JP3984231B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP3984231B2
JP3984231B2 JP2004028820A JP2004028820A JP3984231B2 JP 3984231 B2 JP3984231 B2 JP 3984231B2 JP 2004028820 A JP2004028820 A JP 2004028820A JP 2004028820 A JP2004028820 A JP 2004028820A JP 3984231 B2 JP3984231 B2 JP 3984231B2
Authority
JP
Japan
Prior art keywords
group
lens
positive
refractive power
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004028820A
Other languages
Japanese (ja)
Other versions
JP2004163980A (en
Inventor
勉 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004028820A priority Critical patent/JP3984231B2/en
Publication of JP2004163980A publication Critical patent/JP2004163980A/en
Application granted granted Critical
Publication of JP3984231B2 publication Critical patent/JP3984231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Description

本発明はズームレンズに関し、特にビデオカメラに適した広画角のズームレンズに関するものである。     The present invention relates to a zoom lens, and more particularly to a wide-angle zoom lens suitable for a video camera.

近年、民生用のビデオカメラ用のズームレンズの従来例としては、例えば、特開昭62−178917号公報に記載されているような物体側から正、負、正、正の4群構成で、第2群が変倍作用を有し、又第4群が変倍による像位置の補正とフォーカシングを行うタイプのレンズ系が主流となっている。このタイプのズームレンズの多くは、広角端の画角(2ω)が50°程度である。又他の従来例として特開平5−72475号あるいは特開平5−134178号に記載されているレンズ系のように画角が60°程度のレンズ系も知られている。前者の従来例は第1群の構成を工夫することにより、後者の従来例は絞りを移動することにより、広角化を実現したものである。     In recent years, as a conventional example of a zoom lens for a consumer video camera, for example, a positive, negative, positive, positive four-group configuration from the object side as described in JP-A-62-178917, The second group has a zooming action, and the fourth group is a type of lens system that performs image position correction and focusing by zooming. Many zoom lenses of this type have an angle of view (2ω) at the wide-angle end of about 50 °. As another conventional example, a lens system having an angle of view of about 60 °, such as a lens system described in JP-A-5-72475 or JP-A-5-134178, is also known. The former conventional example devises the configuration of the first group, and the latter conventional example realizes a wide angle by moving the diaphragm.

しかしながら、前者の従来例の場合、第1群の構成が複雑であり、第1群のレンズ枚数が多くなってしまう。又、後者の従来例の場合鏡枠構成が複雑になる。     However, in the case of the former conventional example, the configuration of the first group is complicated, and the number of lenses in the first group increases. In the latter conventional example, the structure of the lens frame is complicated.

本発明はこのような状況に鑑みてなされたものであり、その目的は、レンズ構成及び鏡枠構成を複雑にすることなしにビデオカメラに適した広画角のズームレンズを提供することである。     The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wide-angle zoom lens suitable for a video camera without complicating the lens configuration and the lens frame configuration. .

前述の従来の4群構成のズームレンズでは、第2群が主として変倍作用を持ち、一方、第4群は変倍に伴う像位置の補正を行い、変倍作用をほとんど持たない。そのため、広角端から望遠端に変倍する際、第4群は一旦物体側に移動した後、像側に移動し、広角端と望遠端でほぼ同じ位置にある。このタイプのズームレンズにおいては、第2群で効率よく変倍するために、第1群の正の屈折力を強くする必要があり、そのため、広角側で第1群を通る軸外光線高が高くなり、広画角化が困難であった。     In the above-described conventional four-group zoom lens, the second group mainly has a zooming action, while the fourth group corrects the image position accompanying the zooming and has almost no zooming action. For this reason, when zooming from the wide-angle end to the telephoto end, the fourth lens group once moves to the object side, then moves to the image side, and is at substantially the same position at the wide-angle end and the telephoto end. In this type of zoom lens, it is necessary to increase the positive refractive power of the first group in order to efficiently change the magnification in the second group. Therefore, the off-axis ray height passing through the first group on the wide angle side is high. It became high and it was difficult to widen the angle of view.

本発明のズームレンズは、物体側より順に、正の屈折力を有する第1群、負の屈折力を有する第2群、正または負の屈折力を有する第3群、正の屈折力を有する第4群にて構成し、変倍の際、第2群と第4群を移動し、第4群は広角端から望遠端にかけて物体側へ単調に移動し、かつ、以下の条件を満足することを特徴とする広い角面のレンズ系である。     The zoom lens of the present invention has, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive or negative refractive power, and a positive refractive power. Consists of the fourth group, and when zooming, moves the second group and the fourth group. The fourth group monotonously moves from the wide-angle end to the telephoto end toward the object side, and satisfies the following conditions: This is a wide-angle lens system characterized by that.

(1) 0<f4 /f1 <0.45
(2) −1.6<β4T<−0.5
但し、f1 は第1群の焦点距離、f4 は第4群の焦点距離、β4Tは第4群の望遠端での倍率である。
(1) 0 <f 4 / f 1 <0.45
(2) −1.6 <β 4T <−0.5
Here, f 1 is the focal length of the first group, f 4 is the focal length of the fourth group, and β 4T is the magnification at the telephoto end of the fourth group.

本発明のズームレンズは、第4群を広角端から望遠端にかけて物体側へ単調に移動し、第4群に主な変倍作用を持たせている。そのため、第2群での変倍作用を軽減できるので、第1群の屈折力を小さくでき、広画角化が可能となる。さらに、第4群で効率の良い変倍作用を持たせるために、第1群に比べ十分に強い屈折力、及び適切な結像倍率を持たせている。     In the zoom lens of the present invention, the fourth group moves monotonously from the wide angle end to the telephoto end toward the object side, and the fourth group has a main zooming action. Therefore, the zooming action in the second group can be reduced, so that the refractive power of the first group can be reduced and a wide angle of view can be achieved. Further, in order to have an efficient zooming action in the fourth group, the lens has a sufficiently strong refractive power and an appropriate imaging magnification compared to the first group.

条件(1)は、第1群と第4群の屈折力の比を規定したものである。条件(1)の上限値の0.45を越えると、第1群を通る軸外光線高が高くなり、第1群が増大し、広画角化が困難になる。条件(1)の下限値の0を越えると、第2群での変倍の効率が悪くなり、レンズの全長が大きくなる。     Condition (1) defines the ratio of the refractive powers of the first group and the fourth group. If the upper limit of 0.45 of the condition (1) is exceeded, the height of off-axis rays passing through the first group becomes high, the first group increases, and it becomes difficult to widen the angle of view. If the lower limit of 0 in the condition (1) is exceeded, the zooming efficiency in the second lens unit will deteriorate, and the total length of the lens will increase.

条件(2)は、第4群の望遠端での倍率を規定したものである。条件(2)の上限値の−0.5を越えると、第4群での変倍の効率が悪くなり、レンズの全長が大きくなる。条件(2)の下限値の−1.6を越えると、第1群から第3群までの合成の屈折力が過度に強くなり、広角化が困難である。     Condition (2) defines the magnification at the telephoto end of the fourth lens group. If the upper limit of −0.5 of the condition (2) is exceeded, the zooming efficiency in the fourth lens unit becomes poor and the total length of the lens becomes large. When the lower limit of −1.6 of condition (2) is exceeded, the combined refractive power from the first group to the third group becomes excessively strong, making it difficult to widen the angle.

以上のように本発明では第2群と第4群で効率良く変倍を行うことが出来る。そのため変倍の際に前記第1群と前記第3群は固定にすることが可能であり、機構上望ましい。     As described above, in the present invention, zooming can be performed efficiently in the second group and the fourth group. Therefore, the first group and the third group can be fixed during zooming, which is desirable in terms of mechanism.

本発明のように、広画角のレンズ系であって、特に小さな撮像素子を用いる場合は、被写界深度が深くフォーカシングを行わなくても通常の撮影が可能である。しかし、より近距離まで撮影する場合は、フォーカシングを行なう必要がある。     When the lens system has a wide angle of view and uses a small image sensor as in the present invention, normal shooting can be performed without deep focusing and without performing focusing. However, when shooting to a closer distance, it is necessary to perform focusing.

本発明のズームレンズにおいては、第2群を光軸に沿って移動させてフォーカシングを行なうのが望ましい。本発明のズームレンズでは第2群が比較的結像倍率の絶対値が小さく、第2群でフォーカシングすることに適している。さらに、広角端に対し、望遠端では、第2群は像側へ位置するので、望遠側に於て2群でフォーカシングを行うための間隔が十分確保でき、より近距離まで撮影することに適している。第2群でフォーカシングする場合、下記条件(3)を満足することが好ましい。     In the zoom lens of the present invention, it is desirable to perform focusing by moving the second group along the optical axis. In the zoom lens of the present invention, the second group has a relatively small absolute value of the imaging magnification and is suitable for focusing with the second group. Furthermore, since the second lens unit is located on the image side at the telephoto end with respect to the wide-angle end, a sufficient interval for focusing on the second lens unit can be secured on the telephoto side, which is suitable for photographing at a closer distance. ing. When focusing in the second group, it is preferable that the following condition (3) is satisfied.

(3) −0.6<β2T<0
但し、β2Tは第2群の望遠端での倍率である。
(3) −0.6 <β 2T <0
Where β 2T is the magnification at the telephoto end of the second lens group.

条件(3)の、下限値の−0.6を越えるとフォーカシングの繰り出し量が大きくなり好ましくない。又、上限値の0を越えた場合、第2群の変倍効率が悪くなり、レンズ全長が増大する。     If the lower limit of -0.6 in condition (3) is exceeded, the amount of focusing will increase, which is not preferable. On the other hand, when the upper limit of 0 is exceeded, the zooming efficiency of the second lens unit becomes worse and the total lens length increases.

次に、絞りの位置に関して、絞りを第2群と第4群の間に配置し、光軸上に固定することが望ましい。広画角化とレンズ構成及び鏡枠構成の簡素化を両立するためには、絞り位置が重要である。広画角化に際して絞りをほぼ光学系の中心に配置することにより、第1群及び第4群の小型化に有利である。そのため、本発明のレンズ系では、絞りを第2群と第4群の間に配置することが望ましく、さらに、光軸上で、固定とすれば鏡枠構成が複雑になることがない。     Next, with respect to the position of the stop, it is desirable that the stop be disposed between the second group and the fourth group and fixed on the optical axis. In order to achieve both a wide angle of view and simplification of the lens configuration and the lens frame configuration, the aperture position is important. Arranging the stop substantially at the center of the optical system for widening the angle of view is advantageous for downsizing the first group and the fourth group. Therefore, in the lens system of the present invention, it is desirable to dispose the stop between the second group and the fourth group, and further, if it is fixed on the optical axis, the lens frame configuration does not become complicated.

次にレンズ系を小型化にするためには、下記条件(4)を満足することが好ましい。     Next, in order to reduce the size of the lens system, it is preferable to satisfy the following condition (4).

(4) 1.2Xβ2T/β2W<β4T/β4W<5.6Xβ2T/β2W
但し、β2Wは第2群の広角端での倍率、β2Tは第2群の望遠端での倍率、β4Wは第4群の広角端での倍率、β4Tは第4群の望遠端での倍率である。
(4) 1.2Xβ 2T / β 2W4T / β 4W <5.6Xβ 2T / β 2W
Where β 2W is the magnification at the wide-angle end of the second group, β 2T is the magnification at the telephoto end of the second group, β 4W is the magnification at the wide-angle end of the fourth group, and β 4T is the telephoto end of the fourth group It is the magnification at.

条件(4)は、第2群と第4群の変倍の分担を定めたものである。条件(4)の下限を越えると、第2群の変倍の分担量が大きくなり、広角側で第1群を通る軸外光線が高くなり第1群の大きさが増大する。上限を越えると、広角側で第4群を通る軸外光線が高くなり第4群の径が大になり大型化する。     Condition (4) defines the sharing of magnification between the second group and the fourth group. If the lower limit of the condition (4) is exceeded, the amount of change in magnification of the second group increases, the off-axis rays passing through the first group increase on the wide angle side, and the size of the first group increases. When the upper limit is exceeded, off-axis rays passing through the fourth group on the wide angle side become high, and the diameter of the fourth group becomes large, resulting in an increase in size.

又、レンズ系を小型化しかつ性能を確保するためには、次の条件(5),(6),(7)を満足することが好ましい。     In order to reduce the size of the lens system and ensure performance, it is preferable to satisfy the following conditions (5), (6), and (7).

(5) 0<fW /f1 <0.2
(6) 0.2<fW /f4 <0.7
(7) −0.2<f4 /f3 <0.6
但し、fW は広角端での全系の焦点距離、f4 は第4群の焦点距離、f3 は第3群の焦点距離である。
(5) 0 <f W / f 1 <0.2
(6) 0.2 <f W / f 4 <0.7
(7) -0.2 <f 4 / f 3 <0.6
However, f W is the focal length of the entire system at the wide angle end, f 4 is the focal length of the fourth group, and f 3 is the focal length of the third group.

条件(5)は、第1群の焦点距離を規定したものである。この条件(5)の上限値の0.2を越えると、第1群の大きさが増大し、広画角化には不利である。条件(5)の下限値の0を越えると、広角側で、負の歪曲収差の補正に不利である。     Condition (5) defines the focal length of the first group. If the upper limit of 0.2 of the condition (5) is exceeded, the size of the first group increases, which is disadvantageous for widening the angle of view. Exceeding the lower limit of 0 in condition (5) is disadvantageous for correcting negative distortion on the wide angle side.

条件(6)は、第4群の焦点距離を規定したものである。この条件(6)の上限値0.7を越えると、変倍による収差の変動が大きくなる。又条件(6)の下限値の0.2を越えると、第4群の移動量が大きくなり、全長が増大する。     Condition (6) defines the focal length of the fourth group. If the upper limit of 0.7 of the condition (6) is exceeded, the variation in aberration due to zooming increases. On the other hand, if the lower limit of 0.2 of the condition (6) is exceeded, the moving amount of the fourth group becomes large and the total length increases.

条件(7)は、第3群と第4群の焦点距離の比を規定したものである。条件(7)の上限値の0.6を越えるとバックフォーカスの確保にとって不利であり、光学フィルターなどの配置に不利になる。下限値の−0.2を越えると、第4群での軸上光線が高くなり、大口径化に不利である。     Condition (7) defines the ratio of the focal lengths of the third group and the fourth group. If the upper limit of 0.6 of condition (7) is exceeded, it is disadvantageous for securing the back focus, and it is disadvantageous for the arrangement of optical filters and the like. If the lower limit of −0.2 is exceeded, the on-axis light beam in the fourth group becomes high, which is disadvantageous for increasing the aperture.

