JP2003107353A - High variable power 4-group zoom lens - Google Patents
High variable power 4-group zoom lensInfo
- Publication number
- JP2003107353A JP2003107353A JP2002259570A JP2002259570A JP2003107353A JP 2003107353 A JP2003107353 A JP 2003107353A JP 2002259570 A JP2002259570 A JP 2002259570A JP 2002259570 A JP2002259570 A JP 2002259570A JP 2003107353 A JP2003107353 A JP 2003107353A
- Authority
- JP
- Japan
- Prior art keywords
- group
- lens
- zoom lens
- aspherical surface
- wide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高変倍4群ズームレン
ズに関し、特に、バックフォーカスに制限のないレンズ
シャッターカメラ等に適したもので、高変倍でありなが
ら小型なズームレンズに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-magnification four-group zoom lens, and more particularly to a zoom lens which is suitable for a lens shutter camera or the like having no limitation in back focus and which has a high zoom ratio and a small size.
【0002】[0002]
【従来の技術】従来より、レンズシャッターカメラに用
いられるズームレンズとしては、正・負の2群タイ
プ、正・正・負の3群タイプ、負・正・負の3群タ
イプ、等が知られており、各々商品化もなされてきた。
これらの代表的な3タイプにおいて、高変倍化を考えた
とき、の2群タイプは、変倍に伴う収差変動が大き
く、特に中間焦点距離における像面湾曲が大きく補正不
足になるため、高変倍化は基本的に無理である。また、
各群の移動量も増えるため、カメラの小型化においても
好ましくない。2. Description of the Related Art Conventionally, as zoom lenses used for lens shutter cameras, positive / negative two-group type, positive / positive / negative three-group type, negative / positive / negative three-group type, etc. are known. Have been made, and each has been commercialized.
Among these typical three types, when considering high zooming, the second group type of (3) has a large aberration variation due to zooming, and the field curvature at the intermediate focal length is particularly large, resulting in insufficient correction. Magnification scaling is basically impossible. Also,
Since the amount of movement of each group also increases, it is not preferable in downsizing the camera.
【0003】一方、やの3群タイプは、変倍時の収
差変動を補正できると共に、各群の移動量もある程度ま
で減らすことができるため、2群タイプに比べてより高
変倍化が可能となる。3群タイプを用いて高変倍化した
先行例として、特許文献1や特許文献2のもの等が知ら
れている。前者はの3群タイプであり、38〜135
mmのズーム範囲を持っている。後者はの3群タイプ
であり、35〜135mmのズーム範囲を持っている。On the other hand, the three-group type and the three-group type can correct aberration fluctuations during zooming and can reduce the amount of movement of each group to some extent, so that higher zooming is possible compared to the two-group type. Becomes Known examples of prior art in which the zoom ratio is increased by using the three-group type are disclosed in Patent Document 1 and Patent Document 2. The former is a 3-group type of, 38-135
Has a zoom range of mm. The latter is a 3-group type of and has a zoom range of 35 to 135 mm.
【0004】3群タイプの中、のように負屈折力の群
が先行するタイプは、広角端において群間隔が最大とな
るから、レンズ全長やレンズ外径が大きくなってしま
い、小型化の観点から見ると好ましくない。Among the three group types, the type in which the group having negative refractive power precedes, the group spacing becomes maximum at the wide-angle end, so that the total lens length and the lens outer diameter become large, and the size is reduced. It is not preferable from the viewpoint.
【0005】一方、の3群タイプは、正屈折力の群が
先行しているため、レンズ全長やレンズ外径を小さくで
きるから、望ましいズームタイプであるといえる。しか
し、更なる高変倍化を求めると、各群の移動量が大きく
ならざるを得ず、カメラ本体の小型化は達成できない。On the other hand, the three-group type is a desirable zoom type because the lens having the positive refracting power precedes it and the total lens length and the lens outer diameter can be reduced. However, if further zooming is required, the amount of movement of each group must be large, and miniaturization of the camera body cannot be achieved.
【0006】そこで、の3群タイプを更に複雑化して
設計自由度を補うことが考えられるが、そのようにして
正屈折力の群が先行するタイプを4群ズーム化した例と
して、特許文献3や特許文献4のもの等が知られてい
る。何れも、正・負・正・負の4群タイプであるが、前
者は、の正・正・負の3群タイプにおいて第2群を負
・正に分割したものである。変倍比は3倍程度である
が、出願当時としては高変倍比であった。また、後者
は、いわゆるダブルテレフォトと呼ばれるズームタイプ
をレンズシャッターカメラに適用したものである。この
タイプは、本来一眼レフカメラ用に開発されたものであ
る。この先行例は、38〜135mmのズーム範囲を持
っている。Therefore, it is conceivable to further complicate the three-group type to supplement the degree of freedom in design. As an example in which the group preceded by a positive refractive power group is made into a four-group zoom as described above, Patent Document 3 Patent Document 4 and the like are known. Both are positive / negative / positive / negative four-group types, but the former is a positive / positive / negative three-group type in which the second group is divided into negative / positive. The zoom ratio was about 3 times, but it was a high zoom ratio at the time of application. The latter is a so-called double telephoto zoom type applied to a lens shutter camera. This type was originally developed for single-lens reflex cameras. This prior example has a zoom range of 38-135 mm.
【0007】[0007]
【特許文献1】特開平2−135312号公報(第6頁
〜第23頁)[Patent Document 1] Japanese Unexamined Patent Publication No. 2-135312 (pages 6 to 23)
【0008】[0008]
【特許文献2】特開平2−201410号公報(第4頁
〜第13頁)[Patent Document 2] JP-A-2-201410 (pages 4 to 13)
【0009】[0009]
【特許文献3】特開昭63−43115号公報(第3頁
〜第9頁)[Patent Document 3] JP-A-63-43115 (pages 3 to 9)
【0010】[0010]
【特許文献4】特開平2−223908号公報(第6頁
〜第23頁)[Patent Document 4] Japanese Patent Application Laid-Open No. 2-223908 (pages 6 to 23)
【0011】[0011]
【発明が解決しようとする課題】上記した通り、ズーム
レンズの高変倍化とコンパクト化を達成するためには、
正屈折力の群が先行するタイプが望ましい。しかし、特
許文献1のものは、前述の通り3群タイプのため変倍時
の群の移動量が大きく、カメラの小型化が困難である。
ちなみに、望遠端の望遠比は1.2程度と大きい。As described above, in order to achieve a high zoom ratio and compact size of the zoom lens,
The type preceded by a group of positive refracting power is desirable. However, since the one disclosed in Patent Document 1 is of the three-group type as described above, the amount of movement of the group during zooming is large and it is difficult to downsize the camera.
By the way, the telephoto ratio at the telephoto end is as large as 1.2.
【0012】特許文献3のものは、望遠端の望遠比は
1.1程度となっているが、正・正・負の3群タイプの
第2群を分割したために、それらの群の偏心精度が大変
に厳しくなってしまうため、好ましくない。In Patent Document 3, the telephoto ratio at the telephoto end is about 1.1. However, since the second group of positive, positive, and negative three-group type is divided, the eccentricity of these groups is high. Is very unfavorable because it becomes very strict.
【0013】特許文献4のものは、望遠端の望遠比は
1.0程度となっているが、広角端において第2群と第
3群の間隔が最大となるため、入射瞳位置が遠くなり第
1群と第2群のレンズ外径が巨大なものとなってしまう
ため、好ましくない。また、群の移動量は減っている
が、広角端のレンズ全長が大きくなる点も好ましくな
い。In Patent Document 4, the telephoto ratio at the telephoto end is about 1.0, but since the distance between the second group and the third group is maximum at the wide-angle end, the entrance pupil position becomes far. This is not preferable because the outer diameters of the lenses of the first group and the second group become enormous. Further, although the amount of movement of the group is reduced, it is not preferable that the total lens length at the wide-angle end is increased.
【0014】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、高変倍比でありながらコンパ
クトな4群ズームレンズを提供することである。The present invention has been made in view of such circumstances, and an object thereof is to provide a compact 4-group zoom lens having a high zoom ratio.
【0015】[0015]
【課題を解決するための手段】上記目的を達成する本発
明の高変倍4群ズームレンズは、物体側から順に、正屈
折力の第1群と、正屈折力の第2群と、負屈折力の第3
群と、負屈折力の第4群とからなり、各群の間隔を変え
て変倍するズームレンズにおいて、広角域から望遠域へ
の変倍に際してこれらの4つの群が物体側へ移動し、以
下の条件式(6)を満足することを特徴とするものであ
る。A high-magnification four-group zoom lens of the present invention which achieves the above object, comprises a first group having a positive refractive power, a second group having a positive refractive power, and a negative group in order from the object side. Refractive power third
In a zoom lens that includes a group and a fourth group having negative refracting power, and varies the distance between the groups, the four groups move toward the object side when varying the magnification from the wide-angle range to the telephoto range, It is characterized in that the following conditional expression (6) is satisfied.
【0016】
1.7<NN ・・・・(6)
ただし、NN は第3群及び第4群に含まれる負レンズの
屈折率の平均値である。1.7 <N N (6) where N N is the average value of the refractive indices of the negative lenses included in the third and fourth groups.
【0017】[0017]
【作用】以下、本発明において上記構成をとる理由と作
用について説明する。The reason why the above structure is adopted and the function of the present invention will be described below.
【0018】従来技術において説明したように、高変倍
化と小型化を達成するためには、正・正・負の3群タイ
プのように、正屈折力が先行するズームタイプを用いる
ことが好ましい。しかし、そのまま変倍比を増やすと群
の移動量が多くなり、望遠端のレンズ全長が大きくなっ
てしまうので、カメラの小型化はできない。また、第2
群を分割して4群化しても、分割した群同士の偏心精度
が厳しくなり、実用的でない。As described in the prior art, in order to achieve high zooming and miniaturization, it is preferable to use a zoom type in which positive refractive power precedes, such as a positive / positive / negative three-group type. preferable. However, if the zoom ratio is increased as it is, the amount of movement of the group increases and the total lens length at the telephoto end increases, so that the camera cannot be downsized. Also, the second
Even if the groups are divided into four groups, the accuracy of eccentricity between the divided groups becomes severe, which is not practical.
【0019】そこで、本発明においては、新しい4群ズ
ームタイプを提案する。Therefore, in the present invention, a new 4-group zoom type is proposed.
【0020】前記の正・正・負の3群タイプにおいて
は、変倍作用のほとんどを第3群が負担している。そし
て、第2群はコンペンセーターの作用を持っており、第
1群は収差補正、特に像面湾曲や歪曲収差を良好に補正
するために作用している。したがって、望遠端のレンズ
全長は第3群の移動量でほぼ決まるので、これを短縮す
るためには第3群のパワーを強くせざるを得ない。しか
し、単に第3群のパワーを強くしたのでは、収差補正が
困難になってしまう。すなわち、第3群に必要とされる
変倍作用を持たせた上で、実用的な収差補正が可能とな
る範囲内で第3群のパワーが決められ、それにより望遠
端のレンズ全長も決まってしまう。In the positive / positive / negative three-group type described above, the third group bears most of the zooming action. The second group has a compensator function, and the first group functions to correct aberrations, particularly field curvature and distortion. Therefore, the total length of the lens at the telephoto end is substantially determined by the amount of movement of the third lens unit, and in order to shorten this, the power of the third lens unit must be increased. However, simply increasing the power of the third lens group makes it difficult to correct the aberration. That is, the power of the third lens unit is determined within a range in which practical aberration correction is possible after giving the required zooming action to the third lens unit, and thus the total lens length at the telephoto end is also determined. Will end up.
【0021】本発明では、上記問題を解決するため、正
・正・負の3群タイプにおいて、負屈折力の第3群を分
割し、正・正・負・負の4群タイプとした。以下、図面
に従って説明する。In the present invention, in order to solve the above problems, in the positive / positive / negative three-group type, the third group having negative refractive power is divided into four groups of positive / positive / negative / negative. Hereinafter, description will be given with reference to the drawings.
【0022】図2は従来の3群タイプの群の配置と移動
軌跡を示している。正屈折力の第1群G1、正屈折力の
第2群G2、負屈折力の第3群G3にて構成され、広角
域から望遠域への変倍に際し、各群が物体側へ移動す
る。このとき、第1群G1と第2群G2の間隔は増大
し、第2群G2と第3群G3の間隔は減少するように移
動することで、前述したような作用が得られる訳であ
る。FIG. 2 shows the arrangement and movement locus of a conventional three-group type group. It is composed of a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power, and each lens group moves toward the object side during zooming from a wide-angle range to a telephoto range. . At this time, the distance between the first group G1 and the second group G2 is increased, and the distance between the second group G2 and the third group G3 is decreased so that the above-described action is obtained. .
【0023】図1は本発明による4群タイプを示してい
る。正屈折力の第1群G1、正屈折力の第2群G2、負
屈折力の第3群G3、負屈折力の第4群G4にて構成さ
れ、広角域から望遠域への変倍に際し、各群が物体側へ
移動すると共に、第1群G1と第2群G2の間隔は増大
し、第2群G2と第3群G3の間隔は減少するように移
動する。さらに、広角域から望遠域への変倍に際して第
3群G3及び第4群G4の倍率が共に増加するように移
動することで、変倍作用を効率的に行うことができる。FIG. 1 shows a four-group type according to the present invention. It is composed of a first group G1 having a positive refracting power, a second group G2 having a positive refracting power, a third group G3 having a negative refracting power, and a fourth group G4 having a negative refracting power, and is used for zooming from a wide-angle range to a telephoto range. As each group moves toward the object side, the distance between the first group G1 and the second group G2 increases, and the distance between the second group G2 and the third group G3 decreases. Further, when the magnification is changed from the wide-angle range to the telephoto range, the third group G3 and the fourth group G4 are moved so that the magnifications thereof are both increased, so that the magnification changing effect can be efficiently performed.
【0024】このとき、以下の条件式を満たすことが望
ましい。At this time, it is desirable that the following conditional expression be satisfied.
【0025】
0.3<|f34|/fW <1.1 ・・・・(1)
1<β3W ・・・・(2)
1<β4W ・・・・(3)
ただし、fW は広角端における全系の焦点距離、f34は
広角端における第3群G3と第4群G4の合成焦点距
離、β3W、β4Wはそれぞれ広角端における第3群G3と
第4群G4の近軸横倍率である。0.3 <| f 34 | / f W <1.1 ··· (1) 1 <β 3W ··· (2) 1 <β 4W ··· (3) where f W is the focal length of the entire system at the wide-angle end, f 34 is the combined focal length of the third group G3 and the fourth group G4 at the wide-angle end, and β 3W and β 4W are the third group G3 and the fourth group G4 at the wide-angle end, respectively. Is the paraxial lateral magnification of.
【0026】条件式(1)は、すでに述べてきた通り、
小型化においても最も重要な条件である。その上限の
1.1を越えて第3群G3と第4群G4の合成パワーが
弱くなると、小型化が達成できない。また、下限の0.
3を越えてその合成パワーが強くなると、たとえ2個の
群に分割したとしても、各群のパワーが強くなりすぎて
十分な収差補正を行うことが困難になる。The conditional expression (1) is, as already described,
This is the most important condition for downsizing. When the upper limit of 1.1 is exceeded and the combined power of the third group G3 and the fourth group G4 becomes weak, miniaturization cannot be achieved. In addition, the lower limit of 0.
When the combined power exceeds 3 and becomes strong, even if the lens is divided into two groups, the power of each group becomes too strong, and it becomes difficult to perform sufficient aberration correction.
【0027】条件式(2)と(3)は、広角端において
バックフォーカスを確保するための条件であり、これら
の範囲を越えると、バックフォーカスが短くなって第3
群G3や第4群G4のレンズ外径が大きくなってしま
う。また、レンズ面に付着したゴミが写り込む問題や、
フィルム面との間での反射によるフレアーの問題等が発
生し、好ましくない。Conditional expressions (2) and (3) are conditions for ensuring the back focus at the wide-angle end, and beyond these ranges, the back focus becomes short and the third
The lens outer diameters of the group G3 and the fourth group G4 become large. Also, there is a problem that dust attached to the lens surface is reflected,
A flare problem due to reflection between the film surface and the like occurs, which is not preferable.
【0028】また、収差補正を良好になすために、第2
群G2中に少なくとも1面の非球面を用いることが望ま
しい。このとき、第2群G2に用いられた少なくとも1
面の非球面は、以下の条件式を満たすことが望ましい。Further, in order to make good aberration correction, the second
It is desirable to use at least one aspherical surface in the group G2. At this time, at least 1 used in the second group G2
It is desirable that the aspherical surface should satisfy the following conditional expression.
【0029】
0<ΔP /φP ,φP =(nP'−nP )/rP ・・・・(4)
ただし、rP は非球面の近軸曲率半径、nP 、nP'は非
球面の前後の媒質の屈折率、ΔP は有効半径における非
球面量である。0 <Δ P / φ P , φ P = (n P ′ −n P ) / r P (4) where r P is the paraxial radius of curvature of the aspherical surface, n P and n P ' Is the refractive index of the medium before and after the aspheric surface, and Δ P is the aspheric amount at the effective radius.
【0030】条件式(4)は、第2群G2の非球面が光
軸から離れるに従って徐々に正屈折力が弱くなる(又
は、負屈折力が強くなる)形状であることを示してい
る。第2群G2のこのような非球面は球面収差やコマ収
差の補正に効果的である。Conditional expression (4) indicates that the aspherical surface of the second lens group G2 has a shape in which the positive refractive power gradually becomes weaker (or the negative refractive power becomes stronger) as the distance from the optical axis increases. Such an aspherical surface of the second group G2 is effective in correcting spherical aberration and coma.
【0031】さらに、第3群G3若しくは第4群G4に
も少なくとも1面の非球面を用いることが望ましい。こ
のとき、第3群G3若しくは第4群G4に用いられた少
なくとも1面の非球面は、以下の条件式を満たすことが
望ましい。Further, it is desirable to use at least one aspherical surface also for the third group G3 or the fourth group G4. At this time, at least one aspherical surface used in the third group G3 or the fourth group G4 preferably satisfies the following conditional expression.
【0032】
ΔN /φN <0,φN =(nN'−nN )/rN ・・・・(5)
ただし、rN は非球面の近軸曲率半径、nN 、nN'は非
球面の前後の媒質の屈折率、ΔN は有効半径における非
球面量である。Δ N / φ N <0, φ N = (n N ′ −n N ) / r N (5) where r N is the paraxial radius of curvature of the aspherical surface, n N , n N ' Is the refractive index of the medium before and after the aspherical surface, and Δ N is the aspherical surface amount at the effective radius.
【0033】条件式(5)は、第3群G3若しくは第4
群G4の非球面が光軸から離れるに従って徐々に負屈折
力が弱くなる(又は、正屈折力が強くなる)形状である
ことを示している。第3群G3若しくは第4群G4のこ
のような非球面は像面湾曲や歪曲収差の補正に効果的で
ある。Conditional expression (5) is defined by the third group G3 or the fourth group.
It is shown that the aspherical surface of the group G4 has a shape in which the negative refracting power gradually becomes weaker (or the positive refracting power becomes stronger) with distance from the optical axis. Such an aspherical surface of the third group G3 or the fourth group G4 is effective for correction of field curvature and distortion.
【0034】また、本発明においては、負屈折力の群が
増えたためにペッツバール像面が補正過剰になりやす
い。そこで、以下の条件式を満たすことが望ましい。Further, in the present invention, the Petzval image plane is likely to be overcorrected because the number of the groups having negative refractive power is increased. Therefore, it is desirable to satisfy the following conditional expression.
【0035】
1.7<NN ・・・・(6)
ただし、NN は第3群G3及び第4群G4に含まれる負
レンズの屈折率の平均値である。条件式(6)を満たす
ことによって像面湾曲を良好に補正でき、全画面におい
て描写の優れた写真を得ることができる。1.7 <N N (6) where N N is the average value of the refractive indices of the negative lenses included in the third group G3 and the fourth group G4. By satisfying the conditional expression (6), it is possible to excellently correct the field curvature, and it is possible to obtain a photograph excellent in depiction on the entire screen.
【0036】[0036]
【実施例】次に、本発明の高変倍4群ズームレンズの実
施例1〜4について説明する。図3〜図6にそれぞれ実
施例1〜4の広角端(a)及び望遠端(b)のレンズ断
面図を示す。EXAMPLES Examples 1 to 4 of the high variable power four-group zoom lens according to the present invention will be described below. 3 to 6 are lens cross-sectional views of Examples 1 to 4 at the wide-angle end (a) and the telephoto end (b), respectively.
【0037】実施例1は38〜135mmの焦点距離で
あり、広角端から望遠端への変倍において、第1群G1
と第2群G2の間隔は増大し、第2群G2と第3群G3
の間隔は減少し、第3群G3と第4群G4の間隔は増大
するように、各群が物体側へ移動する。第1群G1は、
物体側に凸面を向けた負メニスカスレンズ、物体側に凸
面を向けた正メニスカスレンズの2群2枚、第2群G2
は、両凹レンズ、物体側に凸面を向けた負メニスカスレ
ンズ、両凸レンズ、絞り、両凸レンズ、両凹レンズと両
凸レンズの貼り合わせレンズの5群6枚、第3群G3
は、像面側に凸面を向けた正メニスカスレンズ、両凹レ
ンズの2群2枚、第4群G4は、像面側に凸面を向けた
正メニスカスレンズ、両凹レンズの2群2枚にて構成さ
れている。絞りは第2群G2内に含まれる。また、非球
面は、第2群G2の絞りの後の両凸レンズの像面側の面
と第3群G3の両凹レンズの物体側の面の全部で2面に
用いられている。The first embodiment has a focal length of 38 to 135 mm, and when zooming from the wide-angle end to the telephoto end, the first lens unit G1
And the distance between the second group G2 and the second group G2 increases.
The groups move toward the object side such that the distance between the groups decreases and the distance between the third group G3 and the fourth group G4 increases. The first group G1 is
A negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens having a convex surface directed toward the object side, two groups, and a second group G2
Is a biconcave lens, a negative meniscus lens having a convex surface directed toward the object side, a biconvex lens, a diaphragm, a biconvex lens, a cemented lens of a biconcave lens and a biconvex lens, 5 groups and 6 groups, 3rd group G3
Is a positive meniscus lens having a convex surface directed to the image side, two groups of two lenses, and the fourth group G4 is a positive meniscus lens having a convex surface directed to the image side, and a biconcave lens is two groups of two elements. Has been done. The diaphragm is included in the second group G2. Further, the aspherical surfaces are used for two surfaces in total, that is, the image side surface of the biconvex lens after the stop of the second group G2 and the object side surface of the biconcave lens of the third group G3.
【0038】実施例2は38〜150mmの焦点距離で
あり、広角端から望遠端への変倍において、第1群G1
と第2群G2の間隔は増大し、第2群G2と第3群G3
の間隔は減少し、第3群G3と第4群G4の間隔は増大
した後減少するように、各群が物体側へ移動する。第1
群G1は、物体側に凸面を向けた負メニスカスレンズと
正メニスカスレンズの貼り合わせレンズの1群2枚、第
2群G2は、両凹レンズ、両凸レンズ、絞り、両凸レン
ズ、両凹レンズと両凸レンズの貼り合わせレンズ、像面
側に凸面を向けた正メニスカスレンズの5群6枚、第3
群G3は、像面側に凸面を向けた正メニスカスレンズ、
両凹レンズの2群2枚、第4群G4は、像面側に凸面を
向けた負メニスカスレンズの1群1枚にて構成されてい
る。絞りは第2群G2内に含まれる。また、非球面は、
第1群G1の第1面、第2群G2の絞りの後の両凸レン
ズの像面側の面、第3群G3の両凹レンズの物体側の面
の全部で3面に用いられている。The second embodiment has a focal length of 38 to 150 mm, and when zooming from the wide-angle end to the telephoto end, the first lens unit G1
And the distance between the second group G2 and the second group G2 increases.
The groups move toward the object side such that the distance between the groups decreases and the distance between the third group G3 and the fourth group G4 increases and then decreases. First
The second group G2 is a biconcave lens, a biconvex lens, a diaphragm, a biconvex lens, a biconcave lens, and a biconvex lens. The group G1 is a cemented lens of a negative meniscus lens and a positive meniscus lens having a convex surface facing the object side. Cemented lens of 5 groups of positive meniscus lens with convex surface facing the image side, 3rd
The group G3 is a positive meniscus lens having a convex surface directed toward the image side,
The second group of two biconcave lenses and the fourth group G4 are composed of one group of negative meniscus lenses each having a convex surface facing the image side. The diaphragm is included in the second group G2. Also, the aspherical surface is
The first surface of the first group G1, the image side surface of the biconvex lens after the aperture stop of the second group G2, and the object side surface of the biconcave lens of the third group G3 are used for all three surfaces.
【0039】実施例3は38〜150mmの焦点距離で
あり、広角端から望遠端への変倍において、第1群G1
と第2群G2の間隔は増大し、第2群G2と第3群G3
の間隔は減少し、第3群G3と第4群G4の間隔は増大
するように、各群が物体側へ移動する。第1群G1は、
物体側に凸面を向けた負メニスカスレンズ、物体側に凸
面を向けた正メニスカスレンズの2群2枚、第2群G2
は、両凹レンズ、両凸レンズ、像面側に凸面を向けた負
メニスカスレンズ、絞り、両凸レンズ、両凸レンズ、物
体側に凸面を向けた負メニスカスレンズと両凸レンズの
貼り合わせレンズの6群7枚、第3群G3は、像面側に
凸面を向けた正メニスカスレンズ、両凹レンズの2群2
枚、第4群G4は、両凸レンズ、両凹レンズの2群2枚
にて構成されている。絞りは第2群G2内に含まれる。
また、非球面は、第2群G1の最後の面、第3群G3の
両凹レンズの物体側の面、第4群G4の両凹レンズの物
体側の面の全部で3面に用いられている。The third embodiment has a focal length of 38 to 150 mm, and when zooming from the wide-angle end to the telephoto end, the first lens unit G1
And the distance between the second group G2 and the second group G2 increases.
The groups move toward the object side such that the distance between the groups decreases and the distance between the third group G3 and the fourth group G4 increases. The first group G1 is
A negative meniscus lens having a convex surface directed toward the object side, a positive meniscus lens having a convex surface directed toward the object side, two groups, and a second group G2
Is a biconcave lens, a biconvex lens, a negative meniscus lens with a convex surface facing the image side, a diaphragm, a biconvex lens, a biconvex lens, and a cemented lens of a negative meniscus lens with a convex surface facing the object side and a biconvex lens, 7 elements in 6 groups The third group G3 is a second group 2 of a positive meniscus lens having a convex surface facing the image side and a biconcave lens.
The fourth lens group G4 is composed of a biconvex lens and a biconcave lens. The diaphragm is included in the second group G2.
Further, the aspherical surfaces are used for the last three surfaces of the second lens group G1, the object-side surface of the biconcave lens of the third lens group G3, and the object-side surface of the biconcave lens of the fourth lens group G4. .
【0040】実施例4は28〜105mmの焦点距離で
あり、広角端から望遠端への変倍において、第1群G1
と第2群G2の間隔は増大し、第2群G2と第3群G3
の間隔は減少し、第3群G3と第4群G4の間隔は減少
した後増大するように、各群が物体側へ移動する。第1
群G1は、両凹レンズと両凸レンズの貼り合わせレン
ズ、両凸レンズの2群3枚、第2群G2は、両凹レン
ズ、両凸レンズ、絞り、両凸レンズ、両凹レンズと両凸
レンズの貼り合わせレンズの4群5枚、第3群G3は、
像面側に凸面を向けた正メニスカスレンズ、像面側に凸
面を向けた負メニスカスレンズの2群2枚、第4群G4
は、像面側に凸面を向けた負メニスカスレンズの1群1
枚にて構成されている。絞りは第2群G2内に含まれ
る。また、非球面は、第2群G1の絞りの後の両凸レン
ズの像面側の面だけに用いられている。The fourth embodiment has a focal length of 28 to 105 mm, and when zooming from the wide-angle end to the telephoto end, the first lens unit G1
And the distance between the second group G2 and the second group G2 increases.
The respective groups move toward the object side such that the distance between the groups is decreased and the distance between the third group G3 and the fourth group G4 is decreased and then increased. First
The group G1 is a cemented lens of a biconcave lens and a biconvex lens, two groups of three lenses of a biconvex lens, and the second group G2 is a biconcave lens, a biconvex lens, a diaphragm, a biconvex lens, and a biconcave lens and a biconvex lens cemented lens Group 5 sheets, the third group G3,
A positive meniscus lens having a convex surface directed toward the image surface side, and a negative meniscus lens having a convex surface directed toward the image surface side, two groups, and a fourth group G4.
Is a first group 1 of negative meniscus lenses with the convex surface facing the image side.
It is composed of one sheet. The diaphragm is included in the second group G2. The aspherical surface is used only on the image-side surface of the biconvex lens after the stop of the second group G1.
【0041】以下に、各実施例のレンズデータを示す
が、記号は、上記の外、fは全系焦点距離、FNOはFナ
ンバー、2ωは画角、fB はバックフォーカス、β3 は
第3群G3の近軸横倍率、β4 は第4群G4の近軸横倍
率、r1 、r2 …は各レンズ面の曲率半径、d1 、d2
…は各レンズ面間の間隔、nd1、nd2…は各レンズのd
線の屈折率、νd1、νd2…は各レンズのアッベ数であ
る。なお、非球面形状は、光軸方向をx、光軸に直交す
る方向をyとしたとき、次の式で表される。The lens data of each embodiment are shown below. The symbols are the above, f is the focal length of the entire system, F NO is the F number, 2ω is the angle of view, f B is the back focus, and β 3 is β 3. The paraxial lateral magnification of the third group G3, β 4 is the paraxial lateral magnification of the fourth group G4, r 1 , r 2 ... Are the radii of curvature of the respective lens surfaces, and d 1 and d 2.
... is the distance between the lens surfaces, n d1 , n d2 ... is the d of each lens
The refractive indices of the lines, ν d1 , ν d2, ... Are the Abbe numbers of each lens. The aspherical shape is expressed by the following equation, where x is the optical axis direction and y is the direction orthogonal to the optical axis.
【0042】x=(y2 /r)/[1+{1−P(y/
r)2 }1/2 ]+A4y4 +A6y6 +A8y8 + A10y10
ただし、rは近軸曲率半径、Pは円錐係数、A4、A6、
A8、A10は非球面係数である。X = (y 2 / r) / [1+ {1-P (y /
r) 2 } 1/2 ] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 However, r is a paraxial radius of curvature, P is a conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients.
【0043】 実施例1 f = 39.1 〜 71.4 〜130.3 FNO= 4.6 〜 6.1 〜 8.0 2ω= 57.84 〜 33.66 〜 18.82° fB = 6.9 〜 19.3 〜 53.8 β3 = 1.34 〜 1.75 〜 2.21 β4 = 1.08 〜 1.24 〜 1.67 r1 = 35.2420 d1 = 2.000 nd1 =1.84666 νd1 =23.78 r2 = 29.9510 d2 = 0.500 r3 = 25.6000 d3 = 4.500 nd2 =1.49700 νd2 =81.61 r4 = 128.6170 d4 =(可変) r5 = -30.3720 d5 = 1.000 nd3 =1.88300 νd3 =40.78 r6 = 28.0770 d6 = 0.980 r7 = 61.1210 d7 = 1.000 nd4 =1.77250 νd4 =49.66 r8 = 15.6480 d8 = 0.920 r9 = 20.1570 d9 = 3.500 nd5 =1.78472 νd5 =25.68 r10= -57.1010 d10= 1.500 r11= ∞(絞り) d11= 1.500 r12= 28.2340 d12= 4.000 nd6 =1.53172 νd6 =48.90 r13= -36.7070(非球面)d13= 1.200 r14= -165.7780 d14= 1.500 nd7 =1.80518 νd7 =25.43 r15= 16.9400 d15= 5.500 nd8 =1.56873 νd8 =63.16 r16= -15.3930 d16=(可変) r17= -54.2730 d17= 4.000 nd9 =1.76180 νd9 =27.11 r18= -23.9700 d18= 2.170 r19= -19.1930(非球面)d19= 2.000 nd10=1.80400 νd10=46.57 r20= 322.2970 d20=(可変) r21= -354.2300 d21= 3.500 nd11=1.76182 νd11=26.52 r22= -34.5340 d22= 1.210 r23= -25.0470 d23= 2.000 nd12=1.80400 νd =46.57 r24= 718.3720 非球面係数 第13面 P = 1.0000 A4 = 0.48167×10-4 A6 = 0.26683×10-7 A8 = 0.16257×10-8 A10=-0.84437×10-11 第19面 P = 1.0012 A4 = 0.14608×10-4 A6 = 0.28754×10-7 A8 = 0.32531×10-10 A10= 0 。Example 1 f = 39.1 to 71.4 to 130.3 F NO = 4.6 to 6.1 to 8.0 2ω = 57.84 to 33.66 to 18.82 ° f B = 6.9 to 19.3 to 53.8 β 3 = 1.34 to 1.75 to 2.21 β 4 = 1.08 to 1.24 to 1.67 r 1 = 35.2420 d 1 = 2.000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 29.9510 d 2 = 0.500 r 3 = 25.6000 d 3 = 4.500 n d2 = 1.49700 ν d2 = 81.61 r 4 = 128.6170 d 4 = (Variable) r 5 = -30.3720 d 5 = 1.000 n d3 = 1.88300 ν d3 = 40.78 r 6 = 28.0770 d 6 = 0.980 r 7 = 61.1210 d 7 = 1.000 n d4 = 1.77250 ν d4 = 49.66 r 8 = 15.6480 d 8 = 0.920 r 9 = 20.1570 d 9 = 3.500 n d5 = 1.78472 ν d5 = 25.68 r 10 = -57.1010 d 10 = 1.500 r 11 = ∞ ( stop) d 11 = 1.500 r 12 = 28.2340 d 12 = 4.000 n d6 = 1.53172 ν d6 = 48.90 r 13 = -36.7070 (aspherical surface) d 13 = 1.200 r 14 = -165.7780 d 14 = 1.500 n d7 = 1.80518 ν d7 = 25.43 r 15 = 16.9400 d 15 = 5.500 n d8 = 1.56873 ν d8 = 63.16 r 16 = -15.3930 d 16 = (variable) r 17 = -54.2 730 d 17 = 4.000 n d9 = 1.76180 ν d9 = 27.11 r 18 = -23.9700 d 18 = 2.170 r 19 = -19.1930 (aspherical) d 19 = 2.000 n d10 = 1.80400 ν d10 = 46.57 r 20 = 322.2970 d 20 = (variable) r 21 = -354.2300 d 21 = 3.500 n d11 = 1.76182 ν d11 = 26.52 r 22 = -34.5340 d 22 = 1.210 r 23 = -25.0470 d 23 = 2.000 n d12 = 1.80400 ν d = 46.57 r 24 = 718.3720 Aspherical coefficient 13th surface P = 1.0000 A 4 = 0.48167 × 10 -4 A 6 = 0.26683 × 10 -7 A 8 = 0.16257 × 10 -8 A 10 = -0.84437 × 10 -11 19th surface P = 1.0012 A 4 = 0.14608 × 10 -4 A 6 = 0.28754 × 10 -7 A 8 = 0.32531 × 10 -10 A 10 = 0.
【0044】 実施例2 f = 39.1 〜 75.5 〜145.5 FNO= 4.6 〜 6.1 〜 8.0 2ω= 57.84 〜 31.93 〜 16.89° fB = 7.0 〜 24.1 〜 63.4 β3 = 1.17 〜 1.45 〜 1.60 β4 = 1.19 〜 1.59 〜 2.51 r1 = 27.3940(非球面)d1 = 2.000 nd1 =1.80518 νd1 =25.43 r2 = 21.5300 d2 = 5.000 nd2 =1.48749 νd2 =70.20 r3 = 75.0810 d3 =(可変) r4 = -34.6580 d4 = 1.500 nd3 =1.77250 νd3 =49.66 r5 = 14.6990 d5 = 1.160 r6 = 22.0690 d6 = 3.000 nd4 =1.76182 νd4 =26.52 r7 = -55.9830 d7 = 1.500 r8 = ∞(絞り) d8 = 1.500 r9 = 63.5910 d9 = 3.000 nd5 =1.51633 νd5 =64.15 r10= -22.7880(非球面)d10= 1.320 r11= -20.9070 d11= 1.500 nd6 =1.78470 νd6 =26.30 r12= 49.5720 d12= 5.000 nd7 =1.51633 νd7 =64.15 r13= -15.8000 d13= 0.200 r14= -74.2190 d14= 3.000 nd8 =1.51633 νd8 =64.15 r15= -18.5730 d15=(可変) r16= -78.4020 d16= 4.000 nd9 =1.80518 νd9 =25.43 r17= -23.0330 d17= 1.880 r18= -18.3240(非球面)d18= 1.800 nd10=1.77250 νd10=49.66 r19= 316.7320 d19=(可変) r20= -31.8430 d20= 2.000 nd11=1.80400 νd11=46.57 r21= -436.2390 非球面係数 第1面 P = 1.0000 A4 = 0.30725×10-7 A6 =-0.24135×10-9 A8 = 0.25687×10-11 A10= 0 第10面 P = 1.0000 A4 = 0.48250×10-4 A6 = 0.81447×10-7 A8 =-0.43664×10-9 A10= 0.11008×10-11 第18面 P = 1.0000 A4 = 0.11855×10-4 A6 = 0.32106×10-7 A8 =-0.44419×10-9 A10= 0.20139×10-11 。Example 2 f = 39.1 to 75.5 to 145.5 F NO = 4.6 to 6.1 to 8.0 2ω = 57.84 to 31.93 to 16.89 ° f B = 7.0 to 24.1 to 63.4 β 3 = 1.17 to 1.45 to 1.60 β 4 = 1.19 to 1.59 to 2.51 r 1 = 27.3940 (aspherical surface) d 1 = 2.000 n d1 = 1.80518 ν d1 = 25.43 r 2 = 21.5300 d 2 = 5.000 n d2 = 1.48749 ν d2 = 70.20 r 3 = 75.0810 d 3 = (variable) r 4 = -34.6580 d 4 = 1.500 n d3 = 1.77250 ν d3 = 49.66 r 5 = 14.6990 d 5 = 1.160 r 6 = 22.0690 d 6 = 3.000 n d4 = 1.76182 ν d4 = 26.52 r 7 = -55.9830 d 7 = 1.500 r 8 = ∞ (aperture) d 8 = 1.500 r 9 = 63.5910 d 9 = 3.000 n d5 = 1.51633 ν d5 = 64.15 r 10 = -22.7880 (aspherical surface) d 10 = 1.320 r 11 = -20.9070 d 11 = 1.500 n d6 = 1.78470 ν d6 = 26.30 r 12 = 49.5720 d 12 = 5.000 n d7 = 1.51633 ν d7 = 64.15 r 13 = -15.8000 d 13 = 0.200 r 14 = -74.2190 d 14 = 3.000 n d8 = 1.51633 ν d8 = 64.15 r 15 = -18.5730 d 15 = (Variable) r 16 = -78.4020 d 16 = 4.000 n d9 = 1.80518 ν d9 = 25.43 r 17 = -23.0330 d 17 = 1.880 r 18 = -18.3240 (aspherical surface) d 18 = 1.800 n d10 = 1.77250 ν d10 = 49.66 r 19 = 316.7320 d 19 = (variable) r 20 = -31.8430 d 20 = 2.000 n d11 = 1.80400 ν d11 = 46.57 r 21 = -436.2390 Aspheric surface coefficient 1st surface P = 1.0000 A 4 = 0.30725 × 10 -7 A 6 = -0.24 135 × 10 -9 A 8 = 0.25687 × 10 -11 A 10 = 0 10th surface P = 1.0000 A 4 = 0.48250 × 10 -4 A 6 = 0.81447 × 10 -7 A 8 = -0.43664 × 10 -9 A 10 = 0.11008 × 10 -11 18th surface P = 1.0000 A 4 = 0.11855 × 10 -4 A 6 = 0.32106 × 10 -7 A 8 = -0.444419 x 10 -9 A 10 = 0.20139 x 10 -11 .
【0045】 実施例3 f = 39.1 〜 75.5 〜145.5 FNO= 3.6 〜 5.4 〜 8.0 2ω= 57.84 〜 31.93 〜 16.89° fB = 7.0 〜 22.3 〜 65.5 β3 = 1.36 〜 1.79 〜 2.27 β4 = 1.07 〜 1.27 〜 1.83 r1 = 43.7150 d1 = 2.000 nd1 =1.84666 νd1 =23.78 r2 = 31.7650 d2 = 0.920 r3 = 27.2710 d3 = 5.000 nd2 =1.51454 νd2 =54.69 r4 = 270.8610 d4 =(可変) r5 = -30.0870 d5 = 1.300 nd3 =1.88300 νd3 =40.78 r6 = 18.5320 d6 = 1.690 r7 = 33.8190 d7 = 3.500 nd4 =1.84666 νd4 =23.78 r8 = -59.0100 d8 = 1.450 r9 = -27.1000 d9 = 1.200 nd5 =1.72916 νd5 =54.68 r10= -35.0200 d10= 2.120 r11= ∞(絞り) d11= 1.700 r12= 78.9010 d12= 3.000 nd6 =1.56732 νd6 =42.83 r13= -54.2940 d13= 0.200 r14= 33.5370 d14= 3.000 nd7 =1.56732 νd7 =42.83 r15= -71.2530 d15= 0.650 r16= 481.5710 d16= 1.500 nd8 =1.80518 νd8 =25.43 r17= 16.3100 d17= 6.000 nd9 =1.51633 νd9 =64.15 r18= -21.3560(非球面)d18=(可変) r19= -45.3540 d19= 3.500 nd10=1.76182 νd10=26.52 r20= -25.2940 d20= 2.050 r21= -30.8570(非球面)d21= 1.800 nd11=1.80400 νd11=46.57 r22= 66.1420 d22=(可変) r23= 323.3140 d23= 3.500 nd12=1.76182 νd12=26.52 r24= -47.6200 d24= 1.800 r25= -26.6440(非球面)d25= 2.000 nd13=1.80400 νd13=46.57 r26= 330.6980 非球面係数 第18面 P = 1.0000 A4 = 0.15660×10-4 A6 = 0.15389×10-7 A8 =-0.34018×10-9 A10= 0.23221×10-11 第21面 P = 1.0000 A4 =-0.69516×10-5 A6 =-0.37838×10-7 A8 = 0.18367×10-9 A10=-0.15531×10-11 第25面 P = 1.0000 A4 = 0.79001×10-5 A6 = 0.17288×10-7 A8 =-0.75567×10-10 A10= 0.52462×10-12 。Example 3 f = 39.1 to 75.5 to 145.5 F NO = 3.6 to 5.4 to 8.0 2ω = 57.84 to 31.93 to 16.89 ° f B = 7.0 to 22.3 to 65.5 β 3 = 1.36 to 1.79 to 2.27 β 4 = 1.07 to 1.27 to 1.83 r 1 = 43.7150 d 1 = 2.000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 31.7650 d 2 = 0.920 r 3 = 27.2710 d 3 = 5.000 n d2 = 1.51454 ν d2 = 54.69 r 4 = 270.8610 d 4 = (variable) r 5 = -30.0870 d 5 = 1.300 n d3 = 1.88300 ν d3 = 40.78 r 6 = 18.5320 d 6 = 1.690 r 7 = 33.8190 d 7 = 3.500 n d4 = 1.84666 ν d4 = 23.78 r 8 = -59.0100 d 8 = 1.450 r 9 = -27.1000 d 9 = 1.200 n d5 = 1.72916 ν d5 = 54.68 r 10 = -35.0200 d 10 = 2.120 r 11 = ∞ ( stop) d 11 = 1.700 r 12 = 78.9010 d 12 = 3.000 n d6 = 1.56732 ν d6 = 42.83 r 13 = -54.2940 d 13 = 0.200 r 14 = 33.5370 d 14 = 3.000 n d7 = 1.56732 ν d7 = 42.83 r 15 = -71.2530 d 15 = 0.650 r 16 = 481.5710 d 16 = 1.500 n d8 = 1.80518 ν d8 = 25.43 r 17 = 16.3100 d 17 = 6.0 00 n d9 = 1.51633 ν d9 = 64.15 r 18 = -21.3560 (aspherical surface) d 18 = (variable) r 19 = -45.3540 d 19 = 3.500 n d10 = 1.76182 ν d10 = 26.52 r 20 = -25.2940 d 20 = 2.050 r 21 = -30.8570 (aspherical) d 21 = 1.800 n d11 = 1.80400 ν d11 = 46.57 r 22 = 66.1420 d 22 = ( variable) r 23 = 323.3140 d 23 = 3.500 n d12 = 1.76182 ν d12 = 26.52 r 24 = -47.6200 d 24 = 1.800 r 25 = -26.6440 (aspherical surface) d 25 = 2.000 n d13 = 1.80400 ν d13 = 46.57 r 26 = 330.6980 Aspheric coefficient 18th surface P = 1.0000 A 4 = 0.15660 × 10 -4 A 6 = 0.15389 × 10 -7 A 8 = -0.34018 × 10 -9 A 10 = 0.23221 × 10 -11 21st surface P = 1.0000 A 4 = -0.69516 × 10 -5 A 6 = -0.37838 × 10 -7 A 8 = 0.18367 × 10 -9 A 10 = -0.15531 × 10 -11 25th surface P = 1.0000 A 4 = 0.79001 × 10 -5 A 6 = 0.17288 x 10 -7 A 8 = -0.75567 x 10 -10 A 10 = 0.52462 x 10 -12 .
【0046】 実施例4 f = 28.8 〜 54.2 〜101.9 FNO= 4.6 〜 6.1 〜 8.0 2ω= 73.74 〜 43.46 〜 23.94° fB = 4.5 〜 23.7 〜 50.4 β3 = 1.10 〜 1.19 〜 1.24 β4 = 1.20 〜 1.86 〜 2.78 r1 = -104.8750 d1 = 2.000 nd1 =1.83400 νd1 =37.16 r2 = 37.2890 d2 = 5.000 nd2 =1.51742 νd2 =52.41 r3 = -81.2180 d3 = 0.200 r4 = 36.4760 d4 = 4.500 nd3 =1.58904 νd3 =53.20 r5 = -143.1600 d5 =(可変) r6 = -30.7210 d6 = 1.000 nd4 =1.77250 νd4 =49.66 r7 = 12.8240 d7 = 0.790 r8 = 17.3610 d8 = 3.000 nd5 =1.78472 νd5 =25.68 r9 = -92.8180 d9 = 1.500 r10= ∞(絞り) d10= 2.500 r11= 41.2990 d11= 3.880 nd6 =1.51633 νd6 =64.15 r12= -24.7180(非球面)d12= 0.750 r13= -30.9670 d13= 1.200 nd7 =1.80518 νd7 =25.43 r14= 21.6900 d14= 5.200 nd8 =1.69680 νd8 =55.52 r15= -14.2150 d15=(可変) r16= -52.4040 d16= 3.500 nd9 =1.78472 νd9 =25.68 r17= -19.5360 d17= 1.250 r18= -20.0760 d18= 1.600 nd10=1.77250 νd10=49.66 r19= -393.6420 d19=(可変) r20= -18.3260 d20= 2.200 nd11=1.72916 νd11=54.68 r21= -140.0870 非球面係数 第12面 P = 1.0000 A4 = 0.77132×10-4 A6 = 0.33027×10-6 A8 =-0.24906×10-8 A10= 0.38477×10-10 。Example 4 f = 28.8 to 54.2 to 101.9 F NO = 4.6 to 6.1 to 8.0 2ω = 73.74 to 43.46 to 23.94 ° f B = 4.5 to 23.7 to 50.4 β 3 = 1.10 to 1.19 to 1.24 β 4 = 1.20 to 1.86 to 2.78 r 1 = -104.8750 d 1 = 2.000 n d1 = 1.83400 ν d1 = 37.16 r 2 = 37.2890 d 2 = 5.000 n d2 = 1.51742 ν d2 = 52.41 r 3 = -81.2180 d 3 = 0.200 r 4 = 36.4760 d 4 = 4.500 n d3 = 1.58904 ν d3 = 53.20 r 5 = -143.1600 d 5 = (variable) r 6 = -30.7210 d 6 = 1.000 n d4 = 1.77250 ν d4 = 49.66 r 7 = 12.8240 d 7 = 0.790 r 8 = 17.3610 d 8 = 3.000 n d5 = 1.78472 ν d5 = 25.68 r 9 = -92.8180 d 9 = 1.500 r 10 = ∞ (aperture) d 10 = 2.500 r 11 = 41.2990 d 11 = 3.880 n d6 = 1.51633 ν d6 = 64.15 r 12 = -24.7180 (aspherical surface) d 12 = 0.750 r 13 = -30.9670 d 13 = 1.200 n d7 = 1.80518 ν d7 = 25.43 r 14 = 21.6900 d 14 = 5.200 n d8 = 1.69680 ν d8 = 55.52 r 15 = -14.2150 d 15 = (variable) r 16 = -52.4040 d 16 = 3.500 n d9 = 1. 78472 ν d9 = 25.68 r 17 = -19.5360 d 17 = 1.250 r 18 = -20.0760 d 18 = 1.600 n d10 = 1.77250 ν d10 = 49.66 r 19 = -393.6420 d 19 = (variable) r 20 = -18.3260 d 20 = 2.200 n d11 = 1.72916 ν d11 = 54.68 r 21 = -140.0870 Aspheric coefficient 12th surface P = 1.0000 A 4 = 0.77132 × 10 -4 A 6 = 0.33027 × 10 -6 A 8 = -0.24906 × 10 -8 A 10 = 0.38477 × 10 -10 .
【0047】以上の実施例1〜4の広角端(a)、中間
焦点距離(b)、望遠端(c)における無限遠物点に対
する球面収差、非点収差、歪曲収差、倍率色収差を表す
収差図をそれぞれ図7〜図10に示す。Aberrations representing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification with respect to the object point at infinity at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) of Examples 1 to 4 above. The figures are shown in FIGS. 7 to 10, respectively.
【0048】また、次の表に各実施例における条件式
(1)〜(6)の数値を示す。表中、Riはレンズ面番
号を、Yは非球面量ΔP 、ΔN を計算するときの有効半
径を示す。The following table shows the numerical values of the conditional expressions (1) to (6) in each example. In the table, Ri the lens surface number, Y denotes an effective radius when calculating the aspherical amount Δ P, Δ N.
【0049】 [0049]
【0050】[0050]
【発明の効果】本発明の構成により、正・正・負・負の
4群ズームレンズタイプにおいて、高変倍比でありなが
らコンパクトなズームレンズを得ることができる。According to the structure of the present invention, in the positive / positive / negative / negative 4-group zoom lens type, it is possible to obtain a compact zoom lens having a high zoom ratio.
【図1】本発明による4群タイプズームレンズの群の配
置と移動軌跡を示す図である。FIG. 1 is a diagram showing the arrangement and movement loci of groups of a four-group type zoom lens according to the present invention.
【図2】従来の3群タイプズームレンズの群の配置と移
動軌跡を示す図である。FIG. 2 is a diagram showing the arrangement and movement loci of groups of a conventional three-group type zoom lens.
【図3】実施例1の広角端(a)及び望遠端(b)のレ
ンズ断面図である。FIG. 3 is a lens cross-sectional view of a wide-angle end (a) and a telephoto end (b) of the first embodiment.
【図4】実施例2の図3と同様なレンズ断面図である。4 is a lens cross-sectional view similar to FIG. 3 of Example 2. FIG.
【図5】実施例3の図3と同様なレンズ断面図である。FIG. 5 is a lens sectional view similar to FIG. 3 of Example 3;
【図6】実施例4の図3と同様なレンズ断面図である。6 is a lens cross-sectional view similar to FIG. 3 of Example 4. FIG.
【図7】実施例1の広角端(a)、中間焦点距離
(b)、望遠端(c)における無限遠物点に対する球面
収差、非点収差、歪曲収差、倍率色収差を表す収差図で
ある。FIG. 7 is an aberration diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification for an object point at infinity at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) in Example 1. .
【図8】実施例2の図7と同様な収差図である。FIG. 8 is an aberration diagram similar to FIG. 7 of Example 2.
【図9】実施例3の図7と同様な収差図である。FIG. 9 is an aberration diagram similar to FIG. 7 of Example 3.
【図10】実施例4の図7と同様な収差図である。FIG. 10 is an aberration diagram similar to FIG. 7 of Example 4.
G1…第1群 G2…第2群 G3…第3群 G4…第4群 G1 ... 1st group G2 ... Second group G3 ... Group 3 G4 ... Group 4
フロントページの続き Fターム(参考) 2H087 KA02 KA03 LA01 PA09 PA11 PA12 PA18 PA19 PB11 PB12 PB13 QA02 QA03 QA06 QA07 QA17 QA19 QA21 QA25 QA26 QA37 QA39 QA41 QA42 QA45 QA46 RA05 RA13 RA32 SA23 SA26 SA30 SA33 SA62 SA63 SA64 SA65 SB03 SB04 SB16 SB17 SB23 SB32 SB33 Continued front page F term (reference) 2H087 KA02 KA03 LA01 PA09 PA11 PA12 PA18 PA19 PB11 PB12 PB13 QA02 QA03 QA06 QA07 QA17 QA19 QA21 QA25 QA26 QA37 QA39 QA41 QA42 QA45 QA46 RA05 RA13 RA32 SA23 SA26 SA30 SA33 SA62 SA63 SA64 SA65 SB03 SB04 SB16 SB17 SB23 SB32 SB33
Claims (8)
正屈折力の第2群と、負屈折力の第3群と、負屈折力の
第4群とからなり、各群の間隔を変えて変倍するズーム
レンズにおいて、広角域から望遠域への変倍に際してこ
れらの4つの群が物体側へ移動し、 以下の条件式(6)を満足することを特徴とする高変倍
4群ズームレンズ。 1.7<NN ・・・・(6) ただし、NN は第3群及び第4群に含まれる負レンズの
屈折率の平均値である。1. A first group having positive refracting power in order from the object side,
In a zoom lens that includes a second lens unit having a positive refractive power, a third lens unit having a negative refractive power, and a fourth lens unit having a negative refractive power, and varying the distance between the respective lens units, zooming from a wide-angle range to a telephoto range. A high-magnification four-group zoom lens, characterized in that these four groups move toward the object side during zooming and satisfy the following conditional expression (6). 1.7 <N N (6) where N N is the average value of the refractive indices of the negative lenses included in the third group and the fourth group.
の変倍に際して第3群及び第4群の倍率が共に増加する
ように移動することを特徴とする高変倍4群ズームレン
ズ。2. A high-magnification four-group zoom lens according to claim 1, wherein the third lens group and the fourth lens group move so that the magnifications of both the third lens group and the fourth lens group increase during zooming from the wide-angle range to the telephoto range.
なくとも1面の非球面を有することを特徴とする高変倍
4群ズームレンズ。3. The high variable power four-group zoom lens according to claim 1 or 2, wherein at least one aspherical surface is included in the second group.
記第1群と前記第2群の間隔は増大し、前記第2群と前
記第3群の間隔は減少するように移動することを特徴と
する請求項1記載の高変倍4群ズームレンズ。4. When zooming from a wide-angle range to a telephoto range, the distance between the first group and the second group increases and the distance between the second group and the third group decreases. The high-magnification 4-group zoom lens according to claim 1.
満足することを特徴とする請求項4記載の高変倍4群ズ
ームレンズ。 0.3<|f34|/fW <1.1 ・・・・(1) 1<β3W ・・・・(2) 1<β4W ・・・・(3) ただし、fW は広角端における全系の焦点距離、f34は
広角端における第3群と第4群の合成焦点距離、β3W、
β4Wはそれぞれ広角端における第3群と第4群の近軸横
倍率である。5. The high variable power 4 group zoom lens according to claim 4, wherein the following conditional expressions (1), (2) and (3) are satisfied. 0.3 <| f 34 | / f W <1.1 ··· (1) 1 <β 3W ··· (2) 1 <β 4W ··· (3) where f W is wide angle The focal length of the entire system at the edge, f 34 is the combined focal length of the third group and the fourth group at the wide-angle end, β 3W ,
β 4W is the paraxial lateral magnification of the third group and the fourth group at the wide-angle end, respectively.
面の非球面が、以下の条件式(4)を満足することを特
徴とする請求項3記載の高変倍4群ズームレンズ。 0<ΔP /φP ,φP =(nP'−nP )/rP ・・・・(4) ただし、rP は非球面の近軸曲率半径、nP 、nP'は非
球面の前後の媒質の屈折率、ΔP は有効半径における非
球面量である。6. At least one used in said second group
4. The high-magnification 4-group zoom lens according to claim 3, wherein the aspherical surface satisfies the following conditional expression (4). 0 <Δ P / φ P, φ P = (n P '-n P) / r P ···· (4) However, r P is a paraxial radius of curvature of the aspherical surface, n P, n P' non Refractive index of the medium before and after the spherical surface, Δ P is the amount of aspherical surface at the effective radius.
くとも1面の非球面を用いたことを特徴とする請求項6
記載の高変倍4群ズームレンズ。7. The at least one aspherical surface is also used for the third group or the fourth group.
The high-magnification 4-group zoom lens described.
少なくとも1面の非球面は、以下の条件式(5)を満足
することを特徴とする請求項7記載の高変倍4群ズーム
レンズ。 ΔN /φN <0,φN =(nN'−nN )/rN ・・・・(5) ただし、rN は非球面の近軸曲率半径、nN 、nN'は非
球面の前後の媒質の屈折率、ΔN は有効半径における非
球面量である。8. The high variable power 4th group according to claim 7, wherein at least one aspherical surface used in said 3rd group or 4th group satisfies the following conditional expression (5). Zoom lens. Δ N / φ N <0, φ N = (n N '-n N) / r N ···· (5) However, r N is the paraxial radius of curvature of the aspherical surface, n N, n N' Non Refractive index of the medium before and after the spherical surface, Δ N is the amount of aspherical surface at the effective radius.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002259570A JP3866174B2 (en) | 2002-09-05 | 2002-09-05 | High magnification 4 group zoom lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002259570A JP3866174B2 (en) | 2002-09-05 | 2002-09-05 | High magnification 4 group zoom lens |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5220028A Division JPH0772392A (en) | 1993-09-03 | 1993-09-03 | Highly variable power four-group zoom lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003107353A true JP2003107353A (en) | 2003-04-09 |
JP3866174B2 JP3866174B2 (en) | 2007-01-10 |
Family
ID=19196711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002259570A Expired - Fee Related JP3866174B2 (en) | 2002-09-05 | 2002-09-05 | High magnification 4 group zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3866174B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8379309B2 (en) | 2010-09-13 | 2013-02-19 | Panasonic Corporation | Zoom lens system, interchangeable lens apparatus and camera system |
-
2002
- 2002-09-05 JP JP2002259570A patent/JP3866174B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8379309B2 (en) | 2010-09-13 | 2013-02-19 | Panasonic Corporation | Zoom lens system, interchangeable lens apparatus and camera system |
Also Published As
Publication number | Publication date |
---|---|
JP3866174B2 (en) | 2007-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3253405B2 (en) | Two-group zoom lens | |
JP3590807B2 (en) | Zoom lens | |
JPH08327907A (en) | Zoom lens | |
JP3365835B2 (en) | Compact 3-group zoom lens | |
JP5006514B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2001194586A (en) | Zoom lens and photographing device using the same | |
JP3352227B2 (en) | Zoom lens | |
JP3140489B2 (en) | Zoom lens | |
JP3162114B2 (en) | Two-group zoom lens | |
JPH07253542A (en) | Zoom lens | |
JP4708734B2 (en) | Zoom lens and imaging apparatus having the same | |
JP3302063B2 (en) | Rear focus compact zoom lens | |
JP3060117B2 (en) | Compact 3-group zoom lens | |
US6008953A (en) | Zoom lens | |
JP3211481B2 (en) | Zoom lens | |
JP3429578B2 (en) | Small rear focus zoom lens | |
JP4488283B2 (en) | Afocal zoom lens for microscope | |
JP2000275522A (en) | Zoom lens | |
JP3366101B2 (en) | High zoom ratio 2-group zoom lens | |
JP3593400B2 (en) | Rear focus zoom lens | |
JPH05188296A (en) | Small-sized three-group zoom lens | |
JP3310319B2 (en) | Two-group zoom lens | |
JP3414519B2 (en) | Camera using a small 3-group zoom lens | |
JP3984231B2 (en) | Zoom lens | |
JP3245469B2 (en) | Two-group zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061004 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101013 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101013 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121013 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |