JP2003109992A - Defect detector and method for detecting defect - Google Patents

Defect detector and method for detecting defect

Info

Publication number
JP2003109992A
JP2003109992A JP2001305528A JP2001305528A JP2003109992A JP 2003109992 A JP2003109992 A JP 2003109992A JP 2001305528 A JP2001305528 A JP 2001305528A JP 2001305528 A JP2001305528 A JP 2001305528A JP 2003109992 A JP2003109992 A JP 2003109992A
Authority
JP
Japan
Prior art keywords
insulating film
sample substrate
defect
electrolyte solution
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001305528A
Other languages
Japanese (ja)
Inventor
Hideki Matsunaga
秀樹 松永
Keiki Nagai
圭希 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP2001305528A priority Critical patent/JP2003109992A/en
Publication of JP2003109992A publication Critical patent/JP2003109992A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting defect by which the position of defect in an insulation film can be determined easily and accurately in a sample substrate with arbitrary size. SOLUTION: This method includes a step for masking where a sample substrate is masked to bring an electrolytic solution into contact with only a defect evaluation area on the surface of an insulation film formed on the front surface side of the sample substrate, a step for fixation where the sample substrate is fixed onto a fixing/holding means in a state where a cathode electrode is in contact with the rear surface of the masked sample substrate so that a negative voltage is uniformly applied to the insulation film, a dripping step where the electrolytic solution is dripped only onto the defect evaluation area on the surface of the insulation film and an anode electrode is brought into contact with a drip of the electrolytic solution, and an electrodeposition step where the sample substrate between the anode electrode and cathode electrode is energized while the anode electrode is in contact with the drip of the electrolytic solution, to uniformly apply a negative voltage to the insulation film, and noble metal in the electrolytic solution is precipitated on the surface of the insulation film, corresponding to the position of a defect existing in the insulation film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁膜中に存在す
る欠陥を検出する欠陥検出処理装置及び欠陥検出方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect detection processing apparatus and a defect detection method for detecting defects existing in an insulating film.

【0002】[0002]

【従来の技術】表面に絶縁膜を有するシリコン基板の絶
縁膜中に存在する欠陥を検出する方法は、従来より様々
な原理に基づくものが提案されている。例えば、RCA
Review,Vol.34,p.656−690
(1973)及びSolidStateTechnol
ogy,Vol.17,p.35−42(1974)に
総説されるように、(1)キャパシタを用いた電気的方
法、(2)化学的選択エッチングによる法、(3)気泡
発生等の電気化学的方法、(4)Normarski法
等の化学的方法、(5)X線、電子線によるマイクロプ
ローブ解析法、(6)機械的プローブによるプロファイ
ル観察、等の方法がある。
2. Description of the Related Art As a method for detecting defects existing in an insulating film of a silicon substrate having an insulating film on its surface, various methods have been conventionally proposed based on various principles. For example, RCA
Review, Vol. 34, p. 656-690
(1973) and SolidStateTechnol.
ology, Vol. 17, p. 35-42 (1974), (1) electrical method using a capacitor, (2) chemical selective etching method, (3) electrochemical method such as bubble generation, (4) Normarski Methods such as chemical methods such as the method, (5) X-ray and electron probe microprobe analysis methods, and (6) mechanical probe profile observation.

【0003】しかし、半導体素子の絶縁のために用いら
れる膜(SiO2,SiN,SiON等)やMOSトラ
ンジスタのゲート酸化膜の評価には、膜の目的に合致さ
せるためにも、電界が印加された状態で欠陥を検出でき
る方法が好ましい。
However, in evaluating films (SiO2, SiN, SiON, etc.) used for insulating semiconductor elements and gate oxide films of MOS transistors, an electric field was applied in order to meet the purpose of the film. A method capable of detecting defects in the state is preferable.

【0004】前記の要件を満たす第1の方法として、例
えば(1)のように、「金属(M)―酸化膜(O)−半
導体(S)」構造を持つMOSキャパシタの電気特性を
測定する方法が挙げられる。この方法は、絶縁膜の電気
特性を直接測定して欠陥の有無を測定する方法であるの
で、信頼性の非常に高い欠陥の評価方法である。しか
し、MOSキャパシタの試作には、絶縁分離された金属
電極を形成するためにスパッタリング、あるいは蒸着、
減圧CVDなどの真空を必要とする工程や写真蝕刻工程
等種々の工程を必要とする。このため、評価の迅速性及
び簡便さが失われるという欠点があった。
As a first method satisfying the above requirements, the electrical characteristics of a MOS capacitor having a "metal (M) -oxide film (O) -semiconductor (S)" structure as in (1) is measured. There is a method. Since this method is a method of directly measuring the electrical characteristics of the insulating film to measure the presence or absence of defects, it is a highly reliable defect evaluation method. However, for the trial manufacture of a MOS capacitor, sputtering or vapor deposition in order to form a metal electrode that is insulated and separated,
Various processes such as a process requiring a vacuum such as low pressure CVD and a photo-etching process are required. For this reason, there is a drawback that the quickness and convenience of the evaluation are lost.

【0005】前記第1の欠点を克服するためには、少数
の工程によって評価を完了することのできる電気化学的
方法が非常に有効であり、これを実現するものとして従
来様々な方法が提案されている。例えば、RCA Re
view,Vol.31,p.431−438(197
0)では、前記第1の欠点を克服する第2の方法とし
て、メチルアルコールを溶媒として銅陽極を用い、陰極
である絶縁膜を有する半導体シリコン基板の欠陥上に銅
を電気泳動現象によって析出させる方法を提案してい
る。しかし、この方法では、25℃におけるメチルアル
コールの比電気伝導度が3x10−7Ω−1cm−1と
極めて小さく、溶液抵抗による電圧降下の影響が大きい
ため、陰極である絶縁膜を有する半導体シリコン基板の
表面電位を面内で均一に保つのが容易ではない。このた
め、面内で銅の析出ムラが起き易い。また、溶液が吸湿
性及び蒸発性を有するため液組成が経時変化し易く、再
現性に乏しいなどの多くの問題がある。
In order to overcome the above-mentioned first drawback, an electrochemical method capable of completing the evaluation by a small number of steps is very effective, and various methods have been conventionally proposed to realize this. ing. For example, RCA Re
view, Vol. 31, p. 431-438 (197)
In 0), as a second method for overcoming the first drawback, a copper anode is used with methyl alcohol as a solvent, and copper is deposited on a defect of a semiconductor silicon substrate having an insulating film as a cathode by an electrophoretic phenomenon. Proposing a method. However, in this method, the specific electric conductivity of methyl alcohol at 25 ° C. is extremely small at 3 × 10 −7 Ω−1 cm −1 and the influence of the voltage drop due to the solution resistance is large, so that the semiconductor silicon substrate having the insulating film that is the cathode is It is not easy to keep the surface potential uniform within the surface. For this reason, uneven deposition of copper is likely to occur in the plane. Further, since the solution has hygroscopicity and evaporation, there are many problems such that the liquid composition easily changes with time and reproducibility is poor.

【0006】前記第1,第2の欠点を克服する第3の方
法として、特開昭52−132682号には、銅の強酸
塩を含む水溶液を電解質溶液とし、前記電解質溶液に侵
されない導電物質により構成された陽極と、被測定物で
ある絶縁膜を有する半導体シリコン基板により構成され
た陰極とを、前記電解質溶液に浸積し、前記陽極と陰極
との間に、シリコン基板の表面に形成された絶縁膜の絶
縁破壊電圧よりも小さな直流電圧を印加して陰極である
絶縁膜を有する半導体シリコン基板の欠陥上に銅を電気
化学的メッキ反応によって析出させる方法が開示されて
いる。この方法では、電解質溶液による電圧降下の影響
が小さいので、シリコン基板の表面電位を面内で均一に
保つことができる。このため、銅析出の面内均一性が良
い。また、電解質溶液が水溶液であるため、吸湿及び蒸
発による液組成の経時変化はさほど問題とならない。
As a third method for overcoming the above first and second drawbacks, Japanese Patent Laid-Open No. 1326822/1982 discloses that an aqueous solution containing a strong acid salt of copper is used as an electrolytic solution, and a conductive material which is not attacked by the electrolytic solution. And a cathode composed of a semiconductor silicon substrate having an insulating film, which is an object to be measured, are immersed in the electrolyte solution and formed on the surface of the silicon substrate between the anode and the cathode. There is disclosed a method of applying a DC voltage lower than the dielectric breakdown voltage of the insulating film thus formed to deposit copper on a defect of a semiconductor silicon substrate having an insulating film as a cathode by an electrochemical plating reaction. In this method, since the influence of the voltage drop due to the electrolyte solution is small, the surface potential of the silicon substrate can be kept uniform in the surface. Therefore, the in-plane uniformity of copper deposition is good. Further, since the electrolyte solution is an aqueous solution, the change over time in the liquid composition due to moisture absorption and evaporation does not pose a problem.

【0007】しかしながら、前記第3の従来方法におい
ても、次のような問題点が存在する。絶縁膜表面に不純
物として銅が付着している場合、絶縁膜中に欠陥がなく
ても銅析出が起こるため、見かけ上は欠陥があるように
観察されるという問題があった。また、銅析出部の表面
は、周囲の環境により酸化や溶解等の化学変化をうけ易
く、銅析出部の大きさが直径1μm以下と小さければ小
さいほど、その影響が大きく、一度析出したものが表面
酸化や溶解により消失したり、環境からの二次汚染によ
り絶縁膜欠陥部と無関係の場所に銅が付着し易い。
However, even the third conventional method has the following problems. When copper adheres to the surface of the insulating film as an impurity, copper is deposited even if there is no defect in the insulating film, so that there is a problem in that it appears as if there is a defect. In addition, the surface of the copper deposit is susceptible to chemical changes such as oxidation and dissolution depending on the surrounding environment. The smaller the copper deposit has a diameter of 1 μm or less, the greater the effect, and the deposit is once deposited. Copper disappears easily due to surface oxidation and dissolution, and copper easily adheres to a place unrelated to the insulating film defect due to secondary pollution from the environment.