次に、前記の本発明のズームレンズにおいて、第4群に非球面を導入する場合、非球面の位置に応じて以下のようにすることが好ましい。     Next, in the zoom lens of the present invention, when an aspherical surface is introduced into the fourth group, it is preferable that the following is performed according to the position of the aspherical surface.

第4群を物体側から順に、正レンズ、物体側に凸面を向けた負のメニスカスレンズ、正レンズの3枚のレンズで構成し、最も物体側の正レンズが非球面を含む構成の場合は、負のメニスカスレンズが下記条件(8)を満足することが望ましい。     In the case where the fourth group is composed of three lenses in order from the object side, a positive lens, a negative meniscus lens having a convex surface facing the object side, and a positive lens, and the most positive lens on the object side includes an aspherical surface. It is desirable that the negative meniscus lens satisfies the following condition (8).

(8) 1.1<(rF +rR )/(rF −rR )<4.0
但し、rF は第4群の負のメニスカスレンズの物体側の面の曲率半径、rR は第4群の負のメニスカスレンズの像側の面の曲率半径である。
(8) 1.1 <(r F + r R ) / (r F −r R ) <4.0
Where r F is the radius of curvature of the object side surface of the negative meniscus lens of the fourth group, and r R is the radius of curvature of the image side surface of the negative meniscus lens of the fourth group.

前記のように第4群の最も物体側の正レンズに非球面を導入する場合は、非球面により主に球面収差を補正できるので、負レンズは非点収差などの軸外収差の補正に有利な物体側に凸面を向けたメニスカス形状にするのが好ましく、その場合、3枚と簡単な構成とすることができる。条件(8)の下限値の1.1を越えると軸外収差が補正不足となり、上限値の4.0を越えると軸外収差が補正過剰となる。     As described above, when an aspherical surface is introduced into the positive lens closest to the object side in the fourth group, spherical aberration can be mainly corrected by the aspherical surface, so the negative lens is advantageous for correcting off-axis aberrations such as astigmatism. It is preferable to use a meniscus shape with a convex surface facing the object side. In that case, a simple configuration of three can be achieved. If the lower limit value 1.1 of the condition (8) is exceeded, the off-axis aberration will be undercorrected, and if the upper limit value 4.0 is exceeded, the off-axis aberration will be overcorrected.

一方、第4群のもっとも像側の正レンズに非球面を導入する場合は、以下のようにするのが望ましい。つまり、第4群を物体側から順に、正レンズ、両凹負レンズ、正レンズの3枚のレンズで構成し、最も像側の正レンズが非球面を含む構成とし、負レンズが下記条件(9)を満足することが望ましい。     On the other hand, when an aspherical surface is introduced to the most image-side positive lens in the fourth group, it is desirable to do the following. That is, the fourth lens group is composed of three lenses in order from the object side: a positive lens, a biconcave negative lens, and a positive lens. The most positive lens on the image side includes an aspheric surface. It is desirable to satisfy 9).

(9) −0.9<(rF +rR )/(rF −rR )<0.9
但し、rF は第4群の負レンズの物体側の面の曲率半径、rR は第4群の負レンズの像側の面の曲率半径である。
(9) −0.9 <(r F + r R ) / (r F −r R ) <0.9
Where r F is the radius of curvature of the object-side surface of the negative lens in the fourth group, and r R is the radius of curvature of the image-side surface of the negative lens in the fourth group.

前記のように第4群のもっとも像側の正レンズに非球面を導入する場合は、非球面により、非点収差などの軸外収差の補正の効果が強くなるので、負レンズは、球面収差の補正にも有利な両凹形状にするのが好ましく、この場合も3枚と簡単な構成とすることができる。条件(9)の下限値の−0.9を越えると軸外収差が補正不足となり、上限値の0.9を越えると軸外収差が補正過剰となる。     As described above, when an aspherical surface is introduced into the fourth lens unit's most image-side positive lens, the aspherical surface enhances the effect of correcting off-axis aberrations such as astigmatism. It is preferable to use a biconcave shape that is also advantageous for correction of this, and in this case as well, a simple configuration of three sheets can be achieved. Exceeding the lower limit of -0.9 in condition (9) causes off-axis aberrations to be undercorrected, and exceeding the upper limit of 0.9 results in over-correction of off-axis aberrations.

以上、第4群に非球面を用いる場合について述べたが、第4群以外の群に、非球面を用いても、小型化やレンズ枚数を削減し得ることは言うまでもない。第4群以外で正の屈折力を持つ群に非球面を用いる場合は、この非球面を光軸から離れるにつれて、正の屈折力が弱くなるか、負の屈折力が強くなるような形状とするのがよい。また、負の屈折力を持つ群に非球面を用いる場合は、この非球面を光軸から離れるにつれて、負の屈折力が弱くなるか、正の屈折力が強くなるような形状とするのがよい。     The case where an aspherical surface is used for the fourth group has been described above, but it goes without saying that even if an aspherical surface is used for a group other than the fourth group, the size can be reduced and the number of lenses can be reduced. When an aspheric surface is used for a group having a positive refractive power other than the fourth group, a shape in which the positive refractive power becomes weaker or the negative refractive power becomes stronger as the aspheric surface is moved away from the optical axis. It is good to do. When an aspheric surface is used for a group having a negative refractive power, the shape of the aspheric surface is such that the negative refractive power decreases or the positive refractive power increases as the distance from the optical axis increases. Good.

次に、レンズの低価格化のためには、第1群を1枚の正レンズで構成するとよい。本発明のズームレンズは、広画角であるために、焦点距離が短く、さらに第1群の屈折力が比較的弱いため、第1群で発生する色収差は小さい。そのため、第1群は1枚の正レンズで構成することが可能である。同様の理由により、第3群を1枚の単レンズで構成しても良い。又、第1群あるいは第3群にプラスチックレンズを用いても良い。第1群及び第3群は屈折力が弱いため温度、湿度の変化による焦点位置の変動が小さいので、プラスチックレンズを用いるのに有利である。 Next, in order to reduce the cost of the lens, the first group may be composed of a single positive lens. Since the zoom lens of the present invention has a wide angle of view, the focal length is short, and the refractive power of the first group is relatively weak, so that the chromatic aberration generated in the first group is small. Therefore, the first group can be composed of one positive lens. For the same reason, the third group may be composed of one single lens. A plastic lens may be used for the first group or the third group. Since the first group and the third group have a weak refractive power, the variation in the focal position due to changes in temperature and humidity is small, which is advantageous for using a plastic lens.

尚、本発明のズームレンズにおいてフォーカシングを行う場合は、第2群で行うことが好ましいことはすでに述べたが、それ以外に、レンズ全体を移動させるかあるいは、撮像素子を移動させてフォーカシングを行なってもよい。     In the zoom lens according to the present invention, it has been described that it is preferable to perform focusing in the second lens group. However, in addition to this, focusing is performed by moving the entire lens or moving the image sensor. May be.

本発明によれば、4群ズームレンズでレンズ構成および鏡枠構成を複雑にすることなしに広角端の画角が70°程度であって、変倍比が3乃至4で高性能なビデオカメラに適したレンズ系を実現し得る。     According to the present invention, a high-performance video camera having a wide-angle field angle of about 70 ° and a zoom ratio of 3 to 4 without complicating the lens configuration and the lens frame configuration with a four-group zoom lens. Can be realized.

次に本発明のズームレンズの実施の形態を各実施例をもとに説明する。     Next, embodiments of the zoom lens according to the present invention will be described based on each example.

本発明のズームレンズの実施の形態は、図1乃至図10に示す実施例のように、物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正又は負の屈折力を有する第3群と、正の屈折力を有する第4群とよりなり、変倍の際に第2群と第4群が夫々図面に示すように移動するものである。又絞りは第2群と第3群又は第3群と第4群の間に配置され光軸上に固定されている。又フォーカシングは、実施例ではすべて第2群の移動により行なわれるが、レンズ系全体を移動させて行なってもよく又撮像素子を移動させて行なってもよい。     The embodiment of the zoom lens according to the present invention includes a first group having a positive refractive power and a second group having a negative refractive power in order from the object side, as in the embodiments shown in FIGS. The third group having positive or negative refractive power and the fourth group having positive refractive power, and the second group and the fourth group move as shown in the drawings at the time of zooming. is there. The diaphragm is disposed between the second group and the third group or between the third group and the fourth group, and is fixed on the optical axis. In the embodiment, focusing is performed by moving the second lens group, but may be performed by moving the entire lens system or by moving the image sensor.

尚図面には、第4群の像側に平行平面板が描かれているが、これらは光学フィルター等の光学部材を想定している。     In the drawing, a plane-parallel plate is drawn on the image side of the fourth group, but these are assumed to be optical members such as an optical filter.

次に各実施例について述べる。下記のデーターは、夫々の実施例を示している。     Next, each example will be described. The following data shows each example.

実施例1
f=4.80〜8.31〜14.40 ,F/2.80〜F/3.13〜F/4.36
2ω=70.0°〜41.4°〜24.4°
1 =30.2217 d1 =3.2000 n1 =1.48749 ν1 =70.21
2 =-404.5108 d2 =D1 (可変)
3 =28.5136 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =5.6270 d4 =3.9224
5 =-25.7015 d5 =1.0000 n3 =1.48749 ν3 =70.21
6 =11.1428 d6 =2.8000 n4 =1.72825 ν4 =28.46
7 =69.3916 (非球面)d7 =D2 (可変)
8 =∞(絞り) d8 =1.0000
9 =13.6604 d9 =2.1169 n5 =1.69680 ν5 =55.53
10=679.9383 d10=1.0000 n6 =1.56732 ν6 =42.83
11=12.3125 d11=D3 (可変)
12=7.6136(非球面) d12=3.2850 n7 =1.71300 ν7 =53.84
13=-113.6101 d13=0.1500
14=22.5870 d14=0.9866 n8 =1.84666 ν8 =23.78
15=7.0202 d15=0.8546
16=23.7991 d16=2.2000 n9 =1.77250 ν9 =49.60
17=-19.5845 d17=D4 (可変)
18=∞ d18=4.0000 n10=1.51633 ν10=64.15
19=∞ d19=1.0000
20=∞ d20=2.1000 n11=1.51633 ν11=64.15
21=∞ d21=4.2200 n12=1.61700 ν12=62.80
22=∞ d22=1.0000
23=∞ d23=0.8000 n13=1.51633 ν13=64.15
24=∞ d24=1.1997
25=∞(像面)
非球面係数
(第7面) P=1 ,A4 =-1.2573 ×10-4,A6 =-4.6430 ×10-6
8 =7.2449×10-8
(第12面)P=1 ,A4 =-3.0005 ×10-4,A6 =-3.9441 ×10-7
8 =-6.4617 ×10-8
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.53999 8.31778 11.20353
2 11.66566 4.88786 2.00212
3 8.25015 5.81382 1.50000
4 1.00000 3.43633 7.75015
ワイド スタンダード テレ
物体距離 200 10 10
1 0.99984 3.97914 6.95990
2 12.20580 9.22650 6.24575
3 8.25015 5.81382 1.50000
4 1.00000 3.43633 7.75015
結像倍率 −0.02197 -0.24014 -0.34722
NA −0.00392 -0.03838 -0.03984
4 /f1 =0.20,β4T=-0.96 ,β2T=-0.24
β4T/β4W=2.04(β2T/β2W),fW /f1 =0.08,fW /f4 =0.42
4 /f3 =0.10,(rF +rR )/(rF −rR )=1.90
Example 1
f = 4.80-8.31-14.40, F / 2.80-F / 3.13-F / 4.36
2ω = 70.0 ° -41.4 ° -24.4 °
r 1 = 30.2217 d 1 = 3.2000 n 1 = 1.48749 ν 1 = 70.21
r 2 = -404.5108 d 2 = D 1 (variable)
r 3 = 28.5136 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 5.6270 d 4 = 3.9224
r 5 = -25.7015 d 5 = 1.0000 n 3 = 1.48749 ν 3 = 70.21
r 6 = 11.1428 d 6 = 2.8000 n 4 = 1.72825 ν 4 = 28.46
r 7 = 69.3916 (aspherical surface) d 7 = D 2 (variable)
r 8 = ∞ (aperture) d 8 = 1.000
r 9 = 13.6604 d 9 = 2.1169 n 5 = 1.69680 ν 5 = 55.53
r 10 = 679.9383 d 10 = 1.0000 n 6 = 1.56732 ν 6 = 42.83
r 11 = 12.3125 d 11 = D 3 (variable)
r 12 = 7.6136 (aspherical surface) d 12 = 3.2850 n 7 = 1.71300 ν 7 = 53.84
r 13 = -113.6101 d 13 = 0.1500
r 14 = 22.5870 d 14 = 0.9866 n 8 = 1.84666 ν 8 = 23.78
r 15 = 7.0202 d 15 = 0.8546
r 16 = 23.7991 d 16 = 2.2000 n 9 = 1.77250 ν 9 = 49.60
r 17 = -19.5845 d 17 = D 4 (variable)
r 18 = ∞ d 18 = 4.0000 n 10 = 1.51633 ν 10 = 64.15
r 19 = ∞ d 19 = 1.000
r 20 = ∞ d 20 = 2.1000 n 11 = 1.51633 ν 11 = 64.15
r 21 = ∞ d 21 = 4.2200 n 12 = 1.61700 ν 12 = 62.80
r 22 = ∞ d 22 = 1.000
r 23 = ∞ d 23 = 0.8000 n 13 = 1.51633 ν 13 = 64.15
r 24 = ∞ d 24 = 1.1997
r 25 = ∞ (image plane)
Aspheric coefficient (7th surface) P = 1, A 4 = -1.2573 × 10 -4 , A 6 = -4.6430 × 10 -6
A 8 = 7.2449 × 10 -8
(Twelfth surface) P = 1, A 4 = -3.0005 × 10 −4 , A 6 = −3.9441 × 10 −7
A 8 = -6.4617 × 10 -8
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.53999 8.31778 11.20353
D 2 11.66566 4.88786 2.00212
D 3 8.25015 5.81382 1.50000
D 4 1.00000 3.43633 7.75015
Wide Standard Tele-object distance 200 10 10
D 1 0.99984 3.97914 6.95990
D 2 12.20580 9.22650 6.24575
D 3 8.25015 5.81382 1.50000
D 4 1.00000 3.43633 7.75015
Imaging magnification -0.02197 -0.24014 -0.34722
NA −0.00392 -0.03838 -0.03984
f 4 / f 1 = 0.20, β 4T = -0.96, β 2T = -0.24
β 4T / β 4W = 2.04 (β 2T / β 2W ), f W / f 1 = 0.08, f W / f 4 = 0.42
f 4 / f 3 = 0.10, (r F + r R ) / (r F −r R ) = 1.90

