなる自立構造体で酸素分離装置を構成する場合には
0.1〜3atmであることが望ましい。差圧が大きく
なるほど酸化透過速度は向上するが、自立構造体を構成
する上記材料の機械的強度が一般的な構造用材料よりも
低いことから、上記範囲を超えると機械的損傷による性
能低下や各種成分が供給ガス側から取出しガス側へと混
入する問題が生じる。
In order for the separation of oxygen, that is, the selective oxygen transport, to proceed by such a cylindrical self-supporting structure composed of the mixed conductive oxide material having the above-mentioned composition, one of the self-supporting structures of the mixed conductive oxide is required. The oxygen partial pressure on the surface (p 1 ) needs to be lower than that on the other side (p 2 ), and the larger the oxygen partial pressure difference, the higher the selective oxygen transport rate. The oxygen transmission rate is proportional to the logarithm of the oxygen partial pressure ratio p 2 / p 1 on both surfaces. Therefore, if the oxygen partial pressure difference is multiplied by 10,
Double the oxygen transmission rate. In order to generate an oxygen partial pressure difference, generally, air is supplied to the oxygen supply side and the oxygen sampling side is degassed, but in order to obtain a sufficient amount of oxygen permeation, the pressure difference on each side is large. Therefore, the outside of the self-supporting structure is the oxygen supply side where the pressure is high, and the inside is the oxygen collection side where the pressure is low. The practical oxygen partial pressure difference is L of the above composition.
When the oxygen separator is composed of a free-standing structure made of a-Sr-Co-Fe mixed conductive oxide, 0.5 to 3a.
tm, when the oxygen separator is composed of a self-supporting structure composed of the Ba—Co—Fe mixed conductive oxide having the above composition, it is preferably 0.1 to 3 atm. The oxidation permeation rate increases as the pressure difference increases, but the mechanical strength of the above-mentioned material forming the self-supporting structure is lower than that of general structural materials. There arises a problem that various components are mixed from the supply gas side to the extraction gas side.

【0036】以上のようなペロブスカイト型の混合伝導
性酸化物の自立構造体を製造する方法は特に限定されず
常法に従って行えばよい。典型例として、出発原料を湿
式ボールミル等で混合粉砕し、得られた混合原料を乾燥
後仮焼し、再びボールミル等で粉砕し、ドクターブレー
ド法、押出成形法等適宜の方法で成形した後、本焼成を
行う方法を挙げることができる。成形の際に粉末が必要
な場合には、仮焼後に粉砕した原料をさらに解砕して用
いるが、上記ドクターブレード法、押出成形法の場合に
は通常スラリーのまま用いる。
The method for producing the self-standing structure of the perovskite-type mixed conductive oxide as described above is not particularly limited and may be carried out according to a conventional method. As a typical example, the starting raw materials are mixed and pulverized by a wet ball mill or the like, the resulting mixed raw material is dried and then calcined, and then pulverized again by a ball mill or the like, and then formed by an appropriate method such as a doctor blade method or an extrusion molding method, A method of performing main firing can be mentioned. When powder is required for molding, the raw material crushed after calcination is further crushed and used, but in the case of the doctor blade method and extrusion molding method, it is usually used as a slurry.

【0037】自立構造体が上記組成のLa−Sr−Co
−Fe系混合伝導性酸化物からなる場合には、例えば、
出発原料として、酸化ランタン、炭酸ストロンチウム、
酸化鉄、酸化コバルトを用い、湿式ボールミル等で粉砕
し、乾燥した後、750〜900℃で仮焼を行い、その
後再び湿式ボールミルにて粉砕し、成形した後、110
0〜1300℃で焼成を行う。
The self-supporting structure is La-Sr-Co having the above composition.
When it is made of a —Fe-based mixed conductive oxide, for example,
As starting materials, lanthanum oxide, strontium carbonate,
Using iron oxide and cobalt oxide, crushed by a wet ball mill etc., dried, calcined at 750 to 900 ° C., crushed again by a wet ball mill and molded, and then 110
Baking is performed at 0 to 1300 ° C.

【0038】自立構造体が上記組成のBa−Co−Fe
形混合伝導性酸化物からなる場合には、例えば、出発原
料として、炭酸バリウム、酸化鉄、酸化コバルトを用
い、湿式ボールミル等で粉砕し、乾燥した後、750〜
1000℃で仮焼を行い、その後再び湿式ボールミルに
て粉砕し、成形した後、950〜1200℃で焼成を行
う。
The self-supporting structure has the above composition of Ba--Co--Fe.
In the case of using a mixed type conductive oxide, for example, barium carbonate, iron oxide, or cobalt oxide is used as a starting material, crushed by a wet ball mill or the like, dried, and then 750 to 750.
It is calcined at 1000 ° C., then pulverized again by a wet ball mill, shaped, and then fired at 950 to 1200 ° C.

【0039】以上のようにして得られた上記La0.1
0.9Co0.9Fe0.1x組成の混合伝導性酸化物材料
を、厚み300μmの自立構造体として、一方の表面に
10atmの空気を、他方の面にHeを供給して、酸素
分圧差を約2atmにすると、900℃で約16cm3
・cm-2・min-1の酸素透過能を発揮できることにな
り、工業的に利用可能とされる16cm3・cm-2・m
in-1を達成することができる。また、上記Co0.9
0.1x組成の混合伝導性酸化物材料を、厚み300μ
mとして、一方の表面に10atmの空気を、他方の面
にHeを供給して、酸素分圧差を約2atmにすると、
900℃で約17cm3・cm-2・min- 1の酸素透過
能を発揮できることになり、工業的に利用可能とされる
16cm3・cm-2・min-1を超えた値が得られる。
The above La 0.1 S obtained as described above
A mixed conductive oxide material having a composition of r 0.9 Co 0.9 Fe 0.1 O x was used as a self-supporting structure having a thickness of 300 μm, 10 atm of air was supplied to one surface and He was supplied to the other surface to reduce the oxygen partial pressure difference. At 2 atm, about 16 cm 3 at 900 ° C
・ 16 cm 3・ cm -2・ m that can be industrially used because it can exhibit oxygen permeability of cm -2・ min -1
in -1 can be achieved. In addition, the above Co 0.9 F
e 0.1 O x composition mixed conductive oxide material, thickness 300μ
As m, when 10 atm of air is supplied to one surface and He is supplied to the other surface to make the oxygen partial pressure difference about 2 atm,
About 17cm 3 · cm -2 · min at 900 ° C. - will be one of the oxygen permeability can be exhibited, industrially value exceeding 16cm 3 · cm -2 · min -1, which is made available is obtained.

【0040】[0040]

【実施例】以下、本発明の実施例について比較例ととも
に説明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0041】(実施例1)表1に示すように、自立構造
体の出発原料として、La23(和光純薬、純度99.
9%)、SrCO3(関東化学、99.9%)、Co2
3(関東化学、純度99.95%)、および、Fe2
3(和光純薬、99.9%)をLa:Sr:Co:Fe
=1:9:9:1の陽イオン比になるように秤量した。
これら原料を湿式ボールミルによって混合・粉砕した。
仮焼はアルミナ匣鉢中、950℃で10時間行いペロブ
スカイト単相を得た。この粉末を再び湿式ボールミルに
よって再粉砕した。このスラリー中の粉末100重量部
に対してPVAをバインダーとして1重量部加えてさら
に混合した後、気泡を取り除きながら粘度を調整してか
ら、ドクターブレードにより塗膜として、これを乾燥さ
せた。自立構造体の厚みが約300μmになるように、
スラリーの粘度を調整した。そして、直径15mmの円
板として打ち抜き、自立構造体の底部として用いた。ま
た、自立構造体の円筒部は、上記乾燥塗膜を短辺52×
長辺70mmに切り出し、短辺のうち5mmを糊代とし
て、そこにトルエンを噴霧して膨潤させ、丸めて糊代部
を圧着させて作製した。これらを上記スラリーを介して
接着し、乾燥後、1200〜1300℃で焼成すること
で酸素透過自立構造体を得た。このようにして得られた
自立構造体について、水中アルキメデス法によって開気
孔率を求めた。
Example 1 As shown in Table 1, as a starting material for a self-supporting structure, La 2 O 3 (Wako Pure Chemical Industries, purity 99.
9%), SrCO 3 (Kanto Kagaku, 99.9%), Co 2 O
3 (Kanto Chemical, purity 99.95%) and Fe 2 O
3 (Wako Pure Chemical Industries, 99.9%) with La: Sr: Co: Fe
Weighed so that the cation ratio was = 1: 9: 9: 1.
These raw materials were mixed and pulverized by a wet ball mill.
The calcination was performed at 950 ° C. for 10 hours in an alumina bowl to obtain a perovskite single phase. This powder was again ground by a wet ball mill. After adding 1 part by weight of PVA as a binder to 100 parts by weight of the powder in the slurry and further mixing, the viscosity was adjusted while removing air bubbles, and a coating film was formed with a doctor blade and dried. Make the thickness of the self-supporting structure about 300 μm,
The viscosity of the slurry was adjusted. Then, it was punched out as a disk having a diameter of 15 mm and used as the bottom of the self-supporting structure. In addition, the cylindrical portion of the self-supporting structure is formed by coating the above dry coating film on the short side 52 ×
It was cut out to a long side of 70 mm, and 5 mm of the short side was used as a glue margin, and toluene was sprayed thereto to swell, rolled, and the glue margin portion was pressure-bonded. These were adhered via the above slurry, dried and then fired at 1200 to 1300 ° C. to obtain an oxygen permeable self-supporting structure. The open porosity of the thus obtained self-supporting structure was determined by the underwater Archimedes method.

【0042】酸素透過能は、管状炉に設置した、給排気
管を設けた耐圧容器内で測定温度まで昇温して約30分
保持した後に、約10分間隔で4回測定した。空気
(O2:21%、N2:79%)はゲージ圧約12atmと
して、また、Heガスはゲージ圧0.2atmとして、
各々ボンベから減圧弁と流量計を介して20ml/mi
nで供給した。O2、N2およびCO2をガスクロマトメ
ータで検出して、O2量から酸素透過能を、N2量から試
料の亀裂発生の有無を、および、CO2量から外気の混
入の有無を検出した。
The oxygen permeability was measured four times at intervals of about 10 minutes after the temperature was raised to the measurement temperature in a pressure vessel equipped with a gas supply / exhaust pipe and held for about 30 minutes in a tubular furnace. air
(O 2 : 21%, N 2 : 79%) has a gauge pressure of about 12 atm, and He gas has a gauge pressure of 0.2 atm.
20 ml / mi from each cylinder via pressure reducing valve and flow meter
n. O 2 , N 2 and CO 2 were detected with a gas chromatograph, and the oxygen permeability was determined from the O 2 amount, the presence of cracks in the sample was determined from the N 2 amount, and the presence of outside air was determined from the CO 2 amount. Detected.

【0043】表1に示すように、自立構造体は開気孔率
1.4%であり、900℃での酸素透過能は16.7c
3・cm-2・min-1となり、実用レベルであることが
確認された。
As shown in Table 1, the self-supporting structure had an open porosity of 1.4% and an oxygen permeability of 16.7c at 900 ° C.
It was m 3 · cm −2 · min −1 , which was confirmed to be at a practical level.

【0044】(実施例2)出発原料をLa:Sr:C
o:Fe=1.5:8.5:8.5:1.5の陽イオン
比になるようにした以外は、実施例1と同様に自立構造
体を作製した。この自立構造体の膜厚は290μm、開
気孔率は0.8%であった。そして、実施例1と同様に
酸素透過能を測定した結果、表1に示すように900℃
での酸素透過能は約16cm3・cm-2・min-1とな
り、実用レベルであることが確認された。
Example 2 Starting material was La: Sr: C
A self-supporting structure was produced in the same manner as in Example 1 except that the cation ratio of o: Fe was 1.5: 8.5: 8.5: 1.5. The thickness of this self-supporting structure was 290 μm, and the open porosity was 0.8%. Then, the oxygen permeability was measured in the same manner as in Example 1, and as a result, as shown in Table 1, 900 ° C.
It was confirmed that the oxygen permeability was about 16 cm 3 · cm −2 · min −1 , which was at a practical level.

【0045】(比較例1)出発原料をLa:Sr:C
o:Fe=2:8:8:2の陽イオン比になるようにし
た以外は、実施例1と同様に自立構造体を作製した。表
1に示すように、この自立構造体の膜厚は340μm、
開気孔率は1.6%であった。そして、実施例1と同様
に酸素透過能を測定した結果、わずかな組成の違いか
ら、実施例1,2よりも酸素分圧差を大きくしても、9
00℃での酸素透過能が約9cm3・cm -2・min-1
小さく、実用レベルに達しなかった。
(Comparative Example 1) The starting material was La: Sr: C.
o: Fe = 2: 8: 8: 2 cation ratio
A self-supporting structure was prepared in the same manner as in Example 1 except that the above was added. table
1, the thickness of this self-supporting structure is 340 μm,
The open porosity was 1.6%. And similar to the first embodiment
As a result of measuring oxygen permeability, there is a slight difference in composition.
Even if the oxygen partial pressure difference is larger than in Examples 1 and 2,
Oxygen permeability at 00 ° C is about 9 cm3・ Cm -2・ Min-1When
It was small and did not reach the practical level.

【0046】(比較例2)ドクターブレード法により塗
膜を形成するためのスラリーの粘度を低くして、厚みを
薄くした以外は実施例1と同様に自立構造体を作製し
た。表1に示すように、この場合は、開気孔率が2.6
%と大きく、厚みが120μmと薄いことから、実施例
よりも酸素分圧差を小さく(供給空気圧力を小さく)し
てもセラミックス自立構造体が割れて、酸素透過能を測
定することができなかった。
(Comparative Example 2) A self-supporting structure was prepared in the same manner as in Example 1 except that the viscosity of the slurry for forming a coating film was lowered by the doctor blade method to reduce the thickness. As shown in Table 1, in this case, the open porosity was 2.6.
%, And the thickness was as thin as 120 μm, the ceramic self-supporting structure was cracked and the oxygen permeability could not be measured even when the oxygen partial pressure difference was smaller (the supply air pressure was smaller) than in the examples. .

【0047】(比較例3)ドクターブレード法により塗
膜を形成するスラリーの粘度を高くして、厚みを厚くし
た以外は実施例1と同様に自立構造体を作製した。表1
に示すように、この場合は、開気孔率が0.2%と小さ
いものの、自立構造体の厚みが1000μmと厚いため
に実施例よりも酸素分圧差を大きくしても、900℃で
の酸素透過能が約4cm3・cm-2・min-1と小さく、
実用レベルに達しなかった。
Comparative Example 3 A self-supporting structure was prepared in the same manner as in Example 1 except that the viscosity of the slurry for forming a coating film was increased by the doctor blade method to increase the thickness. Table 1
In this case, although the open porosity was as small as 0.2% in this case, even if the oxygen partial pressure difference was made larger than that in the example, the oxygen content at 900 ° C. was increased because the self-supporting structure had a large thickness of 1000 μm. The permeability is as small as about 4 cm 3 · cm -2 · min -1 ,
It did not reach the practical level.

【0048】(実施例3)表2に示すように、自立構造
体の出発原料として、BaCO3(関東化学、純度99.
9%)、Co23(関東化学、純度99.95%)、およ
び、Fe23(和光純薬、99.9%)をBa:Co:
Fe=10:9:1の陽イオン比になるように秤量し
た。これら原料を湿式ボールミルによって混合・粉砕し
た。仮焼はアルミナ匣鉢中、900℃で10時間行いペ
ロブスカイト単相を得た。この粉末を再び湿式ボールミ
ルによって再粉砕した。このスラリー中の粉末100重
量部に対してPVAをバインダーとして1重量部加えて
さらに混合した後、気泡を取り除きながら粘度を調整し
てから、ドクターブレードにより塗膜として、これを乾
燥させた。自立構造体の厚みが約600μmになるよう
に、スラリの粘度を調整した。そして、直径15mmの
円板として打ち抜き、自立構造体の底部として用いた。
また、自立構造体の円筒部は、上記乾燥塗膜を短辺52
×長辺70mmに切り出し、短辺のうち5mmを糊代と
して、そこにトルエンを噴霧して膨潤させ、丸めて糊代
部を圧着させて作製した。これらを上記スラリを介して
接着し、乾燥後、1200〜1300℃で焼成すること
で酸素透過自立構造体を得た。このようにして得られた
自立構造体について、水中アルキメデス法によって開気
孔率を求めた。酸素透過能の測定等は実施例1と同様に
して行った。
Example 3 As shown in Table 2, as a starting material for the self-supporting structure, BaCO 3 (Kanto Chemical Co., purity 99.
9%), Co 2 O 3 (Kanto Kagaku, purity 99.95%), and Fe 2 O 3 (Wako Pure Chemical Industries, 99.9%) as Ba: Co:
It was weighed so as to have a cation ratio of Fe = 10: 9: 1. These raw materials were mixed and pulverized by a wet ball mill. The calcination was performed at 900 ° C. for 10 hours in an alumina bowl to obtain a perovskite single phase. This powder was again ground by a wet ball mill. After adding 1 part by weight of PVA as a binder to 100 parts by weight of the powder in the slurry and further mixing, the viscosity was adjusted while removing air bubbles, and a coating film was formed with a doctor blade and dried. The viscosity of the slurry was adjusted so that the thickness of the self-supporting structure was about 600 μm. Then, it was punched out as a disk having a diameter of 15 mm and used as the bottom of the self-supporting structure.
In addition, the cylindrical portion of the self-supporting structure has the dry coating film on the short side
C. A long side was cut out to 70 mm, and 5 mm of the short side was used as a glue margin. Toluene was sprayed thereto to swell it, and it was rolled to press the glue margin portion. These were adhered via the slurry, dried, and then fired at 1200 to 1300 ° C. to obtain an oxygen permeable self-supporting structure. The open porosity of the thus obtained self-supporting structure was determined by the underwater Archimedes method. The measurement of oxygen permeability was performed in the same manner as in Example 1.

【0049】表2に示すように、自立構造体は開気孔率
1.4%であり、900℃での酸素透過能は約17cm
3・cm-2・min-1となり、実用レベルであることが確
認された。
As shown in Table 2, the free-standing structure had an open porosity of 1.4% and an oxygen permeability of about 17 cm at 900 ° C.
It was 3 · cm −2 · min −1 , which was confirmed to be at a practical level.

【0050】(実施例4)出発原料をBa:Co:Fe
=10:8:2の陽イオン比になるようにした以外は、
実施例3と同様に自立構造体を作製した。この自立構造
体の膜厚は540μm、開気孔率は1.1%であった。
そして、実施例1と同様に酸素透過能を測定した結果、
表2に示すように900℃での酸素透過能は16.6c
3・cm-2・min-1となり、実用レベルであることが
確認された。
Example 4 The starting material is Ba: Co: Fe.
= 10: 8: 2 except for the cation ratio
A self-supporting structure was prepared in the same manner as in Example 3. The thickness of this self-supporting structure was 540 μm, and the open porosity was 1.1%.
Then, as a result of measuring the oxygen permeability as in Example 1,
As shown in Table 2, the oxygen permeability at 900 ° C is 16.6c.
It was m 3 · cm −2 · min −1 , which was confirmed to be at a practical level.

【0051】(比較例4)出発原料をBa:Co:Fe
=10:7:3の陽イオン比になるようにした以外は、
実施例3と同様に自立構造体を作製した。表2に示すよ
うに、この自立構造体の膜厚は620μm、開気孔率は
1.0%であった。そして、実施例1と同様に酸素透過
能を測定した結果、わずかな組成の違いから、実施例
3,4よりも酸素分圧差を大きくしても、900℃での
酸素透過能が13.7cm3・cm-2・min-1となり、
実用レベルに達しなかった。
(Comparative Example 4) The starting material was Ba: Co: Fe.
= 10: 7: 3, except for the cation ratio
A self-supporting structure was prepared in the same manner as in Example 3. As shown in Table 2, the film thickness of this self-supporting structure was 620 μm, and the open porosity was 1.0%. Then, as a result of measuring the oxygen permeability in the same manner as in Example 1, even if the oxygen partial pressure difference was made larger than in Examples 3 and 4 due to a slight difference in composition, the oxygen permeability at 900 ° C. was 13.7 cm. 3 · cm −2 · min −1 ,
It did not reach the practical level.

【0052】(比較例5)ドクターブレード法により塗
膜を形成するためのスラリーの粘度を低くして、厚みを
薄くした以外は実施例3と同様に自立構造体を作製し
た。表2に示すように、この場合は、厚みが150μm
と薄いことから、実施例よりも酸素分圧差を小さく(供
給空気圧力を小さく)してもセラミックス自立構造体が
割れて、酸素透過能を測定することができなかった。
(Comparative Example 5) A self-supporting structure was prepared in the same manner as in Example 3 except that the viscosity of the slurry for forming a coating film was reduced by the doctor blade method to reduce the thickness. In this case, as shown in Table 2, the thickness is 150 μm.
Therefore, even if the oxygen partial pressure difference was made smaller (the supply air pressure was made smaller) than in the example, the ceramic freestanding structure was cracked and the oxygen permeability could not be measured.

【0053】(比較例6)ドクターブレード法により塗
膜を形成するスラリーの粘度を高くして、厚みを厚くし
た以外は実施例3と同様に自立構造体を作製した。表2
に示すように、この場合は、開気孔率が1.1%と小さ
いものの、自立構造体の厚みが2900μmと厚いため
に実施例よりも酸素分圧差を大きくしても、900℃で
の酸素透過能が3.3cm3・cm-2・min-1と小さ
く、実用レベルに達しなかった。
Comparative Example 6 A self-supporting structure was prepared in the same manner as in Example 3 except that the viscosity of the slurry for forming a coating film was increased by the doctor blade method to increase the thickness. Table 2
In this case, although the open porosity was as small as 1.1% in this case, even if the oxygen partial pressure difference was made larger than that in the example, the oxygen content at 900 ° C. was increased because the thickness of the self-supporting structure was as thick as 2900 μm. The permeability was as small as 3.3 cm 3 · cm −2 · min −1, which was below the practical level.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】[0056]

【発明の効果】以上説明したように、本発明によれば、
所定の成分組成を有するペロブスカイト型構造を有する
緻密質の混合伝導性金属酸化物からなる所定厚さの自立
構造体で酸素分離装置を構成するので、支持体が不要と
なり、支持体にともなう不都合が生じず高い酸素分離能
を有する酸素分離装置を得ることができる。
As described above, according to the present invention,
Since the oxygen separator is composed of a self-supporting structure having a predetermined thickness and made of a dense mixed conductive metal oxide having a perovskite type structure having a predetermined component composition, the support is not required and the disadvantages associated with the support are eliminated. It is possible to obtain an oxygen separation device having a high oxygen separation ability without being generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る酸素分離装置を示す断
面図。
FIG. 1 is a cross-sectional view showing an oxygen separation device according to an embodiment of the present invention.

【図2】接合により図1の酸素分離装置を作製する状態
を示す断面図。
2 is a cross-sectional view showing a state in which the oxygen separation device of FIG. 1 is manufactured by joining.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01G 51/00 C01G 51/00 B Fターム(参考) 4D006 GA41 HA28 KE06R KE30R MA02 MA24 MA31 MB12 MC03X NA62 PB17 PB62 PC71 4G002 AA10 AE05 AF01 4G042 BA31 BB02 DA02 DB10 DB11 DD02 DE04 DE05 DE06 DE08 DE12 DE14 4G048 AA05 AB02 AC08 AD02 AE05─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C01G 51/00 C01G 51/00 BF term (reference) 4D006 GA41 HA28 KE06R KE30R MA02 MA24 MA31 MB12 MC03X NA62 PB17 PB62 PC71 4G002 AA10 AE05 AF01 4G042 BA31 BB02 DA02 DB10 DB11 DD02 DE04 DE05 DE06 DE08 DE12 DE14 4G048 AA05 AB02 AC08 AD02 AE05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ランタン、ストロンチウム、コバルトお
よび鉄を主成分とし、それら成分元素のモル比が下記
(1)式で表され、開気孔率が2%以下の緻密質の混合
伝導性金属酸化物からなり、厚さが150〜500μm
の範囲である自立構造体で構成されたことを特徴とする
酸素分離装置。 La:Sr:Co:Fe=x:1−x:1−y:y ……(1) (ただし、0<x<0.15 、0<y<0.15 )
1. A dense mixed conductive metal oxide containing lanthanum, strontium, cobalt and iron as main components, the molar ratio of the component elements being represented by the following formula (1) and having an open porosity of 2% or less. And has a thickness of 150 to 500 μm
The oxygen separation device is characterized by being constituted by a self-supporting structure within the range. La: Sr: Co: Fe = x: 1-x: 1-y: y (1) (where 0 <x <0.15, 0 <y <0.15)
【請求項2】 前記自立構造体の外側となる供給側酸素
分圧と内側となる採取側酸素分圧の差を0.5〜3at
mとして運転されることを特徴とする請求項1に記載の
酸素分離装置。
2. The difference between the supply-side oxygen partial pressure on the outside and the sampling-side oxygen partial pressure on the inside of the self-supporting structure is 0.5 to 3 at.
The oxygen separation device according to claim 1, which is operated as m.
【請求項3】 バリウム、コバルトおよび鉄を主成分と
し、それら成分元素のモル比が下記(2)式で表され、
開気孔率が3%以下の緻密質の混合伝導性金属酸化物か
らなり、厚さが200〜2500μmの範囲である自立
構造体で構成されたことを特徴とする酸素分離装置。 Ba:Co:Fe=1:1−y′:y′ ……(2) (ただし、0<y′<0.25 )
3. Barium, cobalt and iron as main components, the molar ratio of these component elements is represented by the following formula (2),
An oxygen separation device, characterized in that it is composed of a dense mixed conductive metal oxide having an open porosity of 3% or less and a self-supporting structure having a thickness in the range of 200 to 2500 μm. Ba: Co: Fe = 1: 1-y ': y' (2) (where 0 <y '<0.25)
【請求項4】 前記自立構造体の外側となる供給側の酸
素分圧と内側となる採取側の酸素分圧の差を0.1〜3
atmとして運転されることを特徴とする請求項3に記
載の酸素分離装置。
4. The difference between the oxygen partial pressure on the supply side, which is the outer side of the self-supporting structure, and the oxygen partial pressure on the sampling side, which is the inner side, is 0.1 to 3.
The oxygen separation device according to claim 3, which is operated as an atm.
【請求項5】 前記自立構造体が少なくとも一端が平板
あるいは半球殻で閉じられた円筒形状であることを特徴
とする請求項1から請求項4のいずれか1項に記載の酸
素分離装置。
5. The oxygen separation device according to claim 1, wherein the self-supporting structure has a cylindrical shape in which at least one end is closed by a flat plate or a hemispherical shell.
JP2001317747A 2001-10-16 2001-10-16 Oxygen separating apparatus Pending JP2003117362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317747A JP2003117362A (en) 2001-10-16 2001-10-16 Oxygen separating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317747A JP2003117362A (en) 2001-10-16 2001-10-16 Oxygen separating apparatus

Publications (1)

Publication Number Publication Date
JP2003117362A true JP2003117362A (en) 2003-04-22

Family

ID=19135567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317747A Pending JP2003117362A (en) 2001-10-16 2001-10-16 Oxygen separating apparatus

Country Status (1)

Country Link
JP (1) JP2003117362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162703A (en) * 2013-02-27 2014-09-08 Dowa Electronics Materials Co Ltd Perovskite type compound oxide and method for producing the same
JP2017186252A (en) * 2017-05-30 2017-10-12 Dowaエレクトロニクス株式会社 Perovskite type composite oxide and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162703A (en) * 2013-02-27 2014-09-08 Dowa Electronics Materials Co Ltd Perovskite type compound oxide and method for producing the same
JP2017186252A (en) * 2017-05-30 2017-10-12 Dowaエレクトロニクス株式会社 Perovskite type composite oxide and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4737946B2 (en) Solid electrolyte fuel cell
EP2977363A1 (en) Joined body, and production method therefor
Etchegoyen et al. An architectural approach to the oxygen permeability of a La0. 6Sr0. 4Fe0. 9Ga0. 1O3− δ perovskite membrane
JP2003210952A (en) Oxygen separator
ES2256353T3 (en) CERIO OXIDE BASED ELECTROLYTE.
JPS6146401B2 (en)
JP4332639B2 (en) Fuel cell and method for producing the same
JP4149343B2 (en) Oxygen separation membrane element and manufacturing method thereof
US6251533B1 (en) Ceramic laminate material
JP2008047445A (en) Method of manufacturing solid electrolytic ceramic membrane, and electrochemical device
JP4149337B2 (en) Oxygen separation membrane element and manufacturing method thereof
JP2004339035A (en) Lanthanum gallate sintered compact, method for producing the same, and use of the same
JP2003117362A (en) Oxygen separating apparatus
JP2004342625A (en) Electrochemical solid device containing lanthanum calcium manganite rich in b-site
JP4855706B2 (en) Hydrogen separator and hydrogen separator
JP4933757B2 (en) Non-electron conductive composition graded solid electrolyte membrane
JP2001097789A (en) Ceramic composite material
JP2004223416A (en) Laminated oxygen permeating body, production method therefor, and oxygen permeating system using the body
JP3806298B2 (en) Composite material, oxygen separator and chemical reactor
JP3755545B2 (en) Composite ceramics, separator containing the same, and solid oxide fuel cell using the separator
JP2003137641A (en) Porcelain composition, composite material, oxygen separator and chemical reactor
JP2002097083A (en) Porous material and composite material
JP4748089B2 (en) Composite type mixed conductor
JP2005052698A (en) Support for oxygen separation membrane and its production method
JP2003063808A (en) Method for manufacturing oxygen and method for reforming gas