【0008】一方、特開平11−248608号公報に
開示されているような、析出物が貴金属となるような欠
陥検出処理である場合は、化学的に安定で環境からの二
次汚染がないため、前述した銅のような問題点はない。
On the other hand, in the case of the defect detection process as disclosed in Japanese Patent Laid-Open No. 11-248608, in which the precipitate becomes a noble metal, it is chemically stable and there is no secondary pollution from the environment. However, there is no problem like the above-mentioned copper.

【0009】図6は、上記公報に開示された従来の欠陥
検出処理装置の構成を示す模式図である。
FIG. 6 is a schematic diagram showing the structure of the conventional defect detection processing device disclosed in the above publication.

【0010】この欠陥検出処理装置は、前処理部102
と処理制御部103から構成され、処理部102は、絶
縁膜112の付いた試料基板(Si基板)106と、陰
極電極105aと、試料固定保持具108と、陽極極1
05bと、貴金属が含まれた電解質溶液Eを収容する容
器104とで構成される。
This defect detection processing apparatus comprises a preprocessing section 102.
The processing unit 102 includes a sample substrate (Si substrate) 106 having an insulating film 112, a cathode electrode 105a, a sample fixing holder 108, and an anode electrode 1.
05b and a container 104 for containing an electrolyte solution E containing a noble metal.

【0011】処理制御部103は、供給する直流電圧の
方向及び大きさが可変である可変直流電圧発生装置10
9と、電流計110と、電圧計111とから構成され
る。可変直流電圧発生装置109と陰極電極105aと
の電気的接続は、電流計110及び試料固定保持具10
8を介して形成されている。
The processing control unit 103 includes a variable DC voltage generator 10 in which the direction and magnitude of the DC voltage to be supplied are variable.
9, an ammeter 110, and a voltmeter 111. The variable DC voltage generator 109 and the cathode electrode 105a are electrically connected by an ammeter 110 and a sample holder 10.
It is formed through 8.

【0012】そして、絶縁膜112の付いた試料基板
(Si基板)106、陰極電極105a、試料固定保持
具108、及び陽極極105bは、容器104の中の電
解質溶液Eに浸漬されている。
The sample substrate (Si substrate) 106 having the insulating film 112, the cathode electrode 105a, the sample fixing holder 108, and the anode 105b are immersed in the electrolyte solution E in the container 104.

【0013】試料基板106に形成された絶縁膜112
が貴金属を含有する電解質溶液E中で負電極となるよう
に絶縁膜112に対して等しく負電圧を印加することに
よって、絶縁膜112に存在する欠陥113の位置に対
応して該絶縁膜112表面上に電解質溶液E中の貴金属
114を析出させて、絶縁膜112の欠陥113を検出
する。
Insulating film 112 formed on sample substrate 106
By applying a negative voltage equally to the insulating film 112 so that the electrode becomes a negative electrode in the electrolyte solution E containing the noble metal, the surface of the insulating film 112 corresponding to the position of the defect 113 existing in the insulating film 112. The noble metal 114 in the electrolyte solution E is deposited on the upper portion, and the defect 113 of the insulating film 112 is detected.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記公
報の従来例では、試料がウエハ以外の任意形状の場合、
電解質溶液が試料裏面に簡便に接触しないようにするた
めの装置構成の作製が困難であった。
However, in the conventional example of the above publication, when the sample has an arbitrary shape other than the wafer,
It has been difficult to make a device structure for preventing the electrolyte solution from easily contacting the back surface of the sample.

【0015】また、欠陥評価対象外の領域に大きな欠陥
が有った場合、貴金属が多量に析出してしまい、欠陥評
価対象領域での貴金属析出が非常に少なくなるため、欠
陥評価対象の微小領域部における欠陥部位置を精度良く
特定することが困難となるという問題点もあった。
In addition, when there is a large defect in the area outside the defect evaluation target, a large amount of precious metal is deposited, and the precipitation of the precious metal in the defect evaluation target area is very small. There is also a problem that it is difficult to accurately specify the position of the defective portion in the portion.

【0016】本発明は、上述の如き従来の問題点を解決
するためになされたもので、その目的は、任意の大きさ
の試料基板について、その絶縁膜欠陥部の位置を簡便に
精度良決定できる欠陥検出処理装置及び欠陥検出方法を
提供することである。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to easily and accurately determine the position of a defective portion of an insulating film of a sample substrate having an arbitrary size. It is to provide a defect detection processing device and a defect detection method that can be performed.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、試料基板に形成された絶縁膜が貴金属
を含有する電解質溶液中で負電極となるように前記絶縁
膜に対して等しく負電圧を印加することによって、前記
絶縁膜に存在する欠陥の位置に対応して該絶縁膜表面上
に前記電解質溶液中の貴金属を析出させて、前記絶縁膜
の欠陥を検出する欠陥検出処理装置において、欠陥評価
対象領域のみに前記電解質溶液を接触させるためにマス
ク手段でマスク処理が施された前記絶縁膜表面の前記欠
陥評価対象領域に対して前記電解質溶液を滴下するとと
もに、その電解質溶液の液滴に陽極電極を接触可能に構
成した電解質溶液滴下手段と、前記絶縁膜に対して等し
く負電圧が印加されるように、陰極電極上に前記試料基
板を固定保持する試料固定保持手段と、前記電解質溶液
の液滴に前記陽極電極を接触させた状態で、前記陽極電
極と前記陰極電極との間の前記試料基板に対して通電処
理を行う処理制御手段とを備えたことを特徴とする。
In order to achieve the above object, in the present invention, an insulating film formed on a sample substrate is used as a negative electrode in an electrolyte solution containing a noble metal. A defect detection process for detecting defects in the insulating film by depositing a noble metal in the electrolyte solution on the surface of the insulating film corresponding to the positions of defects existing in the insulating film by applying a negative voltage equally. In the device, the electrolyte solution is dropped onto the defect evaluation target area on the surface of the insulating film that has been masked by a masking means to bring the electrolyte solution into contact only with the defect evaluation target area, and the electrolyte solution is also added. Electrolyte solution dropping means configured so that the anode electrode can be brought into contact with the liquid droplet and the sample substrate is fixedly held on the cathode electrode so that a negative voltage is equally applied to the insulating film. A sample fixing and holding means, and a processing control means for conducting an electric current to the sample substrate between the anode electrode and the cathode electrode in a state where the anode electrode is in contact with the droplet of the electrolyte solution. It is characterized by that.

【0018】本発明では、試料基板の表面側に形成され
た絶縁膜表面の欠陥評価対象領域のみに前記電解質溶液
を接触させるために前記試料基板に対してマスク処理を
施すマスク工程と、前記マスク処理が施された前記試料
基板の裏面側に対し、前記絶縁膜に等しく負電圧が印加
されるように陰極電極を接触させた状態で、前記試料基
板を固定保持手段に固定する固定工程と、前記絶縁膜表
面の前記欠陥評価対象領域のみに前記電解質溶液を滴下
するとともに、その電解質溶液の液滴に陽極電極を接触
する滴下工程と、前記電解質溶液の液滴に前記陽極電極
を接触させた状態で前記陽極電極と前記陰極電極との間
の前記試料基板に対して通電処理を行うことで前記絶縁
膜に対して等しく負電圧を印加し、前記絶縁膜に存在す
る欠陥の位置に対応して該絶縁膜表面上に前記電解質溶
液中の貴金属を析出させる電着工程とを実行することを
特徴とする。
In the present invention, a masking step of subjecting the sample substrate to a masking treatment so as to bring the electrolyte solution into contact with only the defect evaluation target region on the surface of the insulating film formed on the surface side of the sample substrate, and the masking step. A fixing step of fixing the sample substrate to a fixing holding means in a state in which a cathode electrode is in contact with the back surface side of the processed sample substrate so that a negative voltage is equally applied to the insulating film, Dropping the electrolyte solution only to the defect evaluation target region of the insulating film surface, and a dropping step of contacting the anode electrode to the droplet of the electrolyte solution, and contacting the anode electrode to the droplet of the electrolyte solution In this state, the sample substrate between the anode electrode and the cathode electrode is energized so that a negative voltage is equally applied to the insulating film, and the negative voltage is applied to the position of the defect existing in the insulating film. And executes the above electrolyte solution noble metal conductive precipitating during wear process on the insulating film surface is.

【0019】本発明では、試料基板の絶縁膜上に形成さ
れた複数のポリシリコン膜のうち欠陥評価対象となる所
定のポリシリコン膜のみに前記電解質溶液を接触させる
ために前記試料基板に対してマスク処理を施すマスク工
程と、前記マスク処理が施された前記試料基板に対し、
前記絶縁膜に等しく負電圧が印加されるように陰極電極
を接触させた状態で、前記試料基板を固定保持手段に固
定する固定工程と、前記所定のポリシリコン膜表面のみ
に前記電解質溶液を滴下するとともに、その電解質溶液
の液滴に陽極電極を接触する滴下工程と、前記電解質溶
液の液滴に前記陽極電極を接触させた状態で前記陽極電
極と前記陰極電極との間の前記試料基板に対して通電処
理を行うことで前記絶縁膜に対して等しく負電圧を印加
し、前記所定のポリシリコン膜下の欠陥の位置に対応し
て該ポリシリコン膜表面に前記電解質溶液中の貴金属を
析出させる電着工程とを実行することを特徴とする。
In the present invention, of the plurality of polysilicon films formed on the insulating film of the sample substrate, only the predetermined polysilicon film to be the defect evaluation target is brought into contact with the electrolyte solution so that the sample substrate is contacted with the sample substrate. A mask process of performing a mask process, and the sample substrate subjected to the mask process,
A fixing step of fixing the sample substrate to a fixing holding means in a state where the cathode electrode is in contact with the insulating film so that a negative voltage is equally applied, and the electrolyte solution is dropped only on the predetermined polysilicon film surface. With the dropping step of contacting the anode electrode with the droplet of the electrolyte solution, the sample substrate between the anode electrode and the cathode electrode in a state where the anode electrode is in contact with the droplet of the electrolyte solution. A negative voltage is equally applied to the insulating film by conducting an energization process to deposit the noble metal in the electrolyte solution on the surface of the polysilicon film corresponding to the position of the defect under the predetermined polysilicon film. And an electrodeposition step for performing the same.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0021】[概要] <欠陥検出処理装置の構成>図1は、本発明の実施の一
形態かかる欠陥検出処理装置の構成を示す模式図であ
る。
[Outline] <Structure of Defect Detection Processing Device> FIG. 1 is a schematic diagram showing the structure of a defect detection processing device according to an embodiment of the present invention.

【0022】この欠陥検出処理装置1は、前処理部2と
処理制御部3とから構成され、処理部2は、絶縁膜12
の付いた試料基板(Si基板)6と陰極となる板状の導
電性金属電極5aとマスク板21とを同時に重ねて固定
保持するための試料固定保持具8と、陰極と対をなす陽
極となる導電性貴金属電極5bと、電解質溶液Eを収容
するための電解質溶液収容器具(マイクロピペット)4
とで構成される。
The defect detection processing apparatus 1 is composed of a preprocessing section 2 and a processing control section 3, and the processing section 2 includes an insulating film 12.
A sample fixing holder 8 for simultaneously holding and fixing a sample substrate (Si substrate) 6 with a mark, a plate-shaped conductive metal electrode 5a serving as a cathode, and a mask plate 21, and an anode paired with the cathode. Conductive noble metal electrode 5b and an electrolyte solution containing device (micropipette) 4 for containing the electrolyte solution E
Composed of and.

【0023】試料基板6は、一定の厚さを有し、所定厚
さの絶縁膜(SiO2膜)12が形成されており、絶縁
膜12の表面が、マイクロピペット4内部を通して配置
された棒状の導電性貴金属電極5bの下部になるように
配置される。陽極の導電性貴金属電極5bの材料として
は、常温で導電性固体であり、且つ、イオン化傾向が水
素よりも小さな金属であればいかなるものでも良い。
銅、金、白金、パラジウムなどが挙げられるが、金、白
金等の貴金属が化学的にも安定であるので好ましい。
The sample substrate 6 has a constant thickness, and an insulating film (SiO 2 film) 12 having a predetermined thickness is formed on the sample substrate 6. The surface of the insulating film 12 has a rod-like shape arranged through the inside of the micropipette 4. It is arranged so as to be below the conductive noble metal electrode 5b. The material of the conductive noble metal electrode 5b of the anode may be any metal as long as it is a conductive solid at room temperature and has an ionization tendency smaller than hydrogen.
Copper, gold, platinum, palladium and the like can be mentioned, but noble metals such as gold and platinum are preferable because they are chemically stable.

【0024】試料基板(Si基板)6の絶縁膜12の表
面には、マスク用接着テープ(マスク手段)7が貼り付
けてある。マスク手段7としては、欠陥の検出を直接的
にも間接的にも妨害するのでなければ、いかなるもので
も良く、例えば、欠陥評価対象以外の領域に接着テープ
7を貼り付けることが好ましい。すなわち、予め欠陥評
価対象領域の絶縁膜12表面のみが電解質溶液Eに接触
するように、所定の大きさの窓(穴)がある接着テープ
7を貼り付けることが望ましい。
A mask adhesive tape (mask means) 7 is attached to the surface of the insulating film 12 of the sample substrate (Si substrate) 6. The mask means 7 may be any as long as it does not interfere with the detection of defects directly or indirectly, and for example, it is preferable to attach the adhesive tape 7 to a region other than the defect evaluation target. That is, it is desirable to attach the adhesive tape 7 having a window (hole) of a predetermined size so that only the surface of the insulating film 12 in the defect evaluation target area comes into contact with the electrolyte solution E in advance.

【0025】テープの材料としては、透明で耐酸性が強
く水を通さないものが良い。例えば、ポリエチレンテレ
フタレート、ポリスチレン、ポリプロピレン、ポリ塩化
ビニル等が挙げられる。また、接着テープの接着剤とし
ては、剥がした時に試料基板表面を汚さなくて、耐酸性
が強く水を通さなく、また、水を染み込ませないものが
良く、例えば、シリコーンゴムやアクリル系粘着剤が好
ましい。
As a material for the tape, it is preferable to use a material which is transparent and has strong acid resistance and is impermeable to water. Examples thereof include polyethylene terephthalate, polystyrene, polypropylene, polyvinyl chloride and the like. The adhesive of the adhesive tape is preferably one that does not stain the surface of the sample substrate when peeled off, has strong acid resistance, does not pass water, and does not soak in water, for example, silicone rubber or acrylic adhesive. Is preferred.

【0026】また、試料固定保持具8は、透明プラスチ
ック製マスク板とゴム製Oリングとテフロン(登録商
標)製容器とプラスチック製ネジとを利用して、鋭い凹
凸を付けた導電性金属電極5aと試料基板6裏面とを重
ね合わせて固定保持する。
Further, the sample fixing holder 8 uses a transparent plastic mask plate, a rubber O-ring, a Teflon (registered trademark) container and a plastic screw to make a conductive metal electrode 5a having sharp irregularities. And the back surface of the sample substrate 6 are overlapped and fixedly held.

【0027】導電性金属電極5aに鋭い凹凸を付ける理
由は、試料基板6裏面の自然酸化膜を貫通することがで
き導電性となるので、オーミック電極の形成が不要とな
るからである。すなわち、シリコン基板には通常自然酸
化膜が形成されているので、シリコン基板裏面の自然酸
化膜を貫いて内部の金属シリコンと接続するように先が
鋭く尖った凹凸を導電性金属電極5aのシリコン基板と
の接触面に設けることが望ましい。凹凸の落差が大きい
ほどその効果は大きいが、大き過ぎると導電性金属電極
5aが破損し易くなる。一方、小さ過ぎると、シリコン
基板を重ね合わせて取り付けた時に、シリコン基板裏面
の自然酸化膜を貫くことが困難となる。これらを考慮す
ると、凹凸の大きさは0.02〜200μm、望ましく
は0.1〜20μmとするのが良い。
The reason why the conductive metal electrode 5a is provided with sharp irregularities is that it is possible to penetrate the natural oxide film on the back surface of the sample substrate 6 and become conductive, so that the ohmic electrode need not be formed. That is, since a natural oxide film is usually formed on the silicon substrate, the silicon of the conductive metal electrode 5a has sharp irregularities that penetrate the natural oxide film on the back surface of the silicon substrate and connect with the metal silicon inside. It is desirable to provide it on the contact surface with the substrate. The larger the difference in the unevenness, the greater the effect, but if it is too large, the conductive metal electrode 5a is easily damaged. On the other hand, if it is too small, it becomes difficult to penetrate the natural oxide film on the back surface of the silicon substrate when the silicon substrates are stacked and attached. Considering these, the size of the unevenness is preferably 0.02 to 200 μm, and more preferably 0.1 to 20 μm.

【0028】導電性金属電極5a表面の凹凸の作製手段
は、絶縁膜12中の欠陥中心部を中心に上部表面に低イ
オン化傾向の金属が析出するのを直接的にも間接的にも
妨害するのでなければ、いかなる手段でも良く、先の尖
った金属ピンセットや針等で導電性金属薄板の表面全面
を傷付けて作製しても良い。鋭い凹凸でシリコン基板裏
面の自然酸化膜を貫いてシリコン基板との電気接続を形
成することにより、オーミック電極の形成が不要とな
り、操作も簡便となる。
The means for forming irregularities on the surface of the conductive metal electrode 5a directly or indirectly hinders the deposition of a metal with a low ionization tendency on the upper surface of the insulating film 12 centering on the defect center. If not, any means may be used, and it may be produced by scratching the entire surface of the conductive metal thin plate with sharp metal tweezers or needles. By forming an electrical connection with the silicon substrate by penetrating the natural oxide film on the back surface of the silicon substrate with sharp irregularities, the formation of the ohmic electrode is not necessary and the operation is simple.

【0029】試料基板6を陰極として用いるためには、
試料基板6に陰極電圧を印加する必要がある。これは、
例えば陰極電極である導電性金属電極5aに試料基板6
の裏面(評価する絶縁膜12と反対側の面)を接触固定
して、この導電性金属電極5aに陰極電圧を印加するこ
とによって可能である。導電性金属電極5aを形成する
材料としては、常温で導電性固体であればいかなるもの
でも良い。銅、アルミニウム、銀、鉄、金、白金、パラ
ジウムなどが挙げられるが、銅、アルミニウム、銀、鉄
が価格が安く、加工性も良いので好ましい。
In order to use the sample substrate 6 as a cathode,
It is necessary to apply a cathode voltage to the sample substrate 6. this is,
For example, the sample substrate 6 is attached to the conductive metal electrode 5a which is a cathode electrode.
This can be done by fixing the back surface of the substrate (the surface opposite to the insulating film 12 to be evaluated) in contact and applying a cathode voltage to the conductive metal electrode 5a. The material for forming the conductive metal electrode 5a may be any material as long as it is a conductive solid at room temperature. Copper, aluminum, silver, iron, gold, platinum, palladium and the like can be mentioned, but copper, aluminum, silver and iron are preferable because they are inexpensive and have good workability.

【0030】試料固定保持具8は、任意の形状や大きさ
の試料基板6にも対応できるように、試料基板6の欠陥
評価対象外の領域を押さえて固定保持するような構成で
あり、試料基板6と導電性金属電極5aとを重ね合わせ
て固定保持する。この試料固定保持具8は、絶縁膜12
中の欠陥中心部を中心に上部表面に低イオン化傾向の金
属が析出するのを直接的にも間接的にも妨害するのでな
ければ、いかなる手段でも良く、2枚のプラスチック材
料で試料基板6の端部を挟み、プラスチック材料のネジ
で絞るなどの手段が好適に用いられる。
The sample fixing holder 8 is constructed so as to press and hold an area of the sample substrate 6 which is not the object of defect evaluation so as to be able to correspond to the sample substrate 6 having an arbitrary shape and size. The substrate 6 and the conductive metal electrode 5a are overlapped and fixedly held. The sample fixing holder 8 has an insulating film 12
Any means may be used as long as it does not directly or indirectly impede the deposition of a metal having a low ionization tendency on the upper surface centering on the defect center portion in the sample substrate 6. Means such as sandwiching the end portion and squeezing with a screw of a plastic material is preferably used.

【0031】また、マスク用接着テープ7は、所定の形
状と大きさの窓を持ち、このマスク用接着テープ7の窓
を通して、絶縁膜12の欠陥評価対象領域のみがマイク
ロピペット4からの電解質溶液Eに接触するようになっ
ている。
Further, the mask adhesive tape 7 has a window of a predetermined shape and size, and through the window of the mask adhesive tape 7, only the defect evaluation target region of the insulating film 12 is the electrolyte solution from the micropipette 4. It comes in contact with E.

【0032】電解質溶液Eとしては、貴金属を溶解した
酸溶液が用いられる。貴金属には、金及び白金族元素が
あり、白金族元素には白金、パラジウム、ルテニウム、
ロジウム、イリジウム及びオスミウムが含まれる。貴金
属は王水に溶解するので、貴金属の王水溶液を調製し、
これを塩酸、硫酸、硝酸等の酸の水溶液に適宜配合して
電解質溶液を調製することができる。硫酸は絶縁膜表面
に残存し易く、水洗によって速やかに除去し難いので、
硫酸を用いた電解質溶液で操作した場合、欠陥がない絶
縁膜表面にもこれらの金属成分が析出し易い。これらの
ことから、塩酸水溶液又は硝酸水溶液を用いるのが特に
好ましい。
As the electrolyte solution E, an acid solution in which a noble metal is dissolved is used. Noble metals include gold and platinum group elements, and platinum group elements include platinum, palladium, ruthenium,
Includes rhodium, iridium and osmium. Noble metal dissolves in aqua regia, so prepare a noble metal aqua regia solution,
An electrolyte solution can be prepared by appropriately blending this with an aqueous solution of an acid such as hydrochloric acid, sulfuric acid or nitric acid. Sulfuric acid tends to remain on the surface of the insulating film, and it is difficult to quickly remove it by washing with water.
When operating with an electrolyte solution using sulfuric acid, these metal components are likely to precipitate even on the surface of the insulating film having no defects. From these things, it is particularly preferable to use an aqueous solution of hydrochloric acid or an aqueous solution of nitric acid.

【0033】その電解質溶液Eが貴金属を含有すること
によって、通電により欠陥の存在する位置に対応して絶
縁膜12の表面に貴金属が析出する。貴金属の電着精度
は、銅に比べて格段に良く、貴金属の化学的な安定性に
より析出後の消失を防止できるだけでなく、欠陥の位置
が判別し易いように絶縁膜上に刻み込みを入れるような
応用において、蝕刻等を用いることが可能である。特
に、金は他の金属と色が異なるために視覚的に識別し易
いので、欠陥の中心位置特定に有利である。
Since the electrolyte solution E contains the noble metal, the noble metal is deposited on the surface of the insulating film 12 corresponding to the position where the defect exists due to the energization. The electrodeposition accuracy of noble metal is much better than that of copper, and the chemical stability of the noble metal not only prevents it from disappearing after deposition, but also engraves it on the insulating film so that the location of defects can be easily identified. Etching or the like can be used in such applications. In particular, gold has a color different from that of other metals and thus is easy to visually identify, which is advantageous for identifying the center position of a defect.

【0034】処理制御部3は、供給する直流電圧の方向
及び大きさが可変である可変直流電圧発生装置9と、電
流計10と、電圧計11とから構成される。可変直流電
圧発生装置9と導電性金属電極5aとの電気的接続は、
電流計10及び試料固定保持具8を介して形成されてい
る。
The processing control section 3 comprises a variable DC voltage generator 9 in which the direction and magnitude of the DC voltage to be supplied are variable, an ammeter 10 and a voltmeter 11. The electrical connection between the variable DC voltage generator 9 and the conductive metal electrode 5a is
It is formed via an ammeter 10 and a sample fixing holder 8.

【0035】なお、図1には示していないが、試料固定
保持具8自体を固定保持するための保持具固定や、他方
の電極部5bを固定保持するための電極保持具、印加す
る直流電圧の変動を小さく制御するための抵抗等を必要
に応じて配置しても良い。
Although not shown in FIG. 1, a holder fixing for fixing and holding the sample fixing holder 8 itself, an electrode holding member for fixing and holding the other electrode portion 5b, and a DC voltage to be applied. If necessary, a resistor or the like for controlling the fluctuation of the above may be arranged.

【0036】<欠陥検出処理装置の動作>上記構成にお
いて、電極部5aが負電極、電極部5bが正電極となる
ように印加すると、電極部5aにより絶縁膜12に等し
く電圧が印加される。絶縁膜12表面は、欠陥部13の
有無により局所的に電流値の差が生じ、欠陥部13に対
応する位置の絶縁膜12表面に電解質溶液E中の貴金属
成分が析出し始め、析出した貴金属14によって、斑点
が形成される。
<Operation of Defect Detection Processing Device> In the above structure, when the electrode portion 5a is applied so that it becomes the negative electrode and the electrode portion 5b becomes the positive electrode, the electrode portion 5a applies the same voltage to the insulating film 12. A difference in current value locally occurs depending on the presence or absence of the defect portion 13 on the surface of the insulating film 12, and the noble metal component in the electrolyte solution E begins to precipitate on the surface of the insulating film 12 at the position corresponding to the defect portion 13, and the deposited noble metal A spot is formed by 14.

【0037】図1の検出処理装置1によって欠陥部13
の対応位置に貴金属を析出させた試料基板6は、光学顕
微鏡、走査型電子顕微鏡等の物理観察装置によって観察
することができる。したがって、このような観察装置
は、当該欠陥検出処理装置に隣接して配置される。
By the detection processing device 1 of FIG.
The sample substrate 6 on which the noble metal is deposited at the corresponding position can be observed with a physical observation device such as an optical microscope or a scanning electron microscope. Therefore, such an observation device is arranged adjacent to the defect detection processing device.

【0038】なお、上記において、絶縁膜を有する基板
としてシリコン基板を用いて本発明を説明しているが、
本発明の絶縁膜の欠陥を検出する方法は、シリコン基板
への適用に限定されるものではなく、他の導電性金属基
板上に絶縁膜を形成したものにも適用できるのは言うま
でもない。また、絶縁膜12に関しても、二酸化ケイ素
だけでなく、窒化ケイ素や他金属の酸化物、窒化物、炭
化物等の欠陥検出に適用できる。更に、金属基板上に形
成した絶縁膜だけでなく、絶縁膜そのものを直接電極板
に接触させて均等に電圧を印加するようにして欠陥検出
を行っても良い。
In the above description, the present invention is described using the silicon substrate as the substrate having the insulating film.
Needless to say, the method of detecting defects in the insulating film of the present invention is not limited to application to a silicon substrate, but can be applied to a device in which an insulating film is formed on another conductive metal substrate. Further, the insulating film 12 can be applied not only to silicon dioxide but also to defect detection of oxides, nitrides, and carbides of silicon nitride and other metals. Further, not only the insulating film formed on the metal substrate but also the insulating film itself may be brought into direct contact with the electrode plate to apply a voltage evenly to detect defects.

【0039】<欠陥検出方法>上記欠陥検出処理装置を
用いて実施する欠陥検出方法について、図2のフローチ
ャートを参照しつつ説明する。
<Defect Detection Method> A defect detection method executed by using the above defect detection processing apparatus will be described with reference to the flowchart of FIG.

【0040】本実施形態の欠陥検出方法は、無電界メッ
キ又は電気化学的濃度分極が起こらない濃度範囲の貴金
属イオンもしくは貴金属錯体を水に溶解した電解質溶液
中で、絶縁膜を有するシリコン基板を陰極として電圧を
印加して通電することによって、絶縁膜の欠陥が存在す
る位置と存在しない位置との電流値の差により欠陥の存
在位置に対応して絶縁膜表面に選択的に電解質溶液中の
貴金属成分が析出(電着)することを利用して、シリコ
ン基板上に形成した絶縁膜中の欠陥がある位置を特定す
る欠陥の検出方法である。
The defect detection method according to the present embodiment uses a silicon substrate having an insulating film as a cathode in an electrolyte solution in which a noble metal ion or a noble metal complex in a concentration range in which electroless plating or electrochemical concentration polarization does not occur is dissolved in water. As a result of applying a voltage as an electric current, the noble metal in the electrolyte solution is selectively applied to the surface of the insulating film according to the position of the defect due to the difference in the current value between the position where the defect exists in the insulating film and the position where it does not exist. This is a defect detection method that utilizes the deposition (electrodeposition) of components to identify the position of the defect in the insulating film formed on the silicon substrate.

【0041】まず、酸化性の酸溶液で絶縁膜12表面を
洗浄する洗浄工程を行う(ステップS11)。
First, a cleaning step of cleaning the surface of the insulating film 12 with an oxidizing acid solution is performed (step S11).

【0042】欠陥検出を行うシリコン基板の絶縁膜12
表面を酸化性の酸溶液を含む溶液で予め洗浄すると、付
着していた銅を除去できる。したがって、絶縁膜12に
直流電圧を印加した時に、電気化学的作用により絶縁膜
12中の欠陥中心部を中心に絶縁膜12表面に貴金属を
精度良く析出させることができる。
Insulating film 12 of silicon substrate for defect detection
If the surface is previously washed with a solution containing an oxidizing acid solution, the attached copper can be removed. Therefore, when a direct current voltage is applied to the insulating film 12, the noble metal can be accurately deposited on the surface of the insulating film 12 centering on the defect center portion in the insulating film 12 by the electrochemical action.

【0043】続いて、試料基板6の表面側に形成された
絶縁膜12表面の欠陥評価対象領域のみに電解質溶液E
を接触させるために試料基板6に対してマスク手段7で
マスク処理を施すマスク工程を行う(ステップS1
2)。すなわち、図3に示すように、予め欠陥評価対象
領域の絶縁膜12表面のみが電解質溶液Eに接触するよ
うに、所定の大きさの窓(穴)12aがある接着テープ
7を貼り付ける。
Subsequently, the electrolyte solution E is applied only to the defect evaluation target region on the surface of the insulating film 12 formed on the surface side of the sample substrate 6.
In order to bring the sample substrate 6 into contact with the sample substrate 6, a masking process is carried out by the masking means 7 (step S1).
2). That is, as shown in FIG. 3, an adhesive tape 7 having a window (hole) 12a of a predetermined size is attached in advance so that only the surface of the insulating film 12 in the defect evaluation target region comes into contact with the electrolyte solution E.

【0044】次に、試料基板6の表面にマスク板21を
載せて(ステップS13)、マスク処理が施された試料
基板6の裏面側に対し、絶縁膜12に等しく負電圧が印
加されるように導電性金属電極5aを接触させた状態
で、試料基板6を試料固定保持具8に固定する固定工程
を行う(ステップS14)。
Next, the mask plate 21 is placed on the surface of the sample substrate 6 (step S13) so that a negative voltage is equally applied to the insulating film 12 on the back surface side of the sample substrate 6 which has been subjected to the mask processing. A fixing step of fixing the sample substrate 6 to the sample fixing holder 8 is performed with the conductive metal electrode 5a being in contact with the sample fixing holder 8 (step S14).

【0045】そして、マイクロピペット4の先端を絶縁
膜12表面の欠陥評価対象領域に対峙させ、絶縁膜12
表面の欠陥評価対象領域のみに電解質溶液Eを滴下する
とともに、その電解質溶液Eの液滴に導電性貴金属電極
5bを接触させる滴下工程を実行する(ステップS1
5)。
Then, the tip of the micropipette 4 is made to face the defect evaluation target region on the surface of the insulating film 12,
A dropping step is performed in which the electrolyte solution E is dropped only on the surface defect evaluation target area and the conductive noble metal electrode 5b is brought into contact with the drop of the electrolyte solution E (step S1).
5).

【0046】そして、処理制御部3により、電解質溶液
Eの液滴に導電性貴金属電極5bを接触させた状態で、
導電性貴金属電極5bと導電性金属電極5aの間の試料
基板6に対して通電を行い(ステップS16)、絶縁膜
12に対して等しく負電圧を印加する。その結果、絶縁
膜12に存在する欠陥部13の位置に対応して該絶縁膜
12表面上に電解質溶液E中の貴金属(貴金属析出物1
4)が析出される(電着工程)。この貴金属析出物14
は、図4(a)に示すように、まず欠陥部13の位置に
正確に対応している中心部14aが析出された後、ほぼ
同心円状に貴金属が析出されて形成される。
Then, by the processing control unit 3, in a state where the conductive noble metal electrode 5b is brought into contact with the droplet of the electrolyte solution E,
The sample substrate 6 between the conductive noble metal electrode 5b and the conductive metal electrode 5a is energized (step S16), and a negative voltage is equally applied to the insulating film 12. As a result, the noble metal (noble metal precipitate 1) in the electrolyte solution E is formed on the surface of the insulating film 12 corresponding to the position of the defect portion 13 existing in the insulating film 12.
4) is deposited (electrodeposition step). This precious metal deposit 14
As shown in FIG. 4 (a), first, the central portion 14a that exactly corresponds to the position of the defect portion 13 is deposited, and then the noble metal is deposited in a substantially concentric shape.

【0047】その後、貴金属を析出させた絶縁膜12表
面を酸化性の酸溶液で洗浄する(ステップS17)。こ
れにより、貴金属以外の銅等を溶解して除去することが
できる。酸化性の酸溶液としては、絶縁膜12表面に付
着した銅を除去でき、且つ、欠陥の検出を直接的にも間
接的にも妨害するのでなければ、いかなるものでも良
く、例えば、硝酸と過酸化水素と塩酸の混合溶液、硝酸
と塩酸の希混合溶液等が好ましい。
After that, the surface of the insulating film 12 on which the noble metal is deposited is washed with an oxidizing acid solution (step S17). As a result, copper or the like other than the noble metal can be dissolved and removed. As the oxidizing acid solution, any solution may be used as long as it can remove the copper adhering to the surface of the insulating film 12 and does not interfere with the detection of defects directly or indirectly. A mixed solution of hydrogen oxide and hydrochloric acid, a dilute mixed solution of nitric acid and hydrochloric acid, and the like are preferable.

【0048】更に、貴金属を析出させた後に貴金属析出
物14の外側周辺をマーキングし、王水を含む溶液で貴
金属析出物14の一部もしくは大部分を選択的にエッチ
ングする(ステップS18)。このエッチングにより、
図4(b)に示したように析出された貴金属析出物14
が順次エッチングされて中心部14aのみが残った状態
となる。欠陥部13の位置に正確に対応している中心部
14aのみが残ることにより、後に実施する顕微鏡等に
よる析出物の観察で、欠陥部13を精度良く観察するこ
とが可能になる。なお、マーキング手段としては、析出
した貴金属の位置を簡便に示すことができ、且つ、欠陥
の検出を直接的にも間接的にも妨害するのでなければ、
いかなるものでも良く、例えば、レーザによるマーキン
グ等が好ましい。
After depositing the noble metal, the outer periphery of the noble metal deposit 14 is marked, and a part or most of the noble metal deposit 14 is selectively etched with a solution containing aqua regia (step S18). By this etching,
Noble metal deposit 14 deposited as shown in FIG.
Are sequentially etched so that only the central portion 14a remains. By leaving only the central portion 14a that exactly corresponds to the position of the defect portion 13, it becomes possible to observe the defect portion 13 with high accuracy by observing the precipitate with a microscope or the like which will be performed later. As the marking means, the position of the deposited precious metal can be easily indicated, and unless the detection of defects is directly or indirectly obstructed,
Any material may be used, and for example, marking with a laser is preferable.

【0049】そして、試料基板6の絶縁膜12の表面を
光学顕微鏡及び走査型電子顕微鏡で観察し、貴金属析出
物14を調べる(ステップS19)。
Then, the surface of the insulating film 12 of the sample substrate 6 is observed with an optical microscope and a scanning electron microscope to examine the noble metal precipitate 14 (step S19).

【0050】このように本実施形態では、任意の大きさ
の試料基板6について、その絶縁膜12の欠陥部13の
位置、大きさ及び分布を迅速且つ簡便に精度良く決定で
きる。
As described above, in the present embodiment, the position, size and distribution of the defective portion 13 of the insulating film 12 of the sample substrate 6 having an arbitrary size can be determined quickly, easily and accurately.

【0051】[実験結果を用いた詳細な説明]以下、本
発明の実施の形態について、図5に示す試料基板を用い
た実験結果を参照して更に詳しく説明する。
[Detailed Description Using Experimental Results] The embodiments of the present invention will be described in more detail below with reference to the experimental results using the sample substrate shown in FIG.

【0052】<実験例1>直径150mm(6インチ)
の硼素ドープSiウエハ(比抵抗:7.0Ωcm、厚
さ:625μm)に、絶縁膜12として熱酸化法により
厚さ200ÅのSiO2膜を形成した。更にこの上にC
VD法により厚さ300ÅのポリSi膜50(大きさ2
mm□のもの100個)を形成した。この試料基板6を
用いて以下の操作を行った。
<Experimental Example 1> Diameter 150 mm (6 inches)
On the boron-doped Si wafer (specific resistance: 7.0 Ωcm, thickness: 625 μm), a SiO 2 film having a thickness of 200 Å was formed as the insulating film 12 by the thermal oxidation method. Further on this C
The poly Si film 50 (size 2) having a thickness of 300Å is formed by the VD method.
mm square 100) were formed. The following operations were performed using this sample substrate 6.

【0053】(操作例1)約3N−硝酸と約3N−塩酸
とを1:1(容積比)で混合して混酸溶液Eを調製し
た。この混酸溶液Eで約25℃にて、約5分間上述の試
料基板6を洗浄し、純水ですすいで乾燥した。
(Operation Example 1) About 3N-nitric acid and about 3N-hydrochloric acid were mixed at a ratio of 1: 1 (volume ratio) to prepare a mixed acid solution E. The sample substrate 6 was washed with this mixed acid solution E at about 25 ° C. for about 5 minutes, rinsed with pure water and dried.

【0054】乾燥した試料基板6の絶縁膜と反対の面
(裏面)を、図1に示すように電極部5aに圧接し、電
極部5a及び試料基板6の裏面を周囲から遮断するよう
に検出処理装置1の試料固定保持具8に固定した。検出
処理装置1の各構成部の詳細は以下の通りである。
The surface (rear surface) opposite to the insulating film of the dried sample substrate 6 is pressed against the electrode portion 5a as shown in FIG. 1 and detected so as to shield the electrode portion 5a and the rear surface of the sample substrate 6 from the surroundings. It was fixed to the sample fixing holder 8 of the processing apparatus 1. Details of each component of the detection processing device 1 are as follows.

【0055】電極部5aは、直径150mm(6イン
チ)x厚さ1mmの銅板の表面全体をステンレスピンセ
ットで傷付けて、1〜20μmの凹凸を形成したもの。
The electrode portion 5a is a copper plate having a diameter of 150 mm (6 inches) × a thickness of 1 mm, which is scratched with stainless tweezers to form irregularities of 1 to 20 μm.

【0056】電極部5bは、直径0.6mmx長さ30
mmの金線。
The electrode portion 5b has a diameter of 0.6 mm and a length of 30.
mm gold wire.

【0057】試料固定保持具8は、直径200mmx厚
さ23mmでテフロン製。試料基板6の固定には透明ポ
リ塩化ビニル製マスク板21(直径150mmx厚さ1
mm、20mm□の窓が10個有り)とゴム製Oリング
とテフロン製器具及びアクリル製ネジを使用。
The sample fixing holder 8 has a diameter of 200 mm and a thickness of 23 mm and is made of Teflon. For fixing the sample substrate 6, a transparent polyvinyl chloride mask plate 21 (diameter 150 mm × thickness 1
Use 10 mm and 20 mm square windows), rubber O-rings, Teflon tools and acrylic screws.

【0058】電解質溶液E収納器具4は、電極部5bと
電解質溶液Eとをポリエチレン製マイクロチップに収納
するためのマイクロピペットである。
The electrolyte solution E storage device 4 is a micropipette for storing the electrode portion 5b and the electrolyte solution E in a polyethylene microchip.

【0059】欠陥評価対象の所定のポリSi膜のみを電
解質溶液Eに接触させるために、窓(2mm□)ありマ
スク用接着テープ(ニチバン製セロテープ、大きさ10
mm□)7を貼り付ける。
A mask adhesive tape (cellophane tape made by Nichiban, size 10) having a window (2 mm □) was provided to bring only a predetermined poly-Si film to be evaluated for defects into contact with the electrolyte solution E.
mm □) 7 is attached.

【0060】金を王水で溶解し、塩酸を加えて約0.0
001モル/lの濃度で金を含む約0.5N−塩酸溶液
E(少量の硝酸を含む)に調製し電解質溶液Eとした。
この電解質溶液E5μlをマイクロピペットで分取して
欠陥評価対象の所定のポリSi膜表面に滴下する。その
電解質溶液Eの液滴に電解質溶液E収納器具のマイクロ
チップ先端を接触させる。
Gold was dissolved in aqua regia and hydrochloric acid was added to about 0.0
An electrolyte solution E was prepared by preparing an about 0.5 N hydrochloric acid solution E (containing a small amount of nitric acid) containing gold at a concentration of 001 mol / l.
5 μl of this electrolyte solution E is dispensed with a micropipette and dropped on the surface of a predetermined poly-Si film which is a target for defect evaluation. The tip of the microchip of the electrolyte solution E storage device is brought into contact with the droplet of the electrolyte solution E.

【0061】電極部5a及び電極部5bに+5Vの電圧
(電極部5bの電位―電極部5aの電位)を10分間印
加した。これにより、試料基板6の絶縁膜12上のポリ
Si膜表面に金が析出した。その後、接着テープ7を剥
がし、試料基板6を約25℃の約2N−硝酸で約5分間
洗浄した後、約25℃の純水で約5分間すすいで乾燥し
た。
A voltage of +5 V (potential of electrode portion 5b-potential of electrode portion 5a) was applied to the electrode portions 5a and 5b for 10 minutes. As a result, gold was deposited on the surface of the poly-Si film on the insulating film 12 of the sample substrate 6. After that, the adhesive tape 7 was peeled off, the sample substrate 6 was washed with about 2N-nitric acid at about 25 ° C for about 5 minutes, then rinsed with pure water at about 25 ° C for about 5 minutes and dried.

【0062】試料基板6の絶縁膜12上の所定のポリS
i膜表面を光学顕微鏡及び走査型電子顕微鏡で観察し、
析出した金を調べた。その後、所定のポリSi膜を王水
で処理して金を除去した。
Predetermined poly S on the insulating film 12 of the sample substrate 6
The i film surface is observed with an optical microscope and a scanning electron microscope,
The deposited gold was examined. Then, a predetermined poly-Si film was treated with aqua regia to remove gold.

【0063】更に、上述の電解質溶液E液滴での金析出
から析出した金の溶解除去までの工程を10回繰返すこ
とによって析出した金の顕微鏡観察を10回行った。そ
の結果、析出物は10回とも同一位置に生じ、析出物の
直径は10回とも0.9μmであった。析出物には殆ど
銅が検出されず、黄金色の金属光沢により、顕微鏡観察
による金の識別が容易であった。
Further, the steps from the gold deposition in the droplets of the electrolyte solution E to the dissolution removal of the deposited gold were repeated 10 times, and the deposited gold was microscopically observed 10 times. As a result, the precipitate was formed at the same position 10 times, and the diameter of the precipitate was 0.9 μm 10 times. Almost no copper was detected in the precipitate, and the golden metallic luster made it easy to identify gold by microscopic observation.

【0064】(操作例2)操作例1における希硝酸によ
る洗浄処理の代わりに約3Nの希塩酸による洗浄処理を
行ったこと以外は操作例1と同様の操作を繰返すことに
よって、析出した金の顕微鏡観察を10回行った。顕微
鏡観察の結果、析出物は10回とも同一位置に生じ、析
出物の直径は10回とも0.9μmであった。
(Operation Example 2) A microscope of the deposited gold was obtained by repeating the same operation as in Operation Example 1, except that the cleaning treatment with dilute nitric acid in Operation Example 1 was performed instead of the cleaning treatment with dilute hydrochloric acid of about 3N. Observation was performed 10 times. As a result of microscopic observation, the deposits were formed at the same position 10 times, and the diameter of the deposits was 0.9 μm 10 times.

【0065】(操作例3)操作例1における希硝酸によ
る洗浄処理を行わなかったこと以外は操作1と同様の操
作を繰返すことによって、析出した金の顕微鏡観察を1
0回行った。顕微鏡観察の結果、析出物は10回とも同
一位置に生じ、析出物の直径は10回とも0.9μmで
あった。
(Operation Example 3) Microscopic observation of the deposited gold was conducted by repeating the same operation as in Operation 1 except that the cleaning treatment with dilute nitric acid in Operation Example 1 was not performed.
I went 0 times. As a result of microscopic observation, the deposits were formed at the same position 10 times, and the diameter of the deposits was 0.9 μm 10 times.

【0066】(マスク用接着テープ7を使用しなかった
場合)実験例1の操作1において、マスク用接着テープ
7を貼り付けなかったこと以外は操作1と同様の操作を
繰返すことによって、析出した金の顕微鏡観察を10回
行った。顕微鏡観察の結果、8回は金が析出していた
が、2回は析出しなかった。析出物は8回とも同一位置
に生じ、析出物の直径は0.4〜0.8μmの範囲で変
動していた。これは電解質溶液Eが欠陥評価対象のポリ
Si膜領域だけでなく、対象外の領域にも接触し、しか
も、対象外の領域に大きな欠陥が有ったために、金が多
量に析出してしまい、欠陥評価対象領域での金析出が非
常に少なくなったものと考えられる。
(When the adhesive tape for mask 7 was not used) In the operation 1 of Experimental Example 1, the operation was repeated except that the adhesive tape 7 for the mask was not attached. The gold was microscopically observed 10 times. As a result of microscopic observation, gold was deposited 8 times, but not twice. Precipitates were formed at the same position eight times, and the diameter of the precipitates varied within the range of 0.4 to 0.8 μm. This is because the electrolyte solution E contacts not only the poly-Si film region of the defect evaluation target but also the non-target region, and moreover, there is a large defect in the non-target region, so that a large amount of gold is deposited. It is considered that gold deposition in the defect evaluation target area was significantly reduced.

【0067】<実験例2>50mm□のリンドープSi
ウエハ(比抵抗:3.2Ωcm、厚さ:625μm)
に、絶縁膜としてCVD法により厚さ210ÅのSiN
膜を形成した。更にこの上にCVD法により厚さ300
ÅのポリSi膜(大きさ2mm□のもの25個)を形成
した。この試料基板6を用いて以下の操作を行った。
<Experimental Example 2> 50 mm square phosphorus-doped Si
Wafer (specific resistance: 3.2 Ωcm, thickness: 625 μm)
In addition, 210N thick SiN as an insulating film
A film was formed. On top of this, a thickness of 300 is obtained by the CVD method.
A Å poly-Si film (25 pieces having a size of 2 mm □) was formed. The following operations were performed using this sample substrate 6.

【0068】(操作例4)約3N−硝酸と約3N−塩酸
とを1:1(容積比)で混合して混酸溶液Eを調製し
た。この混酸溶液Eで約25℃にて、約5分間上述の試
料基板6を洗浄し、純水ですすいで乾燥した。
(Operation Example 4) About 3N-nitric acid and about 3N-hydrochloric acid were mixed at a ratio of 1: 1 (volume ratio) to prepare a mixed acid solution E. The sample substrate 6 was washed with this mixed acid solution E at about 25 ° C. for about 5 minutes, rinsed with pure water and dried.

【0069】乾燥した試料基板6の絶縁膜と反対の面
(裏面)を、図1に示すように電極部5aに圧接し、電
極部5a及び試料基板6の裏面を周囲から遮断するよう
に検出処理装置1の試料固定保持具8に固定した。検出
処理装置1の各構成部の詳細は以下の通りである。
The surface (rear surface) opposite to the insulating film of the dried sample substrate 6 is pressed against the electrode portion 5a as shown in FIG. 1 and detected so as to shield the electrode portion 5a and the rear surface of the sample substrate 6 from the surroundings. It was fixed to the sample fixing holder 8 of the processing apparatus 1. Details of each component of the detection processing device 1 are as follows.

【0070】電極部5aは、直径150mm(6イン
チ)x厚さ1mmの銅板の表面全体をステンレスピンセ
ットで傷付け、1〜20μmの凹凸を形成したもの。
The electrode portion 5a is a copper plate having a diameter of 150 mm (6 inches) × a thickness of 1 mm, which is scratched with stainless tweezers to form irregularities of 1 to 20 μm.

【0071】電極部5bは、直径0.6mmx長さ30
mmの金線。
The electrode portion 5b has a diameter of 0.6 mm and a length of 30.
mm gold wire.

【0072】試料固定保持具8は、直径200mmx厚
さ23mmでテフロン製。試料基板65の固定には透明
ポリ塩化ビニル製マスク板21(直径150mmx厚さ
1mm、20mm□の窓が10個有り)とゴム製Oリン
グとテフロン製器具及びアクリル製ネジを使用。
The sample fixing holder 8 has a diameter of 200 mm and a thickness of 23 mm and is made of Teflon. To fix the sample substrate 65, a transparent polyvinyl chloride mask plate 21 (diameter 150 mm × thickness 1 mm, there are 10 windows of 20 mm □), a rubber O-ring, a Teflon instrument and an acrylic screw are used.

【0073】電解質溶液E収納器具4は、電極部5bと
電解質溶液Eとをポリエチレン製マイクロチップに収納
するためのマイクロピペットである。欠陥評価対象の所
定のポリSi膜のみを電解質溶液Eに接触させるため
に、窓(2mm□)ありマスク用接着テープ(ニチバン
製セロテープ、大きさ10mm□)7を貼り付ける。
The electrolyte solution E storage device 4 is a micropipette for storing the electrode portion 5b and the electrolyte solution E in a polyethylene microchip. In order to bring only a predetermined poly-Si film, which is the object of defect evaluation, into contact with the electrolyte solution E, an adhesive tape for mask (Nichiban cellophane tape, size 10 mm □) 7 with a window (2 mm □) 7 is attached.

【0074】金を王水で溶解し、塩酸を加えて約0.0
001モル/lの濃度で金を含む約0.5N−塩酸溶液
E(少量の硝酸を含む)に調製し電解質溶液Eとした。
この電解質溶液E5μlをマイクロピペットで分取して
欠陥評価対象の所定のポリSi膜表面に滴下する。その
電解質溶液Eの液滴に電解質溶液E収納器具4のマイク
ロチップ先端を接触させる。
Gold is dissolved in aqua regia and hydrochloric acid is added to about 0.0
An electrolyte solution E was prepared by preparing an about 0.5 N hydrochloric acid solution E (containing a small amount of nitric acid) containing gold at a concentration of 001 mol / l.
5 μl of this electrolyte solution E is dispensed with a micropipette and dropped on the surface of a predetermined poly-Si film which is a target for defect evaluation. The tip of the microchip of the electrolyte solution E storage device 4 is brought into contact with the droplet of the electrolyte solution E.

【0075】電極部5a及び電極部5bに+5Vの電圧
(電極部5bの電位―電極部5aの電位)を10分間印
加した。これにより、試料基板6の絶縁膜12上のポリ
Si膜表面に金が析出した。この後、接着テープ7を剥
がし、試料基板6を約25℃の約2N−硝酸で約5分間
洗浄した後、約25℃の純水で約5分間すすいで乾燥し
た。
A voltage of +5 V (potential of electrode portion 5b-potential of electrode portion 5a) was applied to the electrode portions 5a and 5b for 10 minutes. As a result, gold was deposited on the surface of the poly-Si film on the insulating film 12 of the sample substrate 6. Then, the adhesive tape 7 was peeled off, the sample substrate 6 was washed with about 2N-nitric acid at about 25 ° C for about 5 minutes, rinsed with pure water at about 25 ° C for about 5 minutes, and dried.

【0076】試料基板6の絶縁膜12上の所定のポリS
i膜表面を光学顕微鏡及び走査型電子顕微鏡で観察し、
析出した金を調べた。その後、所定のポリSi膜を王水
で処理して金を除去した。
Predetermined poly S on the insulating film 12 of the sample substrate 6
The i film surface is observed with an optical microscope and a scanning electron microscope,
The deposited gold was examined. Then, a predetermined poly-Si film was treated with aqua regia to remove gold.

【0077】更に、上述の電解質溶液E液滴での金析出
から析出した金の溶解除去までの工程を10回繰返すこ
とによって析出した金の顕微鏡観察を10回行った。顕
微鏡観察の結果、析出物は10回とも同一位置に生じ、
析出物の直径は10回とも0.8μmであった。
Further, the steps from the gold deposition in the electrolyte solution E droplet to the dissolution removal of the deposited gold were repeated 10 times, and the deposited gold was microscopically observed 10 times. As a result of the microscopic observation, the precipitate was formed at the same position 10 times,
The diameter of the precipitate was 0.8 μm for all 10 times.

【0078】析出物には殆ど銅が検出されず、黄金色の
金属光沢によって、顕微鏡観察による金の識別が容易で
あった。
Almost no copper was detected in the deposit, and the golden metallic luster facilitated the identification of gold by microscopic observation.

【0079】(操作5)操作4における希硝酸による洗
浄処理の代わりに約3Nの希塩酸による洗浄処理を行っ
たこと以外は操作4と同様の操作を繰返すことによっ
て、析出した金の顕微鏡観察を10回行った。顕微鏡観
察の結果、析出物は10回とも同一位置に生じ、析出物
の直径は10回とも0.8μmであった。析出物は少量
の銅を含むことがあり、顕微鏡観察による金と銅の識別
は若干難しかった。
(Operation 5) A microscopic observation of the deposited gold was performed by repeating the same operation as in Operation 4, except that the cleaning treatment with dilute nitric acid in Operation 4 was performed instead of the cleaning treatment with dilute nitric acid. I went there. As a result of microscopic observation, deposits were formed at the same position 10 times, and the diameter of the deposits was 0.8 μm 10 times. The deposits sometimes contained a small amount of copper, and it was difficult to distinguish gold and copper by microscopic observation.

【0080】(操作6)操作4における希硝酸による洗
浄処理を行わなかったこと以外は操作4と同様の操作を
繰返すことによって、析出した金の顕微鏡観察を10回
行った。顕微鏡観察の結果、析出物は10回とも同一位
置に生じ、析出物の直径は10回とも0.8μmであっ
た。銅の析出が少量あり、顕微鏡観察による金と銅の識
別は若干難しかった。
(Operation 6) The same operation as in Operation 4 was repeated except that the cleaning treatment with diluted nitric acid was not performed in Operation 4, and the deposited gold was observed with a microscope 10 times. As a result of microscopic observation, deposits were formed at the same position 10 times, and the diameter of the deposits was 0.8 μm 10 times. Since there was a small amount of copper deposited, it was slightly difficult to distinguish between gold and copper by microscopic observation.

【0081】(マスク用接着テープ7を使用しなかった
場合)実験例2の操作4において、マスク用接着テープ
を貼り付けなかったこと以外は操作4と同様の操作を繰
返すことによって、析出した金の顕微鏡観察を10回行
った。顕微鏡観察の結果、8回は金が析出していたが、
2回は析出しなかった。析出物は8回とも同一位置に生
じ、析出物の直径は0.3〜0.6μmの範囲で変動し
ていた。これは電解質溶液Eが欠陥評価対象のポリSi
膜領域だけでなく、対象外の領域にも接触し、しかも、
対象外の領域に大きな欠陥が有ったために、金が多量に
析出してしまい、欠陥評価対象領域での金析出が非常に
少なくなったものと考えられる。
(When the mask adhesive tape 7 was not used) In the operation 4 of Experimental Example 2, the gold deposited by repeating the same operation as the operation 4 except that the mask adhesive tape was not attached Was observed 10 times under a microscope. As a result of microscopic observation, gold was deposited 8 times,
It did not precipitate twice. Precipitates were formed at the same position every eight times, and the diameter of the precipitates varied in the range of 0.3 to 0.6 μm. This is because the electrolyte solution E is poly-Si whose defect is to be evaluated.
Contact not only the membrane area but also the non-target area, and
It is considered that the large amount of gold was deposited due to the large defect in the non-target region, and the gold deposition in the defect evaluation target region was significantly reduced.

【0082】[0082]

【発明の効果】以上詳細に説明したように本発明によれ
ば、任意の大きさの試料基板について、その絶縁膜欠陥
部の位置、大きさ及び分布を迅速且つ簡便に精度良く決
定できる。これより、超LSIの欠陥部の詳細な解析評
価が容易となり、欠陥発生の原因解明や適切な欠陥低減
対策の実施が可能となることから、超LSIの歩留り向
上や高性能化の早期達成が期待できる。
As described in detail above, according to the present invention, the position, size and distribution of the insulating film defect portion of a sample substrate of any size can be determined quickly, simply and accurately. As a result, detailed analysis and evaluation of the defective portion of the VLSI can be facilitated, the cause of the defect occurrence can be elucidated, and appropriate defect reduction measures can be taken. Therefore, the yield and performance of the VLSI can be improved at an early stage. Can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態かかる欠陥検出処理装置
の構成を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of a defect detection processing apparatus according to an embodiment of the present invention.

【図2】実施形態の欠陥検出方法を示すフローチャート
である。
FIG. 2 is a flowchart showing a defect detection method according to the embodiment.

【図3】マスク手段を取り付けた状態の試料基板を示す
上面図である。
FIG. 3 is a top view showing a sample substrate with mask means attached.

【図4】貴金属析出物の形成過程を示す断面図である。FIG. 4 is a cross-sectional view showing a process of forming a noble metal deposit.

【図5】実験例に用いた試料基板の断面図である。FIG. 5 is a sectional view of a sample substrate used in an experimental example.

【図6】従来の欠陥検出処理装置の構成を示す模式図で
ある。
FIG. 6 is a schematic diagram showing a configuration of a conventional defect detection processing device.

【符号の説明】[Explanation of symbols]

E 電解質溶液 1 欠陥検出処理装置 2 前処理部 3 処理制御部 4 電解質溶液収納器具 5a、5b 電極部(電極板) 6 試料基板(Si基板) 7 マスク手段(マスクテープ) 8 試料固定保持具 9 可変直流電圧発生装置 10 電流計 11 電圧計 12 絶縁膜 13 欠陥 14 貴金属析出物 E Electrolyte solution 1 Defect detection processor 2 Pretreatment section 3 Processing control unit 4 Electrolyte solution storage equipment 5a, 5b Electrode part (electrode plate) 6 Sample substrate (Si substrate) 7 Mask means (mask tape) 8 Sample holder 9 Variable DC voltage generator 10 ammeter 11 Voltmeter 12 Insulating film 13 defects 14 Precious metal deposits

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 圭希 神奈川県川崎市川崎区駅前本町25番地1 東芝マイクロエレクトロニクス株式会社内 Fターム(参考) 2G052 AA13 FC02 FD00 FD09 GA32 GA35 4M106 AA01 AA13 BA14 BA20 CA45 CA46 DH60    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Keiki Nagai             25-1 Honmachi, Kawasaki-ku, Kawasaki-shi, Kanagawa             Toshiba Microelectronics Co., Ltd. F term (reference) 2G052 AA13 FC02 FD00 FD09 GA32                       GA35                 4M106 AA01 AA13 BA14 BA20 CA45                       CA46 DH60

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 試料基板に形成された絶縁膜が貴金属を
含有する電解質溶液中で負電極となるように前記絶縁膜
に対して等しく負電圧を印加することによって、前記絶
縁膜に存在する欠陥の位置に対応して該絶縁膜表面上に
前記電解質溶液中の貴金属を析出させて、前記絶縁膜の
欠陥を検出する欠陥検出処理装置において、 欠陥評価対象領域のみに前記電解質溶液を接触させるた
めにマスク手段でマスク処理が施された前記絶縁膜表面
の前記欠陥評価対象領域に対して前記電解質溶液を滴下
するとともに、その電解質溶液の液滴に陽極電極を接触
可能に構成した電解質溶液滴下手段と、 前記絶縁膜に対して等しく負電圧が印加されるように、
陰極電極上に前記試料基板を固定保持する試料固定保持
手段と、 前記電解質溶液の液滴に前記陽極電極を接触させた状態
で、前記陽極電極と前記陰極電極との間の前記試料基板
に対して通電処理を行う処理制御手段とを備えたことを
特徴とする欠陥検出処理装置。
1. A defect existing in the insulating film by equally applying a negative voltage to the insulating film so that the insulating film formed on the sample substrate becomes a negative electrode in an electrolyte solution containing a noble metal. In a defect detection processing apparatus for detecting a defect in the insulating film by depositing a noble metal in the electrolytic solution on the surface of the insulating film corresponding to the position of, in order to bring the electrolyte solution into contact with only the defect evaluation target region. An electrolyte solution dropping means configured such that the electrolyte solution is dropped onto the defect evaluation target region on the surface of the insulating film masked by a mask means, and an anode electrode can be brought into contact with the droplets of the electrolyte solution. And so that a negative voltage is equally applied to the insulating film,
Sample fixing and holding means for fixing and holding the sample substrate on the cathode electrode, with the anode electrode in contact with the droplets of the electrolyte solution, with respect to the sample substrate between the anode electrode and the cathode electrode A defect detection processing apparatus, comprising: a processing control unit that performs a power distribution process.
【請求項2】 前記試料基板は、前記絶縁膜面上にポリ
シリコン膜を形成した構造である事を特徴とする請求項
1記載の欠陥検出処理装置。
2. The defect detection processing apparatus according to claim 1, wherein the sample substrate has a structure in which a polysilicon film is formed on the surface of the insulating film.
【請求項3】 試料基板の表面側に形成された絶縁膜表
面の欠陥評価対象領域のみに前記電解質溶液を接触させ
るために前記試料基板に対してマスク処理を施すマスク
工程と、 前記マスク処理が施された前記試料基板の裏面側に対
し、前記絶縁膜に等しく負電圧が印加されるように陰極
電極を接触させた状態で、前記試料基板を固定保持手段
に固定する固定工程と、 前記絶縁膜表面の前記欠陥評価対象領域のみに前記電解
質溶液を滴下するとともに、その電解質溶液の液滴に陽
極電極を接触する滴下工程と、 前記電解質溶液の液滴に前記陽極電極を接触させた状態
で前記陽極電極と前記陰極電極との間の前記試料基板に
対して通電処理を行うことで前記絶縁膜に対して等しく
負電圧を印加し、前記絶縁膜に存在する欠陥の位置に対
応して該絶縁膜表面上に前記電解質溶液中の貴金属を析
出させる電着工程とを実行することを特徴とする欠陥検
出方法。
3. A mask step of subjecting the sample substrate to a mask process for bringing the electrolyte solution into contact only with a defect evaluation target region on the surface of an insulating film formed on the surface side of the sample substrate; A fixing step of fixing the sample substrate to a fixing holding means in a state where a cathode electrode is in contact with the back surface side of the applied sample substrate so that a negative voltage is equally applied to the insulating film; While dropping the electrolyte solution only in the defect evaluation target region of the film surface, a dropping step of contacting the anode electrode with the droplet of the electrolyte solution, in a state of contacting the anode electrode with the droplet of the electrolyte solution. The sample substrate between the anode electrode and the cathode electrode is energized to apply a negative voltage equally to the insulating film, and the negative voltage is applied to the insulating film in correspondence with the position of the defect existing in the insulating film. Absence And a step of depositing a noble metal in the electrolyte solution on the edge film surface.
【請求項4】 前記マスク工程の前と前記電着工程の後
に、前記試料基板を洗浄する洗浄工程を実行することを
特徴とする請求項3記載の欠陥検出方法。
4. The defect detecting method according to claim 3, wherein a cleaning step of cleaning the sample substrate is performed before the mask step and after the electrodeposition step.
【請求項5】 前記電着工程の後に前記絶縁膜表面上に
析出した貴金属析出物の外側周辺をマーキングした後、
該貴金属析出物を選択的にエッチングするエッチング工
程を実行することを特徴とする請求項3記載の欠陥検出
方法。
5. After marking the outer periphery of the noble metal deposit deposited on the surface of the insulating film after the electrodeposition step,
The defect detecting method according to claim 3, wherein an etching step of selectively etching the noble metal precipitate is performed.
【請求項6】 試料基板の絶縁膜上に形成された複数の
ポリシリコン膜のうち欠陥評価対象となる所定のポリシ
リコン膜のみに前記電解質溶液を接触させるために前記
試料基板に対してマスク処理を施すマスク工程と、 前記マスク処理が施された前記試料基板に対し、前記絶
縁膜に等しく負電圧が印加されるように陰極電極を接触
させた状態で、前記試料基板を固定保持手段に固定する
固定工程と、 前記所定のポリシリコン膜表面のみに前記電解質溶液を
滴下するとともに、その電解質溶液の液滴に陽極電極を
接触する滴下工程と、 前記電解質溶液の液滴に前記陽極電極を接触させた状態
で前記陽極電極と前記陰極電極との間の前記試料基板に
対して通電処理を行うことで前記絶縁膜に対して等しく
負電圧を印加し、前記所定のポリシリコン膜下の欠陥の
位置に対応して該ポリシリコン膜表面に前記電解質溶液
中の貴金属を析出させる電着工程とを実行することを特
徴とする欠陥検出方法。
6. A mask process is performed on the sample substrate to bring the electrolyte solution into contact only with a predetermined polysilicon film to be a defect evaluation target among a plurality of polysilicon films formed on the insulating film of the sample substrate. And a mask step of fixing the sample substrate to the fixing holding means in a state where the cathode electrode is in contact with the masked sample substrate so that a negative voltage is equally applied to the insulating film. Fixing step, and a dropping step of dropping the electrolyte solution only on the surface of the predetermined polysilicon film, and bringing an anode electrode into contact with the droplet of the electrolyte solution; and bringing the anode electrode into contact with the droplet of the electrolyte solution. In this state, the sample substrate between the anode electrode and the cathode electrode is energized so that a negative voltage is equally applied to the insulating film and the predetermined polysilicon is applied. A defect detection method comprising performing an electrodeposition step of depositing a noble metal in the electrolyte solution on the surface of the polysilicon film corresponding to the position of the defect under the film.
【請求項7】 前記マスク工程の前と前記電着工程の後
に前記試料基板を洗浄する洗浄工程を実行することを特
徴とする請求項6記載の欠陥検出方法。
7. The defect detection method according to claim 6, wherein a cleaning step of cleaning the sample substrate is performed before the mask step and after the electrodeposition step.
【請求項8】 前記電着工程の後に前記所定のポリシリ
コン膜表面に析出した貴金属析出物の外側周辺をマーキ
ングした後、該貴金属析出物を選択的にエッチングする
エッチング工程を実行することを特徴とする請求項6又
は7記載の欠陥検出方法。
8. After the electrodeposition step, after marking the outer periphery of the noble metal deposit deposited on the surface of the predetermined polysilicon film, an etching step of selectively etching the noble metal deposit is performed. The defect detection method according to claim 6 or 7.
【請求項9】 前記エッチング工程の前に、前記貴金属
析出物を含む前記試料基板表面を加熱する加熱工程を実
行することを特徴とする請求項8記載の欠陥検出方法。
9. The defect detection method according to claim 8, wherein a heating step of heating the surface of the sample substrate containing the noble metal precipitate is performed before the etching step.
JP2001305528A 2001-10-01 2001-10-01 Defect detector and method for detecting defect Withdrawn JP2003109992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305528A JP2003109992A (en) 2001-10-01 2001-10-01 Defect detector and method for detecting defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305528A JP2003109992A (en) 2001-10-01 2001-10-01 Defect detector and method for detecting defect

Publications (1)

Publication Number Publication Date
JP2003109992A true JP2003109992A (en) 2003-04-11

Family

ID=19125306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305528A Withdrawn JP2003109992A (en) 2001-10-01 2001-10-01 Defect detector and method for detecting defect

Country Status (1)

Country Link
JP (1) JP2003109992A (en)

Similar Documents

Publication Publication Date Title
US20050052191A1 (en) In situ determination of resistivity, mobility and dopant concentration profiles
CN109865541A (en) A kind of scanning electron microscope home position Electrochemical Detection chip and preparation method thereof
JPH0817790A (en) Method and apparatus for internal monitoring of noncontact real-time device of chamical etching process
JP3558818B2 (en) Method and apparatus for evaluating defect of insulating film
CN107132497B (en) Substrate for nondestructive testing of Hall effect of semiconductor film and preparation method thereof
US3384556A (en) Method of electrolytically detecting imperfections in oxide passivation layers
JP4547548B2 (en) Micro diamond electrode manufacturing method
JP2003109992A (en) Defect detector and method for detecting defect
JP2004323971A (en) Improved bath analysis method
JP3607070B2 (en) Insulating film defect detection method
JP3568784B2 (en) Defect evaluation method for insulating film
JP2000082727A (en) Method for evaluating fault of insulating film
US6248601B1 (en) Fix the glassivation layer&#39;s micro crack point precisely by using electroplating method
JP2002184828A (en) Method of analyzing metallic impurities in semiconductor substrate
TR202011047A2 (en) A measurement system.
JPS6326537B2 (en)
WO2002001626A1 (en) Method and apparatus for evaluating semiconductor wafer
KR100784053B1 (en) Apparatus of cu decoration for silicon crystal defect measurement and method thereof
JP2004140129A (en) Method and apparatus for detecting fault of insulating film
US6145372A (en) Apparatus and method for detecting impurities in wet chemicals
JPH0843344A (en) Micro-array carbon electrode and its manufacture
JP2006098362A (en) Fault detection method for insulating film
KR20000027700A (en) Method for measuring crystal defect affecting electric characteristics of wafer
JPH0980016A (en) Method for determining corrosive ion concentration and manufacture of semiconductor device
Opitz et al. Investigation of the oxygen exchange reaction on Pt/YSZ: The relation between three phase boundaries and electrode performance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207