実施例2
f=4.80〜9.60〜19.20 ,F/2.80〜F/3.08〜F/4.52
2ω=71.6°〜35.4°〜18.2°
1 =20.6636 d1 =4.8000 n1 =1.48749 ν1 =70.21
2 =-533.1705 d2 =D1 (可変)
3 =31.7012 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =4.7345 d4 =4.2362
5 =23.3134 d5 =1.0000 n3 =1.48749 ν3 =70.21
6 =18.3749 d6 =2.8000 n4 =1.72825 ν4 =28.46
7 =22.8073 (非球面)d7 =D2 (可変)
8 =∞(絞り) d8 =1.0000
9 =8.6138 d9 =1.0000 n5 =1.69680 ν5 =55.53
10=4.4182 d10=2.5000 n6 =1.56138 ν6 =45.19
11=12.2819 d11=D3 (可変)
12=7.5867(非球面) d12=2.9721 n7 =1.71300 ν7 =53.84
13=-232.4255 d13=0.1500
14=27.2266 d14=0.9866 n8 =1.84666 ν8 =23.78
15=7.0388 d15=1.6607
16=20.3880 d16=2.2000 n9 =1.77250 ν9 =49.60
17=-20.2739 d17=D4 (可変)
18=∞ d18=4.0000 n10=1.51633 ν10=64.15
19=∞ d19=1.0000
20=∞ d20=2.1000 n11=1.51633 ν11=64.15
21=∞ d21=4.2200 n12=1.61700 ν12=62.80
22=∞ d22=1.0000
23=∞ d23=0.8000 n13=1.51633 ν13=64.15
24=∞ d24=1.9798
25=∞(像面)
非球面係数
(第7面) P=1 ,A4 =-3.3980 ×10-4,A6 =-1.8520 ×10-5
8 =-1.7438 ×10-8
(第12面)P=1 ,A4 =-2.4947 ×10-4,A6 =3.4277×10-8
8 =-7.8226 ×10-8
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.21911 8.77823 12.00073
2 12.78374 5.22462 2.00212
3 9.63508 6.89535 1.50000
4 1.00000 3.73973 9.13508
ワイド スタンダード テレ
物体距離 500 500 500
1 0.99998 8.37224 11.43087
2 13.00287 5.63060 2.57198
3 9.63508 6.89535 1.50000
4 1.00000 3.73973 9.13508
4 /f1 =0.30,β4T=-1.03 ,β2T=-0.41
β4T/β4W=1.77(β2T/β2W),fW /f1 =0.12,fW /f4 =0.39
4 /f3 =0.15,(rF +rR )/(rF −rR )=1.70
Example 2
f = 4.80 to 9.60 to 19.20, F / 2.80 to F / 3.08 to F / 4.52
2ω = 71.6 ° -35.4 ° -18.2 °
r 1 = 20.6636 d 1 = 4.8000 n 1 = 1.48749 ν 1 = 70.21
r 2 = -533.1705 d 2 = D 1 (variable)
r 3 = 31.7012 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 4.7345 d 4 = 4.2362
r 5 = 23.3134 d 5 = 1.0000 n 3 = 1.48749 ν 3 = 70.21
r 6 = 18.337 d 6 = 2.8000 n 4 = 1.72825 ν 4 = 28.46
r 7 = 22.8073 (aspherical surface) d 7 = D 2 (variable)
r 8 = ∞ (aperture) d 8 = 1.000
r 9 = 8.6138 d 9 = 1.0000 n 5 = 1.69680 ν 5 = 55.53
r 10 = 4.4182 d 10 = 2.5000 n 6 = 1.56138 ν 6 = 45.19
r 11 = 12.2819 d 11 = D 3 (variable)
r 12 = 7.5867 (aspherical surface) d 12 = 2.9721 n 7 = 1.71300 ν 7 = 53.84
r 13 = -232.4255 d 13 = 0.1500
r 14 = 27.2266 d 14 = 0.9866 n 8 = 1.84666 ν 8 = 23.78
r 15 = 7.0388 d 15 = 1.6607
r 16 = 20.3880 d 16 = 2.2000 n 9 = 1.77250 ν 9 = 49.60
r 17 = -20.2739 d 17 = D 4 (variable)
r 18 = ∞ d 18 = 4.0000 n 10 = 1.51633 ν 10 = 64.15
r 19 = ∞ d 19 = 1.000
r 20 = ∞ d 20 = 2.1000 n 11 = 1.51633 ν 11 = 64.15
r 21 = ∞ d 21 = 4.2200 n 12 = 1.61700 ν 12 = 62.80
r 22 = ∞ d 22 = 1.000
r 23 = ∞ d 23 = 0.8000 n 13 = 1.51633 ν 13 = 64.15
r 24 = ∞ d 24 = 1.9798
r 25 = ∞ (image plane)
Aspheric coefficient (seventh surface) P = 1, A 4 = -3.3980 × 10 -4 , A 6 = -1.8520 × 10 -5
A 8 = -1.7438 × 10 -8
(Twelfth surface) P = 1, A 4 = −2.4947 × 10 −4 , A 6 = 3.4277 × 10 −8
A 8 = -7.8226 × 10 -8
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.21911 8.77823 12.00073
D 2 12.78374 5.22462 2.00212
D 3 9.63508 6.89535 1.50000
D 4 1.00000 3.73973 9.13508
Wide Standard Tele-object distance 500 500 500
D 1 0.99998 8.37224 11.43087
D 2 13.00287 5.63060 2.57198
D 3 9.63508 6.89535 1.50000
D 4 1.00000 3.73973 9.13508
f 4 / f 1 = 0.30, β 4T = -1.03, β 2T = -0.41
β 4T / β 4W = 1.77 (β 2T / β 2W ), f W / f 1 = 0.12, f W / f 4 = 0.39
f 4 / f 3 = 0.15, (r F + r R) / (r F -r R) = 1.70

実施例3
f=4.80〜8.98〜16.80 ,F/2.80〜F/3.17〜F/4.88
2ω=69.4°〜36.6°〜20.8°
1 =24.6646 d1 =1.0000 n1 =1.80518 ν1 =25.43
2 =21.7287 d2 =1.0000
3 =35.2428 d3 =4.0000 n2 =1.51633 ν2 =64.15
4 =-57.7414 d4 =D1 (可変)
5 =-127.5440 d5 =1.0000 n3 =1.77250 ν3 =49.60
6 =4.9939 d6 =2.5618
7 =22.8410 d7 =2.3000 n4 =1.84666 ν4 =23.78
8 =266.9477(非球面)d8 =D2 (可変)
9 =∞(絞り) d9 =1.0000
10=8.9364 d10=1.3000 n5 =1.51633 ν5 =64.15
11=8.7258 d11=D3 (可変)
12=7.4998(非球面) d12=3.8883 n6 =1.67790 ν6 =55.33
13=-72.9268 d13=0.2756
14=22.2557 d14=1.0000 n7 =1.84666 ν7 =23.78
15=6.7138 d15=0.8471
16=20.1290 d16=2.2000 n8 =1.77250 ν8 =49.60
17=-19.1260 d17=D4 (可変)
18=∞ d18=4.0000 n9 =1.51633 ν9 =64.15
19=∞ d19=1.0000
20=∞ d20=2.1000 n10=1.51633 ν10=64.15
21=∞ d21=4.2200 n11=1.61700 ν11=62.80
22=∞ d22=1.0000
23=∞ d23=0.8000 n12=1.51633 ν12=64.15
24=∞ d24=1.1996
25=∞(像面)
非球面係数
(第8面) P=1 ,A4 =-3.2539 ×10-4,A6 =-1.2741 ×10-5
8 =-1.7372 ×10-7
(第12面)P=1 ,A4 =-3.0986 ×10-4,A6 =-4.4168 ×10-7
8 =-7.4818 ×10-8
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.56985 9.09074 11.53549
2 11.96776 4.44687 2.00212
3 9.36708 6.84144 1.50000
4 1.00000 3.52565 8.86708
ワイド スタンダード テレ
物体距離 400 400 400
1 1.23960 8.59854 10.96380
2 12.29802 4.93907 2.57381
3 9.36708 6.84144 1.50000
4 1.00000 3.52565 8.86708
4 /f1 =0.22,β4T=-1.11 ,β2T=-0.30
β4T/β4W=1.99(β2T/β2W),fW /f1 =0.09,fW /f4 =0.42
4 /f3 =0.01,(rF +rR )/(rF −rR )=1.86
Example 3
f = 4.80 to 8.98 to 16.80, F / 2.80 to F / 3.17 to F / 4.88
2ω = 69.4 ° -36.6 ° -20.8 °
r 1 = 24.6646 d 1 = 1.0000 n 1 = 1.80518 ν 1 = 25.43
r 2 = 21.7287 d 2 = 1.0000
r 3 = 35.2428 d 3 = 4.0000 n 2 = 1.51633 ν 2 = 64.15
r 4 = -57.7414 d 4 = D 1 (variable)
r 5 = -127.5440 d 5 = 1.0000 n 3 = 1.77250 ν 3 = 49.60
r 6 = 4.9939 d 6 = 2.5618
r 7 = 22.8410 d 7 = 2.3000 n 4 = 1.84666 ν 4 = 23.78
r 8 = 266.9477 (aspherical surface) d 8 = D 2 (variable)
r 9 = ∞ (aperture) d 9 = 1.000
r 10 = 8.9364 d 10 = 1.3000 n 5 = 1.51633 ν 5 = 64.15
r 11 = 8.7258 d 11 = D 3 (variable)
r 12 = 7.4998 (aspherical surface) d 12 = 3.8883 n 6 = 1.67790 ν 6 = 55.33
r 13 = -72.9268 d 13 = 0.2756
r 14 = 22.2557 d 14 = 1.0000 n 7 = 1.84666 ν 7 = 23.78
r 15 = 6.7138 d 15 = 0.8471
r 16 = 20.1290 d 16 = 2.2000 n 8 = 1.77250 ν 8 = 49.60
r 17 = -19.1260 d 17 = D 4 (variable)
r 18 = ∞ d 18 = 4.0000 n 9 = 1.51633 ν 9 = 64.15
r 19 = ∞ d 19 = 1.000
r 20 = ∞ d 20 = 2.1000 n 10 = 1.51633 ν 10 = 64.15
r 21 = ∞ d 21 = 4.2200 n 11 = 1.61700 ν 11 = 62.80
r 22 = ∞ d 22 = 1.000
r 23 = ∞ d 23 = 0.8000 n 12 = 1.51633 ν 12 = 64.15
r 24 = ∞ d 24 = 1.1996
r 25 = ∞ (image plane)
Aspheric coefficient (8th surface) P = 1, A 4 = -3.2539 × 10 -4 , A 6 = -1.2741 × 10 -5
A 8 = -1.7372 × 10 -7
(Twelfth surface) P = 1, A 4 = −3.0986 × 10 −4 , A 6 = −4.4168 × 10 −7
A 8 = -7.4818 × 10 -8
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.56985 9.09074 11.53549
D 2 11.96776 4.44687 2.00212
D 3 9.36708 6.84144 1.50000
D 4 1.00000 3.52565 8.86708
Wide Standard Tele-object distance 400 400 400
D 1 1.23960 8.59854 10.96380
D 2 12.29802 4.93907 2.57381
D 3 9.36708 6.84144 1.50000
D 4 1.00000 3.52565 8.86708
f 4 / f 1 = 0.22, β 4T = -1.11, β 2T = -0.30
β 4T / β 4W = 1.99 (β 2T / β 2W ), f W / f 1 = 0.09, f W / f 4 = 0.42
f 4 / f 3 = 0.01, (r F + r R ) / (r F −r R ) = 1.86

実施例4
f=4.80〜8.31〜14.40 ,F/2.80〜F/3.15〜F/4.32
2ω=70.2°〜41.6°〜24.6°
1 =32.2822 d1 =3.0000 n1 =1.51633 ν1 =64.15
2 =1315.9478 d2 =D1 (可変)
3 =31.8864 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =5.6430 d4 =3.7918
5 =-28.1638 d5 =1.0000 n3 =1.48749 ν3 =70.21
6 =21.7561 d6 =2.4000 n4 =1.80518 ν4 =25.43
7 =-200.0000(非球面)d7 =D2 (可変)
8 =∞(絞り) d8 =1.0000
9 =17.1706 d9 =1.3000 n5 =1.51633 ν5 =64.15
10=17.8470 d10=D3 (可変)
11=7.2818(非球面) d11=3.7104 n6 =1.67790 ν6 =55.33
12=-56.4418 d12=0.1319
13=23.3804 d13=1.0000 n7 =1.84666 ν7 =23.78
14=6.5725 d14=0.8668
15=21.4669 d15=2.2000 n8 =1.77250 ν8 =49.60
16=-20.1029 d16=D4 (可変)
17=∞ d17=4.0000 n9 =1.51633 ν9 =64.15
18=∞ d18=1.0000
19=∞ d19=2.1000 n10=1.51633 ν10=64.15
20=∞ d20=4.2200 n11=1.61700 ν11=62.80
21=∞ d21=1.0000
22=∞ d22=0.8000 n12=1.51633 ν12=64.15
23=∞ d23=1.1993
24=∞(像面)
非球面係数
(第7面) P=1 ,A4 =-1.7097 ×10-4,A6 =-2.4272 ×10-6
8 =-4.2782 ×10-8
(第11面)P=1 ,A4 =-3.3609 ×10-4,A6 =-9.5814 ×10-7
8 =-7.9857 ×10-8
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.66003 9.12960 12.57108
2 12.91317 5.44359 2.00212
3 7.79779 5.56715 1.50000
4 1.01693 3.24758 7.31473
ワイド スタンダード テレ
物体距離 200 10 10
1 0.99993 3.89538 7.53118
2 13.57327 10.67782 7.04201
3 7.79779 5.56715 1.50000
4 1.01693 3.24758 7.31473
4 /f1 =0.18,β4T=-0.94 ,β2T=-0.24
β4T/β4W=1.88(β2T/β2W),fW /f1 =0.07,fW /f4 =0.42
4 /f3 =0.02,(rF +rR )/(rF −rR )=1.78
Example 4
f = 4.80-8.31-14.40, F / 2.80-F / 3.15-F / 4.32
2ω = 70.2 ° -41.6 ° -24.6 °
r 1 = 32.2822 d 1 = 3.0000 n 1 = 1.51633 ν 1 = 64.15
r 2 = 1315.9478 d 2 = D 1 (variable)
r 3 = 31.8864 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 5.6430 d 4 = 3.7918
r 5 = -28.1638 d 5 = 1.0000 n 3 = 1.48749 ν 3 = 70.21
r 6 = 21.7561 d 6 = 2.4000 n 4 = 1.80518 ν 4 = 25.43
r 7 = −200.0000 (aspherical surface) d 7 = D 2 (variable)
r 8 = ∞ (aperture) d 8 = 1.000
r 9 = 17.1706 d 9 = 1.3000 n 5 = 1.51633 ν 5 = 64.15
r 10 = 17.8470 d 10 = D 3 (variable)
r 11 = 7.2818 (aspherical surface) d 11 = 3.7104 n 6 = 1.67790 ν 6 = 55.33
r 12 = -56.4418 d 12 = 0.1319
r 13 = 23.3804 d 13 = 1.0000 n 7 = 1.84666 ν 7 = 23.78
r 14 = 6.5725 d 14 = 0.8668
r 15 = 21.4669 d 15 = 2.2000 n 8 = 1.77250 ν 8 = 49.60
r 16 = -20.1029 d 16 = D 4 (variable)
r 17 = ∞ d 17 = 4.0000 n 9 = 1.51633 ν 9 = 64.15
r 18 = ∞ d 18 = 1.000
r 19 = ∞ d 19 = 2.1000 n 10 = 1.51633 ν 10 = 64.15
r 20 = ∞ d 20 = 4.2200 n 11 = 1.61700 ν 11 = 62.80
r 21 = ∞ d 21 = 1.000
r 22 = ∞ d 22 = 0.8000 n 12 = 1.51633 ν 12 = 64.15
r 23 = ∞ d 23 = 1.1993
r 24 = ∞ (image plane)
Aspheric coefficient (seventh surface) P = 1, A 4 = -1.7097 × 10 -4 , A 6 = -2.4272 × 10 -6
A 8 = -4.2782 × 10 -8
(Eleventh surface) P = 1, A 4 = −3.3609 × 10 −4 , A 6 = −9.5814 × 10 −7
A 8 = -7.9857 × 10 -8
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.66003 9.12960 12.57108
D 2 12.91317 5.44359 2.00212
D 3 7.79779 5.56715 1.50000
D 4 1.01693 3.24758 7.31473
Wide Standard Tele-object distance 200 10 10
D 1 0.99993 3.89538 7.53118
D 2 13.57327 10.67782 7.04201
D 3 7.79779 5.56715 1.50000
D 4 1.01693 3.24758 7.31473
f 4 / f 1 = 0.18, β 4T = -0.94, β 2T = -0.24
β 4T / β 4W = 1.88 (β 2T / β 2W ), f W / f 1 = 0.07, f W / f 4 = 0.42
f 4 / f 3 = 0.02, (r F + r R ) / (r F −r R ) = 1.78

実施例5
f=4.80〜8.31〜14.40 ,F/2.80〜F/3.13〜F/4.29
2ω=70.0°〜41.6°〜24.6°
1 =73.7040 d1 =2.2000 n1 =1.60311 ν1 =60.70
2 =-251.3948 d2 =D1 (可変)
3 =31.4537 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =5.9703 d4 =2.5649
5 =14.8321 d5 =1.0000 n3 =1.48749 ν3 =70.21
6 =8.1922 d6 =2.8000 n4 =1.80518 ν4 =25.43
7 =11.8606(非球面) d7 =D2 (可変)
8 =∞(絞り) d8 =1.0000
9 =11.1830 d9 =1.5000 n5 =1.51633 ν5 =64.15
10=14.3638 d10=D3 (可変)
11=6.6376(非球面) d11=3.5452 n6 =1.67790 ν6 =55.33
12=-53.0828 d12=0.1065
13=15.6088 d13=1.0000 n7 =1.84666 ν7 =23.78
14=5.6915 d14=1.1262
15=20.2174 d15=2.2000 n8 =1.71999 ν8 =50.25
16=-22.7437 d16=D4 (可変)
17=∞ d17=2.1000 n9 =1.51633 ν9 =64.15
18=∞ d18=4.2200 n10=1.61700 ν10=62.80
19=∞ d19=1.0000
20=∞ d20=0.8000 n11=1.51633 ν11=64.15
21=∞ d21=2.4595
22=∞(像面)
非球面係数
(第7面) P=1 ,A4 =-2.5367 ×10-4,A6 =-7.5684 ×10-6
8 =-7.1059 ×10-8
(第11面)P=1 ,A4 =-5.0319 ×10-4,A6 =1.6332×10-6
8 =-2.4740 ×10-7
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.63036 9.60336 13.01556
2 13.38732 5.41432 2.00212
3 7.99812 5.58274 1.50000
4 1.05392 3.46930 7.55204
ワイド スタンダード テレ
物体距離 200 10 10
1 0.99993 4.85754 8.58841
2 14.01775 10.16013 6.42927
3 7.99812 5.58274 1.50000
4 1.05392 3.46930 7.55204
4 /f1 =0.12,β4T=-0.88 ,β2T=-0.14
β4T/β4W=2.63(β2T/β2W),fW /f1 =0.05,fW /f4 =0.44
4 /f3 =0.13,(rF +rR )/(rF −rR )=2.15
Example 5
f = 4.80-8.31-14.40, F / 2.80-F / 3.13-F / 4.29
2ω = 70.0 ° -41.6 ° -24.6 °
r 1 = 73.7040 d 1 = 2.2000 n 1 = 1.60311 ν 1 = 60.70
r 2 = -251.3948 d 2 = D 1 (variable)
r 3 = 31.4537 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 5.9703 d 4 = 2.5649
r 5 = 14.8321 d 5 = 1.0000 n 3 = 1.48749 ν 3 = 70.21
r 6 = 8.1922 d 6 = 2.8000 n 4 = 1.80518 ν 4 = 25.43
r 7 = 11.8606 (aspherical surface) d 7 = D 2 (variable)
r 8 = ∞ (aperture) d 8 = 1.000
r 9 = 11.1830 d 9 = 1.5000 n 5 = 1.51633 ν 5 = 64.15
r 10 = 14.3638 d 10 = D 3 (variable)
r 11 = 6.6376 (aspherical surface) d 11 = 3.5452 n 6 = 1.67790 ν 6 = 55.33
r 12 = -53.0828 d 12 = 0.1065
r 13 = 1.6088 d 13 = 1.0000 n 7 = 1.84666 ν 7 = 23.78
r 14 = 5.6915 d 14 = 1.1262
r 15 = 20.2174 d 15 = 2.2000 n 8 = 1.71999 ν 8 = 50.25
r 16 = -22.7437 d 16 = D 4 (variable)
r 17 = ∞ d 17 = 2.1000 n 9 = 1.51633 ν 9 = 64.15
r 18 = ∞ d 18 = 4.2200 n 10 = 1.61700 ν 10 = 62.80
r 19 = ∞ d 19 = 1.000
r 20 = ∞ d 20 = 0.8000 n 11 = 1.51633 ν 11 = 64.15
r 21 = ∞ d 21 = 2.4595
r 22 = ∞ (image plane)
Aspheric coefficient (seventh surface) P = 1, A 4 = −2.5367 × 10 −4 , A 6 = −7.5684 × 10 −6
A 8 = -7.1059 × 10 -8
(Eleventh surface) P = 1, A 4 = −5.0319 × 10 −4 , A 6 = 1.6332 × 10 −6
A 8 = -2.4740 × 10 -7
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.63036 9.60336 13.01556
D 2 13.38732 5.41432 2.00212
D 3 7.99812 5.58274 1.50000
D 4 1.05392 3.46930 7.55204
Wide Standard Tele-object distance 200 10 10
D 1 0.99993 4.85754 8.58841
D 2 14.01775 10.16013 6.42927
D 3 7.99812 5.58274 1.50000
D 4 1.05392 3.46930 7.55204
f 4 / f 1 = 0.12, β 4T = -0.88, β 2T = -0.14
β 4T / β 4W = 2.63 (β 2T / β 2W ), f W / f 1 = 0.05, f W / f 4 = 0.44
f 4 / f 3 = 0.13, (r F + r R ) / (r F −r R ) = 2.15

実施例6
f=4.80〜8.31〜14.40 ,F/2.80〜F/3.18〜F/4.64
2ω=70.0°〜41.4°〜24.6°
1 =25.2730 d1 =4.0000 n1 =1.34139 ν1 =93.79
2 =-133.2543 d2 =D1 (可変)
3 =47.8800 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =5.8314 d4 =3.6769
5 =-39.1283 d5 =1.0000 n3 =1.48749 ν3 =70.21
6 =16.9614 d6 =2.4000 n4 =1.80518 ν4 =25.43
7 =-396.4755(非球面)d7 =D2 (可変)
8 =∞(絞り) d8 =1.0000
9 =-21.8233 d9 =1.0000 n5 =1.58423 ν5 =30.49
10=-35.4237 d10=D3 (可変)
11=7.4903(非球面) d11=4.1749 n6 =1.67790 ν6 =55.33
12=-37.9091 d12=0.2660
13=21.8535 d13=1.0000 n7 =1.84666 ν7 =23.78
14=6.5502 d14=0.8174
15=18.8072 d15=2.2000 n8 =1.77250 ν8 =49.60
16=-23.5069 d16=D4 (可変)
17=∞ d17=4.0000 n9 =1.51633 ν9 =64.15
18=∞ d18=1.0000
19=∞ d19=2.1000 n10=1.51633 ν10=64.15
20=∞ d20=4.2200 n11=1.61700 ν11=62.80
21=∞ d21=1.0000
22=∞ d22=0.8000 n12=1.51633 ν12=64.15
23=∞ d23=1.2000
24=∞(像面)
非球面係数
(第7面) P=1 ,A4 =-1.7760 ×10-4,A6 =-3.0800 ×10-6
8 =1.6998×10-9
(第11面)P=1 ,A4 =-3.5982 ×10-4,A6 =-2.9379 ×10-7
8 =-8.1428 × 10-8
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.76145 9.00185 11.55882
2 11.79949 4.55909 2.00212
3 8.01872 5.89329 1.42966
4 1.10574 3.23118 7.69480
ワイド スタンダード テレ
物体距離 200 10 10
1 0.99997 3.18551 5.88352
2 12.56097 10.37543 7.67742
3 8.01872 5.89329 1.42966
4 1.10574 3.23118 7.69480
4 /f1 =0.18,β4T=-1.09 ,β2T=-0.26
β4T/β4W=1.77(β2T/β2W),fW /f1 =0.08,fW /f4 =0.43
4 /f3 =-0.11 ,(rF +rR )/(rF −rR )=1.86
Example 6
f = 4.80-8.31-14.40, F / 2.80-F / 3.18-F / 4.64
2ω = 70.0 ° -41.4 ° -24.6 °
r 1 = 25.2730 d 1 = 4.0000 n 1 = 1.34139 ν 1 = 93.79
r 2 = -133.2543 d 2 = D 1 (variable)
r 3 = 47.8800 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 5.8314 d 4 = 3.6769
r 5 = -39.1283 d 5 = 1.0000 n 3 = 1.48749 ν 3 = 70.21
r 6 = 16.9614 d 6 = 2.4000 n 4 = 1.80518 ν 4 = 25.43
r 7 = -396.4755 (aspherical surface) d 7 = D 2 (variable)
r 8 = ∞ (aperture) d 8 = 1.000
r 9 = -21.8233 d 9 = 1.0000 n 5 = 1.58423 ν 5 = 30.49
r 10 = -35.4237 d 10 = D 3 (variable)
r 11 = 7.4903 (aspherical surface) d 11 = 4.1749 n 6 = 1.67790 ν 6 = 55.33
r 12 = -37.9091 d 12 = 0.2660
r 13 = 21.8535 d 13 = 1.0000 n 7 = 1.84666 ν 7 = 23.78
r 14 = 6.5502 d 14 = 0.8174
r 15 = 18.8072 d 15 = 2.2000 n 8 = 1.77250 ν 8 = 49.60
r 16 = -23.5069 d 16 = D 4 (variable)
r 17 = ∞ d 17 = 4.0000 n 9 = 1.51633 ν 9 = 64.15
r 18 = ∞ d 18 = 1.000
r 19 = ∞ d 19 = 2.1000 n 10 = 1.51633 ν 10 = 64.15
r 20 = ∞ d 20 = 4.2200 n 11 = 1.61700 ν 11 = 62.80
r 21 = ∞ d 21 = 1.000
r 22 = ∞ d 22 = 0.8000 n 12 = 1.51633 ν 12 = 64.15
r 23 = ∞ d 23 = 1.2000
r 24 = ∞ (image plane)
Aspherical coefficient (seventh surface) P = 1, A 4 = -1.7760 × 10 -4 , A 6 = -3.0800 × 10 -6
A 8 = 1.6998 × 10 -9
(Eleventh surface) P = 1, A 4 = -3.5982 × 10 −4 , A 6 = −2.9379 × 10 −7
A 8 = -8.1428 × 10 -8
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.76145 9.00185 11.55882
D 2 11.79949 4.55909 2.00212
D 3 8.01872 5.89329 1.42966
D 4 1.10574 3.23118 7.69480
Wide Standard Tele-object distance 200 10 10
D 1 0.99997 3.18551 5.88352
D 2 12.56097 10.37543 7.67742
D 3 8.01872 5.89329 1.42966
D 4 1.10574 3.23118 7.69480
f 4 / f 1 = 0.18, β 4T = -1.09, β 2T = -0.26
β 4T / β 4W = 1.77 (β 2T / β 2W ), f W / f 1 = 0.08, f W / f 4 = 0.43
f 4 / f 3 = −0.11, (r F + r R ) / (r F −r R ) = 1.86

実施例7
f=4.80〜8.31〜14.40 ,F/2.80〜F/3.14〜F/4.24
2ω=70.2°〜41.2°〜24.4°
1 =52.9375 d1 =2.8000 n1 =1.60311 ν1 =60.70
2 =-185.1334 d2 =D1 (可変)
3 =30.6812 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =6.8533 d4 =4.3009
5 =-16.1611 d5 =1.0000 n3 =1.48749 ν3 =70.21
6 =13.6857 d6 =2.4000 n4 =1.80518 ν4 =25.43
7 =57.5052 d7 =D2 (可変)
8 =∞(絞り) d8 =1.0000
9 =-51.9348 d9 =1.5000 n5 =1.51633 ν5 =64.15
10=-26.5762(非球面)d10=D3 (可変)
11=6.8710(非球面) d11=3.7666 n6 =1.67790 ν6 =55.33
12=452.4983 d12=0.1545
13=23.8871 d13=1.0000 n7 =1.84666 ν7 =23.78
14=6.4093 d14=0.9156
15=24.5394 d15=2.2000 n8 =1.71999 ν8 =50.25
16=-15.2331 d16=D4 (可変)
17=∞ d17=4.0000 n9 =1.51633 ν9 =64.15
18=∞ d18=1.0000
19=∞ d19=2.1000 n10=1.51633 ν10=64.15
20=∞ d20=4.2200 n11=1.61700 ν11=62.80
21=∞ d21=1.0000
22=∞ d22=0.8000 n12=1.51633 ν12=64.15
23=∞ d23=1.1967
24=∞(像面)
非球面係数
(第10面)P=1 ,A4 =-1.1669 ×10-4,A6 =4.3658×10-6
8 =-1.5811 ×10-7
(第11面)P=1 ,A4 =-3.5478 ×10-4,A6 =-6.4110 ×10-7
8 =-1.2009 × 10-7
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.53667 8.81405 12.21681
2 12.68226 5.40488 2.00212
3 8.40777 5.86593 1.50000
4 1.00000 3.54184 7.90777
ワイド スタンダード テレ
物体距離 200 10 10
1 0.99994 4.60960 8.18806
2 13.21899 9.60933 6.03087
3 8.40777 5.86593 1.50000
4 1.00000 3.54184 7.90777
4 /f1 =0.18,β4T=-0.87 ,β2T=-0.19
β4T/β4W=2.23(β2T/β2W),fW /f1 =0.07,fW /f4 =0.39
4 /f3 =0.12,(rF +rR )/(rF −rR )=1.73
Example 7
f = 4.80-8.31-14.40, F / 2.80-F / 3.14-F / 4.24
2ω = 70.2 ° -41.2 ° -24.4 °
r 1 = 52.9375 d 1 = 2.8000 n 1 = 1.60311 ν 1 = 60.70
r 2 = -185.1334 d 2 = D 1 (variable)
r 3 = 30.6812 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 6.8533 d 4 = 4.3009
r 5 = -16.1611 d 5 = 1.0000 n 3 = 1.48749 ν 3 = 70.21
r 6 = 13.6857 d 6 = 2.4000 n 4 = 1.80518 ν 4 = 25.43
r 7 = 57.5052 d 7 = D 2 (variable)
r 8 = ∞ (aperture) d 8 = 1.000
r 9 = -51.9348 d 9 = 1.5000 n 5 = 1.51633 ν 5 = 64.15
r 10 = -26.5762 (aspherical surface) d 10 = D 3 (variable)
r 11 = 6.8710 (aspherical surface) d 11 = 3.7666 n 6 = 1.67790 ν 6 = 55.33
r 12 = 452.4983 d 12 = 0.1545
r 13 = 23.8871 d 13 = 1.0000 n 7 = 1.84666 ν 7 = 23.78
r 14 = 6.4093 d 14 = 0.9156
r 15 = 24.5394 d 15 = 2.2000 n 8 = 1.71999 ν 8 = 50.25
r 16 = -15.2331 d 16 = D 4 (variable)
r 17 = ∞ d 17 = 4.0000 n 9 = 1.51633 ν 9 = 64.15
r 18 = ∞ d 18 = 1.000
r 19 = ∞ d 19 = 2.1000 n 10 = 1.51633 ν 10 = 64.15
r 20 = ∞ d 20 = 4.2200 n 11 = 1.61700 ν 11 = 62.80
r 21 = ∞ d 21 = 1.000
r 22 = ∞ d 22 = 0.8000 n 12 = 1.51633 ν 12 = 64.15
r 23 = ∞ d 23 = 1.1967
r 24 = ∞ (image plane)
Aspheric coefficient (10th surface) P = 1, A 4 = −1.1669 × 10 −4 , A 6 = 4.3658 × 10 −6
A 8 = -1.5811 × 10 -7
(Eleventh surface) P = 1, A 4 = −3.5478 × 10 −4 , A 6 = −6.4110 × 10 −7
A 8 = -1.2009 × 10 -7
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.53667 8.81405 12.21681
D 2 12.68226 5.40488 2.00212
D 3 8.40777 5.86593 1.50000
D 4 1.00000 3.54184 7.90777
Wide Standard Tele-object distance 200 10 10
D 1 0.99994 4.60960 8.18806
D 2 13.21899 9.60933 6.03087
D 3 8.40777 5.86593 1.50000
D 4 1.00000 3.54184 7.90777
f 4 / f 1 = 0.18, β 4T = -0.87, β 2T = -0.19
β 4T / β 4W = 2.23 (β 2T / β 2W ), f W / f 1 = 0.07, f W / f 4 = 0.39
f 4 / f 3 = 0.12, (r F + r R) / (r F -r R) = 1.73

実施例8
f=4.80〜8.31〜14.40 ,F/2.80〜F/3.23〜F/4.61
2ω=70.0°〜41.2°〜24.4°
1 =36.2992 d1 =3.0000 n1 =1.51633 ν1 =64.15
2 =-157.8250 d2 =D1 (可変)
3 =41.8214 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =6.9783 d4 =4.9592
5 =-19.6840 d5 =1.0000 n3 =1.48749 ν3 =70.21
6 =11.1778 d6 =1.8000 n4 =1.84666 ν4 =23.78
7 =24.5817 d7 =D2 (可変)
8 =17.7652 d8 =1.3000 n5 =1.51633 ν5 =64.15
9 =35.2411 d9 =1.0000
10=∞(絞り) d10=D3 (可変)
11=7.1767(非球面) d11=3.5312 n6 =1.67790 ν6 =55.33
12=-96.4251 d12=0
13=22.1881 d13=1.0000 n7 =1.84666 ν7 =23.78
14=6.6315 d14=0.9544
15=28.0121 d15=2.2000 n8 =1.69680 ν8 =55.53
16=-14.4998 d16=D4 (可変)
17=∞ d17=4.0000 n9 =1.51633 ν9 =64.15
18=∞ d18=1.0000
19=∞ d19=2.1000 n10=1.51633 ν10=64.15
20=∞ d20=4.2200 n11=1.61700 ν11=62.80
21=∞ d21=1.0000
22=∞ d22=0.8000 n12=1.51633 ν12=64.15
23=∞ d23=1.1982
24=∞(像面)
非球面係数
(第11面)P=1 ,A4 =-3.6075 ×10-4,A6 =-1.0505 ×10-6
8 =-6.7194 ×10-8
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.43242 7.53979 10.04047
2 10.61016 4.50280 2.00212
3 8.71208 6.01416 1.41509
4 0.90211 3.60003 8.19910
ワイド スタンダード テレ
物体距離 200 10 10
1 0.99979 4.04363 6.61705
2 11.04279 7.99896 5.42554
3 8.71208 6.01416 1.41509
4 0.90211 3.60003 8.19910
4 /f1 =0.21,β4T=-0.95 ,β2T=-0.21
β4T/β4W=2.33(β2T/β2W),fW /f1 =0.08,fW /f4 =0.41
4 /f3 =0.17,(rF +rR )/(rF −rR )=1.85
Example 8
f = 4.80-8.31-14.40, F / 2.80-F / 3.23-F / 4.61
2ω = 70.0 ° -41.2 ° -24.4 °
r 1 = 36.2992 d 1 = 3.0000 n 1 = 1.51633 ν 1 = 64.15
r 2 = -157.8250 d 2 = D 1 (variable)
r 3 = 41.8214 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 6.9783 d 4 = 4.9592
r 5 = -19.6840 d 5 = 1.0000 n 3 = 1.48749 ν 3 = 70.21
r 6 = 11.1778 d 6 = 1.8000 n 4 = 1.84666 ν 4 = 23.78
r 7 = 24.5817 d 7 = D 2 (variable)
r 8 = 17.7652 d 8 = 1.3000 n 5 = 1.51633 ν 5 = 64.15
r 9 = 35.2411 d 9 = 1.0000
r 10 = ∞ (aperture) d 10 = D 3 (variable)
r 11 = 7.1767 (aspherical surface) d 11 = 3.5312 n 6 = 1.67790 ν 6 = 55.33
r 12 = -96.4251 d 12 = 0
r 13 = 22.1881 d 13 = 1.0000 n 7 = 1.84666 ν 7 = 23.78
r 14 = 6.6315 d 14 = 0.9544
r 15 = 28.0121 d 15 = 2.2000 n 8 = 1.69680 ν 8 = 55.53
r 16 = -14.4998 d 16 = D 4 (variable)
r 17 = ∞ d 17 = 4.0000 n 9 = 1.51633 ν 9 = 64.15
r 18 = ∞ d 18 = 1.000
r 19 = ∞ d 19 = 2.1000 n 10 = 1.51633 ν 10 = 64.15
r 20 = ∞ d 20 = 4.2200 n 11 = 1.61700 ν 11 = 62.80
r 21 = ∞ d 21 = 1.000
r 22 = ∞ d 22 = 0.8000 n 12 = 1.51633 ν 12 = 64.15
r 23 = ∞ d 23 = 1.1982
r 24 = ∞ (image plane)
Aspherical coefficient (11th surface) P = 1, A 4 = −3.66075 × 10 −4 , A 6 = −1.0505 × 10 −6
A 8 = -6.7194 × 10 -8
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.43242 7.53979 10.04047
D 2 10.61016 4.50280 2.00212
D 3 8.71208 6.01416 1.41509
D 4 0.90211 3.60003 8.19910
Wide Standard Tele-object distance 200 10 10
D 1 0.99979 4.04363 6.61705
D 2 11.04279 7.99896 5.42554
D 3 8.71208 6.01416 1.41509
D 4 0.90211 3.60003 8.19910
f 4 / f 1 = 0.21, β 4T = -0.95, β 2T = -0.21
β 4T / β 4W = 2.33 (β 2T / β 2W ), f W / f 1 = 0.08, f W / f 4 = 0.41
f 4 / f 3 = 0.17, (r F + r R) / (r F -r R) = 1.85

実施例9
f=4.80〜8.31〜14.40 ,F/2.80〜F/3.16〜F/4.27
2ω=69.8°〜41.2°〜24.4°
1 =30.9414 d1 =3.0000 n1 =1.51633 ν1 =64.15
2 =-405.6934 d2 =D1 (可変)
3 =15.1541 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =4.9491 d4 =5.4245
5 =-27.8407 d5 =1.1026 n3 =1.72916 ν3 =54.68
6 =15.5236 d6 =0.3119
7 =9.1363 d7 =1.8000 n4 =1.84666 ν4 =23.78
8 =14.9186 d8 =D2 (可変)
9 =∞(絞り) d9 =1.0000
10=-23.6198 d10=1.3000 n5 =1.60311 ν5 =60.68
11=-11.1802 d11=D3 (可変)
12=6.9398(非球面) d12=3.4600 n6 =1.67790 ν6 =55.33
13=60.1072 d13=0.1285
14=19.8796 d14=1.0000 n7 =1.84666 ν7 =23.78
15=6.3091 d15=0.8753
16=22.7725 d16=2.2000 n8 =1.69680 ν8 =55.53
17=-18.9361 d17=D4 (可変)
18=∞ d18=4.0000 n9 =1.51633 ν9 =64.15
19=∞ d19=1.0000
20=∞ d20=2.1000 n10=1.51633 ν10=64.15
21=∞ d21=4.2200 n11=1.61700 ν11=62.80
22=∞ d22=1.0000
23=∞ d23=0.8000 n12=1.51633 ν12=64.15
24=∞ d24=1.2000
25=∞(像面)
非球面係数
(第12面)P=1 ,A4 =-2.2891 ×10-4,A6 =-2.1934 ×10-6
8 =-7.4450 ×10-8
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.29761 7.10310 9.88411
2 10.58862 4.78313 2.00212
3 9.84483 6.54027 1.50000
4 0.99433 4.29889 9.33916
ワイド スタンダード テレ
物体距離 200 10 10
1 1.00000 4.63093 7.46556
2 10.88623 7.25530 4.42067
3 9.84483 6.54027 1.50000
4 0.99433 4.29889 9.33916
4 /f1 =0.25,β4T=-0.75 ,β2T=-0.18
β4T/β4W=3.75(β2T/β2W),fW /f1 =0.09,fW /f4 =0.34
4 /f3 =0.42,(rF +rR )/(rF −rR )=1.93
Example 9
f = 4.80-8.31-14.40, F / 2.80-F / 3.16-F / 4.27
2ω = 69.8 ° ~ 41.2 ° ~ 24.4 °
r 1 = 30.9414 d 1 = 3.0000 n 1 = 1.51633 ν 1 = 64.15
r 2 = -405.6934 d 2 = D 1 (variable)
r 3 = 15.1541 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 4.9491 d 4 = 5.4245
r 5 = -27.8407 d 5 = 1.1026 n 3 = 1.72916 ν 3 = 54.68
r 6 = 15.5236 d 6 = 0.3119
r 7 = 9.1363 d 7 = 1.8000 n 4 = 1.84666 ν 4 = 23.78
r 8 = 14.9186 d 8 = D 2 (variable)
r 9 = ∞ (aperture) d 9 = 1.000
r 10 = -23.6198 d 10 = 1.3000 n 5 = 1.60311 ν 5 = 60.68
r 11 = -11.1802 d 11 = D 3 (variable)
r 12 = 6.9398 (aspherical surface) d 12 = 3.4600 n 6 = 1.67790 ν 6 = 55.33
r 13 = 60.1072 d 13 = 0.1285
r 14 = 19.8796 d 14 = 1.0000 n 7 = 1.84666 ν 7 = 23.78
r 15 = 6.3091 d 15 = 0.8753
r 16 = 22.7725 d 16 = 2.2000 n 8 = 1.69680 ν 8 = 55.53
r 17 = -18.9361 d 17 = D 4 (variable)
r 18 = ∞ d 18 = 4.0000 n 9 = 1.51633 ν 9 = 64.15
r 19 = ∞ d 19 = 1.000
r 20 = ∞ d 20 = 2.1000 n 10 = 1.51633 ν 10 = 64.15
r 21 = ∞ d 21 = 4.2200 n 11 = 1.61700 ν 11 = 62.80
r 22 = ∞ d 22 = 1.000
r 23 = ∞ d 23 = 0.8000 n 12 = 1.51633 ν 12 = 64.15
r 24 = ∞ d 24 = 1.2000
r 25 = ∞ (image plane)
Aspheric coefficient (12th surface) P = 1, A 4 = -2.2891 × 10 −4 , A 6 = −2.1934 × 10 −6
A 8 = -7.4450 × 10 -8
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.29761 7.10310 9.88411
D 2 10.58862 4.78313 2.00212
D 3 9.84483 6.54027 1.50000
D 4 0.99433 4.29889 9.33916
Wide Standard Tele-object distance 200 10 10
D 1 1.00000 4.63093 7.46556
D 2 10.88623 7.25530 4.42067
D 3 9.84483 6.54027 1.50000
D 4 0.99433 4.29889 9.33916
f 4 / f 1 = 0.25, β 4T = -0.75, β 2T = -0.18
β 4T / β 4W = 3.75 (β 2T / β 2W ), f W / f 1 = 0.09, f W / f 4 = 0.34
f 4 / f 3 = 0.42, (r F + r R ) / (r F −r R ) = 1.93

実施例10
f=4.80〜8.31〜14.40 ,F/2.80〜F/3.07〜F/4.20
2ω=70.2°〜41.4°〜24.6°
1 =29.7134 d1 =3.0000 n1 =1.51633 ν1 =64.15
2 =-687.1405 d2 =D1 (可変)
3 =20.4521 d3 =1.0000 n2 =1.77250 ν2 =49.60
4 =6.2487 d4 =4.1029
5 =-12.5841 d5 =1.0000 n3 =1.48749 ν3 =70.21
6 =11.4821 d6 =1.8000 n4 =1.84666 ν4 =23.78
7 =24.9471 d7 =D2 (可変)
8 =∞(絞り) d8 =1.0000
9 =21.6120 d9 =1.5000 n5 =1.51633 ν5 =64.15
10=79.6944 d10=D3 (可変)
11=8.9316 d11=2.9722 n6 =1.69680 ν6 =55.53
12=70.0748 d12=0.7855
13=-30.9127 d13=1.0000 n7 =1.84666 ν7 =23.78
14=16.6505 d14=0.5284
15=21.2083 (非球面)d15=3.0000 n8 =1.71300 ν8 =53.84
16=-11.0045 d16=D4 (可変)
17=∞ d17=4.0000 n9 =1.51633 ν9 =64.15
18=∞ d18=1.0000
19=∞ d19=2.1000 n10=1.51633 ν10=64.15
20=∞ d20=4.2200 n11=1.61700 ν11=62.80
21=∞ d21=1.0000
22=∞ d22=0.8000 n12=1.51633 ν12=64.15
23=∞ d23=2.5653
24=∞(像面)
非球面係数
(第15面)P=1 ,A4 =-4.5208 ×10-4,A6 =-1.4652 ×10-6
8 =-1.0836 ×10-8
ワイド スタンダード テレ
物体距離 ∞ ∞ ∞
1 1.39433 7.48045 10.04622
2 10.65401 4.56789 2.00212
3 9.16699 6.29425 1.50000
4 1.11173 3.98447 8.77872
ワイド スタンダード テレ
物体距離 200 10 10
1 0.99994 4.30192 6.91903
2 11.04840 7.74642 5.12931
3 9.16699 6.29425 1.50000
4 1.11173 3.98447 8.77872
4 /f1 =0.23,β4T=-0.93 ,β2T=-0.21
β4T/β4W=2.38(β2T/β2W),fW /f1 =0.09,fW /f4 =0.39
4 /f3 =0.22,(rF +rR )/(rF −rR )=0.30
ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・ は各レンズのアッベ数である。尚焦点距離等の長さの単位はmmである。
Example 10
f = 4.80 to 8.31 to 14.40, F / 2.80 to F / 3.07 to F / 4.20
2ω = 70.2 ° -41.4 ° -24.6 °
r 1 = 29.7134 d 1 = 3.0000 n 1 = 1.51633 ν 1 = 64.15
r 2 = -687.1405 d 2 = D 1 (variable)
r 3 = 20.4521 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60
r 4 = 6.2487 d 4 = 4.1029
r 5 = -12.5841 d 5 = 1.0000 n 3 = 1.48749 ν 3 = 70.21
r 6 = 11.4821 d 6 = 1.8000 n 4 = 1.84666 ν 4 = 23.78
r 7 = 24.9471 d 7 = D 2 (variable)
r 8 = ∞ (aperture) d 8 = 1.000
r 9 = 21.6120 d 9 = 1.5000 n 5 = 1.51633 ν 5 = 64.15
r 10 = 79.6944 d 10 = D 3 (variable)
r 11 = 8.9316 d 11 = 2.9722 n 6 = 1.69680 ν 6 = 55.53
r 12 = 70.0748 d 12 = 0.7855
r 13 = -30.9127 d 13 = 1.0000 n 7 = 1.84666 ν 7 = 23.78
r 14 = 16.6505 d 14 = 0.5284
r 15 = 21.2083 (aspherical surface) d 15 = 3.0000 n 8 = 1.71300 ν 8 = 53.84
r 16 = −11.0045 d 16 = D 4 (variable)
r 17 = ∞ d 17 = 4.0000 n 9 = 1.51633 ν 9 = 64.15
r 18 = ∞ d 18 = 1.000
r 19 = ∞ d 19 = 2.1000 n 10 = 1.51633 ν 10 = 64.15
r 20 = ∞ d 20 = 4.2200 n 11 = 1.61700 ν 11 = 62.80
r 21 = ∞ d 21 = 1.000
r 22 = ∞ d 22 = 0.8000 n 12 = 1.51633 ν 12 = 64.15
r 23 = ∞ d 23 = 2.5653
r 24 = ∞ (image plane)
Aspheric coefficient (15th surface) P = 1, A 4 = −4.5208 × 10 −4 , A 6 = −1.4652 × 10 −6
A 8 = -1.0836 × 10 -8
Wide Standard Tele-object distance ∞ ∞ ∞
D 1 1.39433 7.48045 10.04622
D 2 10.65401 4.56789 2.00212
D 3 9.16699 6.29425 1.50000
D 4 1.11173 3.98447 8.77872
Wide Standard Tele-object distance 200 10 10
D 1 0.99994 4.30192 6.91903
D 2 11.04840 7.74642 5.12931
D 3 9.16699 6.29425 1.50000
D 4 1.11173 3.98447 8.77872
f 4 / f 1 = 0.23, β 4T = -0.93, β 2T = -0.21
β 4T / β 4W = 2.38 (β 2T / β 2W ), f W / f 1 = 0.09, f W / f 4 = 0.39
f 4 / f 3 = 0.22, (r F + r R ) / (r F −r R ) = 0.30
Where r 1 , r 2 ,... Are the radii of curvature of the lens surfaces, d 1 , d 2 ,... Are the thicknesses and intervals of the lenses, and n 1 , n 2 ,. Refractive index, ν 1 , ν 2 ,... The unit of length such as focal length is mm.

実施例1は図1に示す通りの構成で第1群は正レンズ1枚よりなり低価格化に有利であり、第2群は負レンズと負と正を接合した接合レンズよりなり、第3群は正と負の接合レンズよりなり、第4群は正レンズと負のメニスカスレンズと正レンズの3枚のレンズよりなる。この実施例は、データーに示す通りf4/f3>0であり、したがって第3群は正の屈折力を有する。実際にはf3=108.93である。 The first embodiment has a configuration as shown in FIG. 1, and the first group is made up of one positive lens, which is advantageous for cost reduction. The second group is made up of a cemented lens in which a negative lens and a negative and a positive are joined. The group consists of positive and negative cemented lenses, and the fourth group consists of three lenses: a positive lens, a negative meniscus lens, and a positive lens. In this example, as shown in the data, f 4 / f 3 > 0, and therefore the third group has a positive refractive power. Actually, f 3 = 108.93.

変倍時ワイド端からテレ端にかけ第2群と第4群を図示するように移動させ、第1群と第3群は固定である。又絞りは第2群と第3群の間に固定されている。     The second group and the fourth group are moved from the wide end to the tele end during zooming as shown in the figure, and the first group and the third group are fixed. The diaphragm is fixed between the second group and the third group.

又フォーカシングは第2群を移動させて行なっている。その時の第1群と第2群、第2群と第3群の間隔の変化は、データー中に示す通りである。     Focusing is performed by moving the second group. Changes in the distance between the first group and the second group, and the second group and the third group at that time are as shown in the data.

この実施例では第2群の最も像側の面と第4群の最も物体側の面とに非球面を用いている。     In this embodiment, aspherical surfaces are used for the most image side surface of the second group and the most object side surface of the fourth group.

実施例1の無限遠物体に対する収差状況は図11乃至図13又近距離までフォーカシングした時の収差状況は図14乃至図16に示す通りである。     FIG. 11 to FIG. 13 show the aberration situation for the object at infinity in Example 1, and FIG. 14 to FIG. 16 show the aberration situation when focusing to a short distance.

実施例2は、図2に示す通りの構成で、第2群が負レンズと負と正の接合レズよりなり、接合レンズの負レンズが物体側に凸の負のメニスカスレンズである。その他の構成は、実施例1と実質上同じである。尚非球面も同様に第2群の最も像側の面と第4群の最も物体側の面に用いている。又f3=83.62で第3群は正の屈折力を有す。 Example 2 is a negative meniscus lens having a configuration as shown in FIG. 2, in which the second group includes a negative lens and a negative and positive cemented lens, and the negative lens of the cemented lens is convex on the object side. Other configurations are substantially the same as those of the first embodiment. Similarly, the aspherical surface is used for the most image side surface of the second group and the most object side surface of the fourth group. Further, at f 3 = 83.62, the third group has a positive refractive power.

この実施例2の収差状況は、図17乃至図19に示す通りである。     The aberration status of Example 2 is as shown in FIGS.

実施例3は、図3に示す通りの構成で、第1群が負レンズと正レンズの2枚よりなり、第2群が負レンズと正レンズの2枚よりなり、第3群が正レンズ1枚よりなり、低価格化にとって有利な構成であり、又第4群が正レンズ、負レンズ、正レンズの3枚よりなる。この実施例はf3=650.71で第3群は正の屈折力を有す。 The third embodiment has a configuration as shown in FIG. 3, and the first group includes two lenses, a negative lens and a positive lens, the second group includes two lenses, a negative lens and a positive lens, and the third group includes a positive lens. The number of lenses is one, which is advantageous for cost reduction, and the fourth group consists of three lenses, a positive lens, a negative lens, and a positive lens. In this embodiment, f 3 = 650.71, and the third group has a positive refractive power.

変倍時ワイド端からテレ端へ第2群と第群が図示するように移動し又第1群と第群は固定である。又フォーカシングは第2群を移動させて行なっている。 When zooming, the second group and the fourth group move from the wide end to the tele end as shown in the figure, and the first group and the third group are fixed. Focusing is performed by moving the second group.

この実施例3の収差状況は、図20乃至図22に示す通りである。     The aberration status of Example 3 is as shown in FIGS.

実施例4は図4に示す構成のレンズ系で、第3群が正レンズ1枚よりなる点で実施例1と異なるが他は実施例1と同様の構成である。又非球面は第2群の最も像側の面と第4群の最も物体側の面に用いている。この実施例はf3=530.38で第3群は正の屈折力を有す。 The fourth embodiment is a lens system having the configuration shown in FIG. 4 and is the same as the first embodiment except that the third group is composed of one positive lens. The aspherical surfaces are used for the most image side surface of the second group and the most object side surface of the fourth group. In this embodiment, f 3 = 530.38, and the third group has a positive refractive power.

この実施例4の収差状況は図23乃至図25に示す通りである。     The aberration status of Example 4 is as shown in FIGS.

実施例5は図5に示す通りのレンズ系である。この実施例は実施例4のレンズ系と同様の構成である。非球面も同じ面に用いている。この実施例はf3=84.27で、第3群は正の屈折力を有する。 Example 5 is a lens system as shown in FIG. This embodiment has the same configuration as the lens system of Embodiment 4. An aspheric surface is also used for the same surface. In this embodiment, f 3 = 84.27, and the third group has a positive refractive power.

この実施例5の収差状況は、図26乃至図28に示す通りである。     The aberration status of Example 5 is as shown in FIGS.

実施例6は図6に示す構成で、第3群が負のメニスカスレンズで物体側に凹面を向けている点で実施例4と異なるが他は実施例4,5と同様の構成である。尚非球面は第2群の最も像側の面と第4群の最も物体側の面に用いている。この実施例はf3=−100.00で第3群は負の屈折力を有す。 Example 6 has the configuration shown in FIG. 6 and is the same as Examples 4 and 5 except that the third group is a negative meniscus lens and has a concave surface facing the object side. The aspheric surfaces are used as the most image side surface of the second group and the most object side surface of the fourth group. In this embodiment, f 3 = −100.00, and the third group has a negative refractive power.

この実施例の収差状況は、図29乃至図31に示す通りである。 Aberration of this embodiment is shown in FIGS. 29 to 31.

実施例7は、図7に示す通りで第3群が物体側に凹面を向けた正のメニスカスレンズである点を除き、実施例6と同様の様式である。非球面は第3群の最も像側の面と第4群の最も物体側の面とに用いている。この実施例はf3=103.33で、第3群は正の屈折力を有す。 Example 7 is the same as Example 6 except that the third unit is a positive meniscus lens having a concave surface facing the object side as shown in FIG. The aspherical surface is used for the most image side surface of the third group and the most object side surface of the fourth group. In this embodiment, f 3 = 103.33, and the third group has a positive refractive power.

この実施例7の収差状況は図32乃至図34に示す通りである。 Aberration of the seventh embodiment is as shown in FIGS. 32 to 34.

実施例8は、図8に示す通りの構成で、第3群が物体側に凸面を向けた正のメニスカスレンズ1枚にて構成され又絞りが第3群と第4群の間に固定されている点で実施例1や実施例5,6,7と異なっているが他はこれら実施例と同様の構成である。又非球面は第4群の最も物体側の面の1面のみである。この実施例はf3=67.67で、第3群は正の屈折力を有す。 In the eighth embodiment, the third group is configured by one positive meniscus lens having a convex surface facing the object side, and the diaphragm is fixed between the third and fourth groups. However, the configuration is the same as that of the first embodiment and the fifth, sixth, and seventh embodiments. Further, the aspherical surface is only one surface of the fourth group closest to the object side. In this embodiment, f 3 = 67.67, and the third group has a positive refractive power.

この実施例8の収差状況は、図35乃至図37に示す通りである。 Aberration of the eighth embodiment is shown in FIGS. 35 to 37.

実施例9は図9に示す通りの構成である。この実施例は、第2群がいずれも空気間隔を設けて配置された負のメニスカスレンズと負レンズと正のメニスカスレンズよりなる3枚のレンズにて構成された点で相違するが他は実施例7と同様の構成である。非球面は第4群の最も物体側の面1面のみである。この実施例はf3=33.87で、第3群は正の屈折力を有す。 The ninth embodiment has a configuration as shown in FIG. This embodiment is different in that the second group is composed of a negative meniscus lens arranged with an air gap, and three lenses including a negative lens and a positive meniscus lens. The configuration is the same as in Example 7. The aspherical surface is only one surface of the fourth group closest to the object side. In this embodiment, f 3 = 33.87, and the third group has a positive refractive power.

この実施例9の収差状況は図38乃至図40に示す通りである。 Aberration of the ninth embodiment are shown in FIG. 38 through FIG. 40.

実施例10は図10に示す通りで、第4群が正レンズと負レンズ(両凹レンズ)と正レンズとよりなり、絞りが第2群と第3群の間に配置されている点で異なるが、他は実施例8と同様の構成である。非球面は第4群の像側の正レンズの物体側の面に用いている。この実施例はf3=56.93で、第3群は正の屈折力を有す。 The tenth embodiment is as shown in FIG. 10, and is different in that the fourth group includes a positive lens, a negative lens (biconcave lens), and a positive lens, and the diaphragm is disposed between the second group and the third group. However, the other configuration is the same as that of the eighth embodiment. The aspherical surface is used for the object side surface of the positive lens on the image side of the fourth group. In this embodiment, f 3 = 56.93, and the third group has a positive refractive power.

この実施例10の収差状況は、図41乃至図43に示す通りである。 Aberration of this embodiment 10 is shown in FIG. 41 through FIG. 43.

以上各実施例について述べたが、これらのうち実施例1,2,4〜10は、いずれも第1群が1枚のレンズよりなり低価格化に有利な構成である。又実施例3〜10は第3群が1枚のレンズで低価格化に有利な構成である。したがって実施例4〜10は第1群,第3群共に1枚のレンズにて構成されている。更に実施例6は、第1群,第3群が1枚のプラスチックレンズにて構成され一層低価格であり又軽量なズームレンズになっている。     Each example has been described above. Of these examples, Examples 1, 2, and 4 to 10 have a configuration in which the first group is composed of a single lens and is advantageous in reducing the cost. In Examples 3 to 10, the third lens group is a single lens, which is advantageous in terms of cost reduction. Therefore, in Examples 4 to 10, both the first group and the third group are constituted by one lens. Further, in the sixth embodiment, the first group and the third group are constituted by one plastic lens, and the zoom lens is further reduced in price and weight.

上記各実施例にて用いられている非球面の形状は、光軸方向をx、光軸に垂直な方向をyとした時に下記の式にて表わされる。

Figure 0003984231
The shape of the aspherical surface used in each of the above embodiments is expressed by the following equation, where x is the optical axis direction and y is the direction perpendicular to the optical axis.
Figure 0003984231

ただし、pは円錐定数、A4 ,A6 ,・・・は4次,6次,・・・の非球面係数である。 Here, p is a conic constant, and A 4 , A 6 ,... Are fourth-order, sixth-order,.

又各実施例の変倍時およびフォーカシング時におけるレンズ群の移動による間隔D1 ,D2 ,D3 ,D4 の変化はデーター中に示してある。この間隔の変化の値は、夫々無限遠物体(∞)におけるワイド端W、スタンダードS(中間焦点距離)、テレ端Tおよび有限距離の物体(例えば500mm)にフォーカシングした時のワイド端W、スタンダードS、テレ端Tでの値をデーター中に示してある。 In addition, changes in the distances D 1 , D 2 , D 3 , and D 4 due to the movement of the lens group during zooming and focusing in each embodiment are shown in the data. The values of the change in the interval are the wide end W at the object at infinity (∞), the standard S (intermediate focal length), the tele end T, and the wide end W when focusing on the object at a finite distance (for example, 500 mm), the standard. The values at S and tele end T are shown in the data.

本発明のズームレンズは、特許請求の範囲の各請求項に記載したレンズ系のほか、次の各項に記載するレンズ系もその目的を達成し得るものである。     The zoom lens according to the present invention can achieve its object in addition to the lens systems described in the claims.

(1) 特許請求の範囲の請求項3に記載されているレンズ系で、下記条件(3)を満足するズームレンズ。   (1) A zoom lens system that satisfies the following condition (3) in the lens system according to claim 3 of the claims.

(3) −0.6<β2T<0
(2) 特許請求の範囲の請求項1,2又は3に記載されているレンズ系で、絞りを第2群と第4群の間に配置し光軸上に固定したズームレンズ。
(3) −0.6 <β 2T <0
(2) A zoom lens system according to claim 1, 2 or 3, wherein a stop is disposed between the second group and the fourth group and fixed on the optical axis.

(3) 特許請求の範囲の請求項1,2又は3に記載されているレンズ系で、下記条件(4)を満足することを特徴とするズームレンズ。   (3) A zoom lens according to claim 1, 2 or 3, wherein the following condition (4) is satisfied.

(4) 1.2×(β2T/β2W)<β4T/β4W<5.6×(β2T/β2W(4) 1.2 × (β 2T / β 2W ) <β 4T / β 4W <5.6 × (β 2T / β 2W )

(4) 特許請求の範囲の請求項1,2又は3に記載されているレンズ系で、下記の条件(5),(6),(7)を満足することを特徴とするズームレンズ。
(5) 0<fW/f1<0.2
(6) 0.2<fW/f4<0.7
(7) −0.2<f4/f3<0.6
(4) A zoom lens system that satisfies the following conditions (5), (6), and (7) in the lens system described in claim 1, 2, or 3 of the claims.
(5) 0 <f W / f 1 <0.2
(6) 0.2 <f W / f 4 <0.7
(7) -0.2 <f 4 / f 3 <0.6

(5) 特許請求の範囲の請求項1,2又は3に記載されているレンズ系で、前記第4群が物体側から順に、正レンズ、物体側に凸面を向けた負のメニスカスレンズ、正レンズの3枚のレンズにて構成され、最も物体側の正レンズが非球面を含み、下記の条件(8)を満足するズームレンズ。
(8) 1.1<(rF+rR)/(rF−rR)<4.0
(5) In the lens system described in claim 1, 2 or 3, the fourth group is a positive lens in order from the object side, a negative meniscus lens having a convex surface facing the object side, a positive lens A zoom lens that includes three lenses, and the most object-side positive lens includes an aspherical surface and satisfies the following condition (8).
(8) 1.1 <(r F + r R ) / (r F −r R ) <4.0

(6) 特許請求の範囲の請求項1,2又は3に記載されているレンズ系で、前記第4群が物体側から順に、正レンズ、両凹負レンズ、正レンズの3枚のレンズにて構成され、最も像側の正レンズが非球面を含み、下記の条件(9)を満足するズームレンズ。
(9) −0.9<(rF+rR)/(rF−rR)<0.9
(6) In the lens system described in claim 1, 2 or 3, the fourth group is arranged in order from the object side into three lenses, a positive lens, a biconcave negative lens, and a positive lens. The zoom lens is configured so that the most image side positive lens includes an aspheric surface and satisfies the following condition (9).
(9) −0.9 <(r F + r R ) / (r F −r R ) <0.9

(7) 特許請求の範囲の請求項3に記載されているレンズ系で、絞りが第2群と第4群の間に配置され光軸上に固定されており、下記条件(3)を満足するズームレンズ。
(3) −0.6<β2T<0
(7) In the lens system according to claim 3 of the claims, the diaphragm is disposed between the second group and the fourth group and is fixed on the optical axis, and satisfies the following condition (3) Zoom lens to be used.
(3) −0.6 <β 2T <0

(8) 前記(7)の項に記載されているレンズ系で、下記条件(4)を満足するズームレンズ。
(4) 1.2×(β2T/β2W)<β4T/β4W<5.6×(β2T/β2W
(8) A zoom lens that satisfies the following condition (4) in the lens system described in the item (7).
(4) 1.2 × (β 2T / β 2W ) <β 4T / β 4W <5.6 × (β 2T / β 2W )

(9) 前記(8)の項に記載されているレンズ系で、下記条件(5),(6),(7)を満足するズームレンズ。
(5) 0<fW/f1<0.2
(6) 0.2<fW/f4<0.7
(7) −0.2<f4/f3<0.6
(9) A zoom lens system that satisfies the following conditions (5), (6), and (7) in the lens system described in the item (8).
(5) 0 <f W / f 1 <0.2
(6) 0.2 <f W / f 4 <0.7
(7) -0.2 <f 4 / f 3 <0.6

(10) 前記(9)の項に記載されているレンズ系で、前記第4群が物体側から順に、正レンズ、物体側に凸面を向けた負のメニスカスレンズ、正レンズの3枚のレンズにて構成され、最も物体側の正レンズが非球面を含み、下記の条件(8)を満足するズームレンズ。
(8) 1.1<(rF+rR)/(rF−rR)<4.0
(10) In the lens system described in the item (9), three lenses of the fourth group in order from the object side are a positive lens, a negative meniscus lens having a convex surface facing the object side, and a positive lens. And a zoom lens that satisfies the following condition (8), wherein the most object side positive lens includes an aspherical surface.
(8) 1.1 <(r F + r R ) / (r F −r R ) <4.0

(11) 前記(9)の項に記載されているレンズ系で、前記第4群が物体側から順に、正レンズ、物体側に凹負レンズ、正レンズの3枚のレンズにて構成され、最も物体側の正レンズが非球面を含み、下記の条件(9)を満足するズームレンズ。
(9) −0.9<(rF+rR)/(rF−rR)<0.9
(11) In the lens system described in the item (9), the fourth group includes three lenses, a positive lens, a concave negative lens on the object side, and a positive lens in order from the object side. A zoom lens in which the most object side positive lens includes an aspherical surface and satisfies the following condition (9).
(9) −0.9 <(r F + r R ) / (r F −r R ) <0.9

本発明の実施例1の断面図Sectional drawing of Example 1 of this invention 本発明の実施例2の断面図Sectional drawing of Example 2 of this invention 本発明の実施例3の断面図Sectional drawing of Example 3 of this invention 本発明の実施例4の断面図Sectional drawing of Example 4 of this invention 本発明の実施例5の断面図Sectional drawing of Example 5 of this invention 本発明の実施例6の断面図Sectional drawing of Example 6 of this invention 本発明の実施例7の断面図Sectional drawing of Example 7 of this invention 本発明の実施例8の断面図Sectional drawing of Example 8 of this invention 本発明の実施例9の断面図Sectional drawing of Example 9 of this invention 本発明の実施例10の断面図Sectional drawing of Example 10 of this invention 本発明の実施例1の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 1 of the present invention 本発明の実施例1の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 1 of the present invention 本発明の実施例1の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at tele end for object at infinity according to example 1 of the present invention 本発明の実施例1の近距離物体に対するワイド端における収差曲線図Aberration curve diagram at the wide end for the short-distance object according to the first embodiment of the present invention. 本発明の実施例1の近距離物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for short-distance object of Example 1 of the present invention 本発明の実施例1の近距離物体に対するテレ端における収差曲線図FIG. 6 is an aberration curve diagram at the telephoto end for a short-distance object according to the first embodiment of the present invention. 本発明の実施例2の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 2 of the present invention 本発明の実施例2の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Embodiment 2 of the present invention 本発明の実施例2の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at telephoto end for an object at infinity according to Example 2 of the present invention 本発明の実施例3の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 3 of the present invention 本発明の実施例3の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 3 of the present invention 本発明の実施例3の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at tele end with respect to an object at infinity according to Embodiment 3 of the present invention 本発明の実施例4の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 4 of the present invention 本発明の実施例4の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 4 of the present invention 本発明の実施例4の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at telephoto end for an object at infinity according to example 4 of the present invention 本発明の実施例5の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 5 of the present invention 本発明の実施例5の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 5 of the present invention 本発明の実施例5の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at telephoto end for an object at infinity according to Example 5 of the present invention 本発明の実施例6の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 6 of the present invention 本発明の実施例6の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 6 of the present invention 本発明の実施例6の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at telephoto end for an object at infinity according to example 6 of the present invention 本発明の実施例7の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 7 of the present invention 本発明の実施例7の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 7 of the present invention 本発明の実施例7の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at telephoto end for an object at infinity according to Example 7 of the present invention 本発明の実施例8の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 8 of the present invention 本発明の実施例8の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 8 of the present invention 本発明の実施例8の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at telephoto end for an object at infinity according to Example 8 of the present invention 本発明の実施例9の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 9 of the present invention 本発明の実施例9の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 9 of the present invention 本発明の実施例9の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at telephoto end for an object at infinity according to Example 9 of the present invention 本発明の実施例10の無限遠物体に対するワイド端における収差曲線図Aberration curve diagram at wide end for an object at infinity according to Example 10 of the present invention 本発明の実施例10の無限遠物体に対する中間焦点距離における収差曲線図Aberration curve diagram at intermediate focal length for an object at infinity according to Example 10 of the present invention 本発明の実施例10の無限遠物体に対するテレ端における収差曲線図Aberration curve diagram at telephoto end for an object at infinity according to Example 10 of the present invention

Claims (18)

物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正または負の屈折力を有する第3群と、正の屈折力を有する第4群からなり、変倍の際、第2群と第4群を移動し、第4群は広角端から望遠端にかけて物体側へ単調に移動し、かつ以下の条件(1),(2’)を満足することを特徴とするズームレンズ。
(1) 0<f4 /f1 <0.45
2’) −1.6<β4T ≦−0.75
但し、f1 は第1群の焦点距離、f4 は第4群の焦点距離、β4Tは第4群の望遠端での倍率である。
From the object side, in order from the first group having positive refractive power, the second group having negative refractive power, the third group having positive or negative refractive power, and the fourth group having positive refractive power When zooming, the second group and the fourth group are moved. The fourth group moves monotonically from the wide-angle end to the telephoto end, and satisfies the following conditions (1) and ( 2 ' ). Zoom lens characterized by that.
(1) 0 <f 4 / f 1 <0.45
( 2 ′ ) −1.6 <β 4T ≦ −0.75
Here, f 1 is the focal length of the first group, f 4 is the focal length of the fourth group, and β 4T is the magnification at the telephoto end of the fourth group.
変倍の際に前記第1群と前記第3群とが固定である請求項1のズームレンズ。 The zoom lens according to claim 1, wherein the first group and the third group are fixed during zooming. 前記第2群を移動してフォーカシングを行う請求項1又は2のズームレンズ。 The zoom lens according to claim 1, wherein focusing is performed by moving the second group. 物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正または負の屈折力を有する第3群と、正の屈折力を有する第4群からなり、変倍の際、第2群と第4群を移動し、第4群は広角端から望遠端にかけて物体側へ単調に移動し、かつ第2群を移動してフォーカシングを行い、以下の条件(1),(2),(3)を満足することを特徴とするズームレンズ。From the object side, in order from the first group having positive refractive power, the second group having negative refractive power, the third group having positive or negative refractive power, and the fourth group having positive refractive power In zooming, the second group and the fourth group are moved, the fourth group moves monotonically from the wide-angle end to the telephoto end, moves toward the object side, and moves the second group to perform focusing. A zoom lens satisfying the conditions (1), (2), and (3).
(1) 0<f(1) 0 <f 4Four /f / F 11 <0.45 <0.45
(2) −1.6<β(2) -1.6 <β 4T4T <−0.5<-0.5
(3) −0.6<β(3) -0.6 <β 2T2T <0<0
但し、fWhere f 11 は第1群の焦点距離、f Is the focal length of the first group, f 4Four は第4群の焦点距離、β Is the focal length of the fourth group, β 4T4T は第4群の望遠端での倍率、βIs the magnification at the telephoto end of the fourth group, β 2T2T は第2群の望遠端での倍率である。Is the magnification at the telephoto end of the second lens group.
絞りを第2群と第4群の間に配置し光軸上に固定したことを特徴とする請求項1,2又は3のズームレンズ。 4. The zoom lens according to claim 1, wherein a diaphragm is disposed between the second group and the fourth group and fixed on the optical axis. 下記条件(4)を満足することを特徴とする請求項1,2又は3のズームレンズ。
(4) 1.2×(β2T/β2W)<β4T/β4W<5.6×(β2T/β2W
但し、β2Wは第2群の広角端での倍率、β2Tは第2群の望遠端での倍率、β4Wは第4群の広角端での倍率、β4Tは第4群の望遠端での倍率である。
The zoom lens according to claim 1, 2 or 3, wherein the following condition (4) is satisfied.
(4) 1.2 × (β 2T / β 2W ) <β 4T / β 4W <5.6 × (β 2T / β 2W )
Where β 2W is the magnification at the wide-angle end of the second group, β 2T is the magnification at the telephoto end of the second group, β 4W is the magnification at the wide-angle end of the fourth group, and β 4T is the telephoto end of the fourth group It is the magnification at.
下記の条件(5),(6),(7)を満足することを特徴とする請求項1,2又は3のズームレンズ。
(5) 0<fW/f1<0.2
(6) 0.2<fW/f4<0.7
(7) −0.2<f4/f3<0.6
但し、fW は広角端での全系の焦点距離、f4 は第4群の焦点距離、f3 は第3群の焦点距離である。
The zoom lens according to claim 1, 2 or 3, wherein the following conditions (5), (6) and (7) are satisfied.
(5) 0 <f W / f 1 <0.2
(6) 0.2 <f W / f 4 <0.7
(7) -0.2 <f 4 / f 3 <0.6
However, f W is the focal length of the entire system at the wide angle end, f 4 is the focal length of the fourth group, and f 3 is the focal length of the third group.
前記第4群が物体側から順に、正レンズ、物体側に凸面を向けた負のメニスカスレンズ、正レンズの3枚のレンズにて構成され、最も物体側の正レンズが非球面を含み、下記の条件(8)を満足することを特徴とする請求項1,2又は3のズームレンズ。
(8) 1.1<(rF+rR)/(rF−rR)<4.0
但し、rF は第4群の負のメニスカスレンズの物体側の面の曲率半径、rR は第4群の負のメニスカスレンズの像側の面の曲率半径である。
The fourth group is composed of three lenses in order from the object side: a positive lens, a negative meniscus lens having a convex surface facing the object side, and a positive lens, and the most positive lens on the object side includes an aspheric surface. 4. The zoom lens according to claim 1, wherein the zoom lens satisfies the following condition (8).
(8) 1.1 <(r F + r R ) / (r F −r R ) <4.0
Where r F is the radius of curvature of the object side surface of the negative meniscus lens of the fourth group, and r R is the radius of curvature of the image side surface of the negative meniscus lens of the fourth group.
前記第4群が物体側から順に、正レンズ、両凹負レンズ、正レンズの3枚のレンズにて構成され、最も像側の正レンズが非球面を含み、下記の条件(9)を満足することを特徴とする請求項1,2又は3のズームレンズ。
(9) −0.9<(rF+rR)/(rF−rR)<0.9
但し、rF は第4群の負レンズの物体側の面の曲率半径、rR は第4群の負レンズの像側の面の曲率半径である。
The fourth group is composed of three lenses in order from the object side: a positive lens, a biconcave negative lens, and a positive lens. The most positive lens on the image side includes an aspheric surface, and satisfies the following condition (9): The zoom lens according to claim 1, 2, or 3.
(9) −0.9 <(r F + r R ) / (r F −r R ) <0.9
Where r F is the radius of curvature of the object-side surface of the negative lens in the fourth group, and r R is the radius of curvature of the image-side surface of the negative lens in the fourth group.
絞りが第2群と第4群の間に配置され光軸上に固定されており、下記条件(3)を満足することを特徴とする請求項3のズームレンズ。
(3) −0.6<β2T<0
但し、β2Tは第2群の望遠端での倍率である。
4. The zoom lens according to claim 3, wherein the stop is disposed between the second group and the fourth group and is fixed on the optical axis, and satisfies the following condition (3).
(3) −0.6 <β 2T <0
Where β 2T is the magnification at the telephoto end of the second lens group.
下記条件(4)を満足することを特徴とする請求項10のズームレンズ。
(4) 1.2×(β2T/β2W)<β4T/β4W<5.6×(β2T/β2W
但し、β2Wは第2群の広角端での倍率、β2Tは第2群の望遠端での倍率、β4Wは第4群の広角端での倍率、β4Tは第4群の望遠端での倍率である。
The zoom lens according to claim 10, wherein the following condition (4) is satisfied.
(4) 1.2 × (β 2T / β 2W ) <β 4T / β 4W <5.6 × (β 2T / β 2W )
Where β 2W is the magnification at the wide-angle end of the second group, β 2T is the magnification at the telephoto end of the second group, β 4W is the magnification at the wide-angle end of the fourth group, and β 4T is the telephoto end of the fourth group It is the magnification at.
下記条件(5),(6),(7)を満足することを特徴とする請求項11のズームレンズ。
(5) 0<fW/f1<0.2
(6) 0.2<fW/f4<0.7
(7) −0.2<f4/f3<0.6
但し、fW は広角端での全系の焦点距離、f4 は第4群の焦点距離、f3 は第3群の焦点距離である。
The zoom lens according to claim 11, wherein the following conditions (5), (6), and (7) are satisfied.
(5) 0 <f W / f 1 <0.2
(6) 0.2 <f W / f 4 <0.7
(7) -0.2 <f 4 / f 3 <0.6
However, f W is the focal length of the entire system at the wide angle end, f 4 is the focal length of the fourth group, and f 3 is the focal length of the third group.
前記第4群が物体側から順に、正レンズ、物体側に凸面を向けた負のメニスカスレンズ、正レンズの3枚のレンズにて構成され、最も物体側の正レンズが非球面を含み、下記の条件(8)を満足することを特徴とする請求項12のズームレンズ。
(8) 1.1<(rF+rR)/(rF−rR)<4.0
但し、rF は第4群の負のメニスカスレンズの物体側の面の曲率半径、rR は第4群の負のメニスカスレンズの像側の面の曲率半径である。
The fourth group is composed of three lenses in order from the object side: a positive lens, a negative meniscus lens having a convex surface facing the object side, and a positive lens, and the most positive lens on the object side includes an aspheric surface. The zoom lens according to claim 12, wherein the following condition (8) is satisfied.
(8) 1.1 <(r F + r R ) / (r F −r R ) <4.0
Where r F is the radius of curvature of the object side surface of the negative meniscus lens of the fourth group, and r R is the radius of curvature of the image side surface of the negative meniscus lens of the fourth group.
前記第4群が物体側から順に、正レンズ、両凹負レンズ、正レンズの3枚のレンズにて構成され、最も物体側の正レンズが非球面を含み、下記の条件(9)を満足することを特徴とする請求項12のズームレンズ。
(9) −0.9<(rF+rR)/(rF−rR)<0.9
但し、rF は第4群の負レンズの物体側の面の曲率半径、rR は第4群の負レンズの像側の面の曲率半径である。
The fourth group is composed of three lenses in order from the object side: a positive lens, a biconcave negative lens, and a positive lens. The most positive lens on the object side includes an aspheric surface, and satisfies the following condition (9): The zoom lens according to claim 12, wherein:
(9) −0.9 <(r F + r R ) / (r F −r R ) <0.9
Where r F is the radius of curvature of the object-side surface of the negative lens in the fourth group, and r R is the radius of curvature of the image-side surface of the negative lens in the fourth group.
第4群以外で正の屈折力を持つ群に非球面を用い、この非球面を光軸から離れるにつれて、正の屈折力が弱くなるか、負の屈折力が強くなるような形状にしたことを特徴とする請求項1、2又は3のズームレンズ。 Other than the fourth group, aspherical surfaces are used for groups having positive refractive power, and the positive refractive power becomes weaker or the negative refractive power becomes stronger as the aspherical surface is moved away from the optical axis. The zoom lens according to claim 1, 2, or 3. 負の屈折力を持つ群に非球面を用い、この非球面を光軸から離れるにつれて、負の屈折力が弱くなるか、正の屈折力が強くなるような形状にしたことを特徴とする請求項1、2又は3のズームレンズ。 An aspherical surface is used for the group having negative refractive power, and the aspherical surface is shaped so that the negative refractive power becomes weaker or the positive refractive power becomes stronger as the distance from the optical axis increases. The zoom lens according to item 1, 2, or 3. 第1群を1枚の正レンズで構成したことを特徴とする請求項1、2又は3のズームレンズ。 4. The zoom lens according to claim 1, wherein the first group is composed of one positive lens. 第3群を1枚の単レンズで構成したことを特徴とする請求項1、2又は3のズームレンズ。 4. The zoom lens according to claim 1, wherein the third group is composed of one single lens.
JP2004028820A 2004-02-05 2004-02-05 Zoom lens Expired - Fee Related JP3984231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028820A JP3984231B2 (en) 2004-02-05 2004-02-05 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028820A JP3984231B2 (en) 2004-02-05 2004-02-05 Zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23784995A Division JP3822268B2 (en) 1995-08-24 1995-08-24 Zoom lens

Publications (2)

Publication Number Publication Date
JP2004163980A JP2004163980A (en) 2004-06-10
JP3984231B2 true JP3984231B2 (en) 2007-10-03

Family

ID=32822049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028820A Expired - Fee Related JP3984231B2 (en) 2004-02-05 2004-02-05 Zoom lens

Country Status (1)

Country Link
JP (1) JP3984231B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612524B2 (en) * 2005-10-19 2011-01-12 Hoya株式会社 Wide-angle zoom lens system
JP5332169B2 (en) * 2007-10-02 2013-11-06 株式会社ニコン Zoom lens and optical apparatus having the same
CN101950067B (en) * 2010-09-21 2012-11-07 宁波舜宇红外技术有限公司 Long-wavelength infrared continuous zoom lens
KR101890304B1 (en) 2011-11-04 2018-08-22 삼성전자주식회사 Zoom lens and photographing apparatus
KR102013241B1 (en) * 2012-12-28 2019-08-22 삼성전자주식회사 Zoom lens and photographing apparatus having the same
JP6463591B1 (en) * 2018-07-20 2019-02-06 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens

Also Published As

Publication number Publication date
JP2004163980A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4669294B2 (en) Zoom lens and imaging apparatus having the same
JP3686178B2 (en) Zoom lens
JP3253405B2 (en) Two-group zoom lens
JP3822268B2 (en) Zoom lens
JP4914136B2 (en) Zoom lens and imaging apparatus having the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JP5277624B2 (en) Macro lens, optical device, macro lens focusing method
JPH083580B2 (en) Compact high-magnification zoom lens
JPH05113537A (en) Zoom lens using plastic lens
JP5006514B2 (en) Zoom lens and imaging apparatus having the same
JP2003241097A (en) High variable power ratio zoom lens
JP4708734B2 (en) Zoom lens and imaging apparatus having the same
JP2007178598A (en) High-magnification zoom lens
JPH0830783B2 (en) High magnification zoom lens for compact cameras
JP5084900B2 (en) Zoom lens and imaging apparatus having the same
JP3429578B2 (en) Small rear focus zoom lens
JP3821330B2 (en) Zoom lens
JP2000275522A (en) Zoom lens
JPH06294932A (en) Zoom lens
JP3432050B2 (en) High zoom 3 group zoom lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP3984231B2 (en) Zoom lens
JPH06230284A (en) Focusing system for zoom lens
JP3323839B2 (en) Camera with a small zoom lens
JPH08179215A (en) Zoom lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees