JP2003107021A - Fluorescent x-ray analyzer - Google Patents

Fluorescent x-ray analyzer

Info

Publication number
JP2003107021A
JP2003107021A JP2001299271A JP2001299271A JP2003107021A JP 2003107021 A JP2003107021 A JP 2003107021A JP 2001299271 A JP2001299271 A JP 2001299271A JP 2001299271 A JP2001299271 A JP 2001299271A JP 2003107021 A JP2003107021 A JP 2003107021A
Authority
JP
Japan
Prior art keywords
fluorescent
ray
detector
spectroscopic element
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001299271A
Other languages
Japanese (ja)
Inventor
Tadashi Uko
忠 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OURS TEX KK
Original Assignee
OURS TEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OURS TEX KK filed Critical OURS TEX KK
Priority to JP2001299271A priority Critical patent/JP2003107021A/en
Publication of JP2003107021A publication Critical patent/JP2003107021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small and low cost fluorescent X-ray analyzer in which analysis can be conducted in a short time from a light element to a heavy element. SOLUTION: The fluorescent X-ray analyzer comprises a spectroscopic element 6 and a means 10 for rotating a detector 8 at an angular velocity ratio of 1:2. A semiconductor detector 8 cooled by a Peltier element is employed as the detector 8 and an artificial multilayer film lattice having a constant lattice plane interval where two elements having different atomic numbers are laid in multilayer is employed as the spectroscopic element 6 without providing an exchanger for exchanging the spectroscopic element 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は蛍光X線分析装置に
関するものである。
TECHNICAL FIELD The present invention relates to a fluorescent X-ray analysis apparatus.

【0002】[0002]

【従来の技術】従来のいわゆる波長分散型の蛍光X線分
析装置においては、検出器として、例えば、Al 程度に
軽い元素の分析用にはガスフロー型比例計数管(F−P
C)を、Fe 、Sn 等程度に重い元素の分析用にはシン
チレーション計数管(SC)を用い、各検出器に適した
分光素子等の光学系を組み合わせて分光している。
2. Description of the Related Art In a conventional so-called wavelength dispersive X-ray fluorescence analyzer, a gas flow type proportional counter (FP) is used as a detector, for example, for the analysis of elements lighter than Al.
For C), a scintillation counter (SC) is used for analysis of elements heavy such as Fe, Sn, etc., and an optical system such as a spectroscopic element suitable for each detector is combined for spectral analysis.

【0003】しかし、このような装置では、検出器を少
なくとも2種類備えねばならないため構成が複雑で、し
かも、エネルギー分解能が低い等の検出器の特性から、
装置の感度や精度が必ずしも十分でないため、今一つ正
確な分析ができない。一方、従来のいわゆるエネルギー
分散型の蛍光X線分析装置では、エネルギー分解能の高
い半導体検出器(SSD)を用いるが、検出器に大がか
りな冷却装置が必要となることが多く走査が困難なこと
もあって分光素子を用いないため、検出器の分解能で装
置の分解能が決まる。ここで、一般に、蛍光X線分析装
置における分解能は、Al やFe 程度に軽い元素の分析
では、適切な分光素子を用いた波長分散型が優れ、Mo
程度以上に重い元素の分析では、半導体検出器を用いた
エネルギー分散型が優れる。したがって、従来のエネル
ギー分散型の蛍光X線分析装置においては、Al やFe
程度に軽い元素の分析では、装置の精度が必ずしも十分
でなく、やはり今一つ正確な分析ができない。
However, in such an apparatus, since at least two types of detectors must be provided, the structure is complicated, and the characteristics of the detector, such as low energy resolution,
Since the sensitivity and accuracy of the equipment are not always sufficient, another accurate analysis cannot be performed. On the other hand, in the conventional so-called energy dispersive X-ray fluorescence analyzer, a semiconductor detector (SSD) with high energy resolution is used, but a large cooling device is often required for the detector, which makes scanning difficult. Since the spectroscopic element is not used, the resolution of the device determines the resolution of the detector. Here, in general, the resolution of a fluorescent X-ray analyzer is superior to that of a wavelength dispersion type using an appropriate spectroscopic element for the analysis of elements that are as light as Al and Fe.
The energy dispersive type using a semiconductor detector is excellent in the analysis of elements that are heavier than a certain degree. Therefore, in conventional energy dispersive X-ray fluorescence analyzers, Al and Fe
The accuracy of the device is not always sufficient for the analysis of moderately light elements, and it is still not possible to perform accurate analysis.

【0004】そこで、検出器として半導体検出器のみを
用いた蛍光X線分析装置が提案されている(特開200
0−329714号)。
Therefore, an X-ray fluorescence analyzer using only a semiconductor detector as a detector has been proposed (Japanese Patent Laid-Open No. 200-200200).
0-329714).

【0005】[0005]

【発明が解決しようとする課題】しかし、該分析装置は
結晶を回転させて交換する結晶交換器を備えているの
で、装置の構造が複雑であるため、これが大型化やコス
ト高の要因となる。しかも、軽元素および重元素の双方
について分析を行う場合には、結晶を交換する前後につ
いて、各々分光素子および半導体検出器の双方を広い角
度の範囲にわたって回転(走査)させる必要がある。そ
のため、測定時間も長くなる。
However, since the analyzer is equipped with a crystal exchanger for rotating and exchanging crystals, the structure of the device is complicated, which causes a large size and high cost. . In addition, when analyzing both light elements and heavy elements, it is necessary to rotate (scan) both the spectroscopic element and the semiconductor detector over a wide angle range before and after replacing the crystal. Therefore, the measurement time becomes long.

【0006】したがって、本発明の目的は、小型、ロー
コストで、かつ、軽元素から重元素までの分析を短時間
で行い得る蛍光X線分析装置を提供することである。
Therefore, an object of the present invention is to provide a fluorescent X-ray analyzer which is small in size, low in cost, and capable of analyzing light elements to heavy elements in a short time.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の蛍光X線分析装置は、分光素子と検出器を
1:2の角速比で回転させる回動手段とを備えた蛍光X
線分析装置において、前記検出器としてペルチェ素子で
冷却する半導体検出器を採用すると共に、前記分光素子
を交換する交換器を設けずに、前記分光素子として、原
子番号が異なる2つの元素を多数層積層した一定の格子
面間隔を有する人工多層膜格子を採用したことを特徴と
する。
In order to achieve the above object, an X-ray fluorescence analyzer of the present invention comprises a spectroscopic element and a rotating means for rotating a detector at an angular velocity ratio of 1: 2. Fluorescent X
In the line analysis device, a semiconductor detector that is cooled by a Peltier element is used as the detector, and a multi-layered structure of two elements having different atomic numbers is provided as the spectroscopic element without providing an exchanger for exchanging the spectroscopic element. It is characterized in that an artificial multi-layered film lattice having a fixed lattice plane interval is adopted.

【0008】本発明によれば、まず、結晶交換器を有し
ておらず、かつ、検出器として半導体検出器のみを用い
るので構成が著しく簡単になる。Al やFe 程度に軽い
元素の分析では、人工多層膜格子を用いるので、人工多
層膜格子の分散能により、優れた分解能が得られる。一
方、Mo 程度以上に重い元素の分析では、半導体検出器
を用いているので、やはり分解能に優れる。したがっ
て、軽元素から重元素まで、精度が高く十分正確な分析
が可能となる。
According to the present invention, first of all, the crystal exchanger is not provided and only the semiconductor detector is used as the detector, so that the structure is remarkably simplified. In the analysis of elements as light as Al and Fe, the artificial multi-layered film lattice is used, so that excellent resolution can be obtained due to the dispersive ability of the artificial multi-layered film lattice. On the other hand, in the analysis of elements heavier than Mo, since the semiconductor detector is used, the resolution is also excellent. Therefore, highly accurate and sufficiently accurate analysis from light elements to heavy elements becomes possible.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態の装置
を図面にしたがって説明する。まず、この装置の構成に
ついて説明する。この装置は、試料1が載置される試料
台2と、試料1に1次X線3を照射するX線管等のX線
源4と、試料1から発生した蛍光X線5を通過させるソ
ーラスリット11とを備えている。また、本装置は、ソ
ーラスリット11を通過する蛍光X線13の光路に設け
られ、入射した蛍光X線13を分光する分光素子6と、
該分光素子6で分光された蛍光X線7の強度を測定する
半導体検出器8とを備えている。さらに、本装置は分光
素子6で分光される蛍光X線7の波長を変えながら、そ
の分光された蛍光X線7が半導体検出器8に入射するよ
うに、分光素子6および半導体検出器8を連動させた状
態で回動させる回動手段10を備えている。
DETAILED DESCRIPTION OF THE INVENTION An apparatus according to an embodiment of the present invention will be described below with reference to the drawings. First, the configuration of this device will be described. This apparatus passes a sample table 2 on which a sample 1 is placed, an X-ray source 4 such as an X-ray tube for irradiating the sample 1 with primary X-rays 3, and a fluorescent X-ray 5 generated from the sample 1. It is provided with a solar slit 11. In addition, the present device is provided in the optical path of the fluorescent X-rays 13 passing through the solar slits 11, and the spectroscopic element 6 that disperses the incident fluorescent X-rays 13,
A semiconductor detector 8 for measuring the intensity of the fluorescent X-ray 7 dispersed by the spectroscopic element 6. Further, the present apparatus changes the wavelength of the fluorescent X-rays 7 dispersed by the spectroscopic element 6 so that the spectroscopic X-rays 7 are incident on the semiconductor detector 8, and the spectroscopic element 6 and the semiconductor detector 8 are arranged. A rotating means 10 for rotating in an interlocking state is provided.

【0010】前記X線源4としては、小型化を図る観点
から空冷式のX線管を用いるのが好ましく、本実施形態
では50W程度の小型のX線管を用いることができる。
As the X-ray source 4, it is preferable to use an air-cooled X-ray tube from the viewpoint of miniaturization, and in the present embodiment, a small X-ray tube of about 50 W can be used.

【0011】半導体検出器8としては、たとえば、シリ
コンドリフト検出器(SDD)のように、液体窒素によ
らずペルチェ素子による冷却を行うものを用いる。
The semiconductor detector 8 is, for example, a silicon drift detector (SDD) that is cooled by a Peltier element instead of liquid nitrogen.

【0012】回動手段10は、いわゆるゴニオメータで
分光素子6と半導体検出器8とを1:2の角速比で点O
のまわりに回転させるものである。蛍光X線13がある
入射角θで分光素子6に入射すると、その蛍光X線13
の延長線9と分光素子6で分光(回折)された蛍光X線
7は入射角θの2倍の分光角2θをなすが、回動手段1
0は、分光角2θを変えて分光される蛍光X線7の波長
を変えながら、その分光された蛍光X線7が半導体検出
器8に入射するように、分光素子6を、分光素子6の表
面の中心を通る紙面に垂直な軸Oを中心に回転させ、そ
の回転角の2倍だけ、半導体検出器8を軸Oを中心に円
12に沿って回転(走査)させる。
The rotating means 10 is a so-called goniometer, which separates the spectroscopic element 6 and the semiconductor detector 8 from the point O at an angular velocity ratio of 1: 2.
To rotate around. When the fluorescent X-ray 13 enters the spectroscopic element 6 at an incident angle θ, the fluorescent X-ray 13
The extension line 9 and the fluorescent X-ray 7 which is spectrally (diffracted) by the spectroscopic element 6 form a spectral angle 2θ which is twice the incident angle θ, but the rotating means 1
0 changes the spectroscopic element 6 of the spectroscopic element 6 so that the spectroscopic fluorescent X-ray 7 is incident on the semiconductor detector 8 while changing the spectral angle 2θ and changing the wavelength of the spectroscopic X-ray 7. The semiconductor detector 8 is rotated (scanned) along the circle 12 about the axis O by twice the rotation angle of the axis O which is perpendicular to the plane of the paper passing through the center of the surface.

【0013】なお、回動手段10は、分光素子6と半導
体検出器8とを歯車機構等の駆動機構により機械的に連
結し、その歯車機構等を単一のモータ等の駆動源で駆動
するものでもよいし、分光素子6と半導体検出器8をそ
れぞれ独立した駆動源および駆動機構で駆動し、それら
の駆動源を適切に制御して前記のような動作を実現する
ものでもよい。
The rotating means 10 mechanically connects the spectroscopic element 6 and the semiconductor detector 8 with a drive mechanism such as a gear mechanism, and drives the gear mechanism with a drive source such as a single motor. Alternatively, the spectroscopic element 6 and the semiconductor detector 8 may be driven by independent driving sources and driving mechanisms, and the driving sources may be appropriately controlled to realize the above-described operation.

【0014】ここで、分光素子6としては、原子番号が
異なる2つの元素を多数層積層した人工多層膜格子6を
用いる。図1(b)に示すように、人工多層膜格子6
は、一定の格子面間隔dを有する。
Here, as the spectroscopic element 6, an artificial multilayer film lattice 6 in which a large number of two elements having different atomic numbers are laminated is used. As shown in FIG. 1 (b), the artificial multilayer film lattice 6
Have a constant lattice spacing d.

【0015】前記人工多層膜格子6は、第1の層61お
よび第2の層62が多数繰り返し積層されてなる。第1
の層61は蛍光X線13の一部を反射する反射面60を
持ち、原子番号が42番以上の第1元素(たとえば、モ
リブデンMo(42番),タングステンW (74番),レ
ニウムRe(75番))を含み、一般に単体で形成され
る。一方、第2の層62は原子番号が14番以下の第2
元素の単体(たとえば、ベリリウムBe(4番),カーボ
ンC (6番),ケイ素Si(14番)など)や化合物( B
4C)で形成される。なお、一般的には、W とC またはSi
の組合せを用いるのが好ましい。
The artificial multilayer lattice 6 is formed by repeatedly laminating a large number of first layers 61 and second layers 62. First
The layer 61 has a reflection surface 60 that reflects a part of the fluorescent X-rays 13, and the first element having an atomic number of 42 or more (for example, molybdenum Mo (42), tungsten W (74), rhenium Re ( No. 75)), and is generally formed as a single body. On the other hand, the second layer 62 has a second atomic number of 14 or less.
Elemental simple substance (for example, beryllium Be (No. 4), carbon C (No. 6), silicon Si (No. 14), etc.) and compound (B
4 C) formed. Note that, in general, W and C or Si
It is preferred to use a combination of

【0016】前記第2の層62の厚さは、第1の層61
の厚さの、一般に3倍程度に設定するのが好ましく、少
なくとも2倍以上に設定する。これにより、十分な格子
面間隔dを得ると共に、原子番号の大きい元素によるX
線13,7の吸収を極力低減するためである。
The thickness of the second layer 62 is the same as that of the first layer 61.
It is generally preferable to set the thickness to about 3 times, and at least twice the thickness. As a result, a sufficient lattice spacing d is obtained and X due to an element with a large atomic number
This is to reduce the absorption of the lines 13 and 7 as much as possible.

【0017】次に、この装置の動作について説明する。
試料台2に載置された試料1にX線源4から1次X線3
が照射されると、試料1から発生した蛍光X線5がソー
ラスリット11を通過し、人工多層膜格子6で分光さ
れ、分光された蛍光X線7の強度が半導体検出器8で測
定される。ここで、分光素子6と半導体検出器8を回動
手段10で連動させて回転させることにより、試料1か
ら発生した蛍光X線5を、ソーラスリット11を通過さ
せて、まず分光素子6でそれぞれの波長に光学的に分光
し、さらにエネルギー分解能の高い半導体検出器8およ
び図示しない波高分析器で電気的に詳細に分離して検出
する。
Next, the operation of this device will be described.
From the X-ray source 4 to the primary X-ray 3 on the sample 1 placed on the sample table 2.
Is irradiated, the fluorescent X-rays 5 generated from the sample 1 pass through the solar slit 11 and are dispersed by the artificial multilayer film grating 6, and the intensity of the dispersed fluorescent X-rays 7 is measured by the semiconductor detector 8. . Here, by rotating the spectroscopic element 6 and the semiconductor detector 8 in conjunction with each other by the rotating means 10, the fluorescent X-rays 5 generated from the sample 1 are allowed to pass through the solar slit 11, and first the spectroscopic element 6 respectively. Of the wavelength, and further separated electrically in detail by the semiconductor detector 8 having a high energy resolution and a wave height analyzer (not shown) for detection.

【0018】人工多層膜格子6は、下記のブラッグの式
に従って、蛍光X線13を分光する。 2dsin θ=nλ d:格子面間隔, θ:入射角, λ:波長
The artificial multilayer film grating 6 disperses the fluorescent X-rays 13 according to the following Bragg's equation. 2dsin θ = nλ d: lattice spacing, θ: incident angle, λ: wavelength

【0019】したがって、格子面間隔dを所定の範囲に
設定することで、分光するX線の波長との関係で入射角
θが適切な値となる。すなわち、格子面間隔dとしては
一般に、10〜100 オングストロームが好ましく、より好
ましくは20〜40オングストローム程度に設定すること
で、入射角θが0°〜60°の範囲となる。その結果、
走査のための回転の範囲が狭くなると共に、蛍光X線1
3の波長が長い軽元素分析においては、比較的入射角θ
が大きくなって適当な分散能が得られる。
Therefore, by setting the lattice spacing d within a predetermined range, the incident angle θ has an appropriate value in relation to the wavelength of the X-ray to be spectrally separated. That is, in general, the lattice spacing d is preferably 10 to 100 angstroms, and more preferably 20 to 40 angstroms, so that the incident angle θ is in the range of 0 ° to 60 °. as a result,
As the range of rotation for scanning becomes narrower, X-ray fluorescence 1
In light element analysis with a long wavelength of 3, the incident angle θ
Becomes larger and an appropriate dispersibility is obtained.

【0020】一方、前記人工多層膜格子6は、重元素分
析における入射角θが著しく小さいので、波長分散能が
低い。しかし、重元素については、半導体検出器8がエ
ネルギー分散により優れた分解能を持つので、高い分析
精度が得られる。
On the other hand, since the incident angle θ in the heavy element analysis is extremely small, the artificial multi-layered lattice 6 has a low wavelength dispersion ability. However, for heavy elements, the semiconductor detector 8 has excellent resolution due to energy dispersion, and thus high analysis accuracy can be obtained.

【0021】なお、以上の実施形態の装置では、ソーラ
スリット11と平板の分光素子6を組み合わせた平行光
学系を用いたが、ピンホールまたは線状孔のスリットと
湾曲した分光素子を組み合わせた集中光学系を用いても
よい。集中光学系を用いる場合であって、いわゆるロー
ランド円を移動させない場合には、回動手段は、スリッ
トも連動して回動させる必要がある。
In the apparatus of the above embodiment, the parallel optical system in which the solar slit 11 and the flat plate-shaped spectroscopic element 6 are combined is used, but the combination of the pinhole or linear hole slit and the curved spectroscopic element is concentrated. An optical system may be used. When the so-called Roland circle is not moved in the case of using the concentrated optical system, the rotating means needs to rotate the slits in conjunction with each other.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明によ
れば、結晶交換器が不必要となるので、装置の構造が著
しく簡易になる。特に、回動手段により人工多層膜格子
および半導体検出器を1回走査するだけで軽元素から重
元素までの分析を行うことができ、したがって、分析時
間が短くなる。更に、人工多層膜格子の格子面間隔が分
光結晶よりも超かに大きいので、回転角が小さくなるか
ら、分析時間が更に短くなる。また、軽元素について
は、半導体検出器の分解能が低いのに対し、かかる軽元
素の蛍光X線は波長λが長いので、入射角θが大きくな
るから、人工多層膜格子により十分に波長分散し得るか
ら、精度の高い分析が可能となる。一方、重元素に対し
ては、入射角θが小さいので、スペクトルが近接し、そ
のため、人工多層膜格子の分散能が低くなるが、半導体
検出器により高い分解能が得られる。
As described above in detail, according to the present invention, the crystal exchanger is not required, so that the structure of the apparatus is remarkably simplified. In particular, it is possible to analyze light elements to heavy elements by scanning the artificial multilayer lattice and the semiconductor detector only once by the rotating means, and therefore the analysis time is shortened. Further, since the lattice plane spacing of the artificial multi-layered film lattice is much larger than that of the dispersive crystal, the rotation angle becomes smaller, and the analysis time becomes shorter. In addition, for light elements, the resolution of the semiconductor detector is low, whereas the wavelength λ of such fluorescent X-rays of light elements is long, so the angle of incidence θ is large, and therefore the wavelength is sufficiently dispersed by the artificial multilayer film grating. Since it is obtained, highly accurate analysis becomes possible. On the other hand, for heavy elements, since the incident angle θ is small, the spectra are close to each other, so that the dispersive power of the artificial multilayer lattice is low, but a high resolution can be obtained by the semiconductor detector.

【0023】しかも、反射層に元素の原子番号が大きい
人工多層膜格子を用いることにより、X線の反射率が結
晶よりも10倍程度向上するので、X線源のX線の強度
が小さくても、分析精度や感度が向上する。
Moreover, by using an artificial multi-layered film lattice having a large atomic number of an element in the reflective layer, the X-ray reflectance is improved about 10 times that of the crystal, so that the X-ray intensity of the X-ray source is small. Also improves analysis accuracy and sensitivity.

【0024】更に、空冷式のX線管を採用することによ
り、X線管の先端部分の構造がコンパクトになるから、
X線管を試料に近接させることが可能となる。そのた
め、装置が著しくコンパクトになる。
Furthermore, since the structure of the tip portion of the X-ray tube becomes compact by adopting the air-cooled X-ray tube,
It is possible to bring the X-ray tube close to the sample. Therefore, the device becomes extremely compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の蛍光X線分析装置を示す
概略図および人工多層膜格子の拡大断面図である。
FIG. 1 is a schematic view showing an X-ray fluorescence analyzer according to an embodiment of the present invention and an enlarged sectional view of an artificial multilayer film lattice.

【符号の説明】[Explanation of symbols]

1…試料、2…試料台、3…1次X線、4…X線源、5
…試料から発生した蛍光X線、6…分光素子、7…分光
素子で分光された蛍光X線、8…半導体検出器、10…
回動手段、11…スリット、13…スリットを通過した
蛍光X線。
1 ... Sample, 2 ... Sample stage, 3 ... Primary X-ray, 4 ... X-ray source, 5
... Fluorescent X-rays generated from the sample, 6 ... Spectroscopic element, 7 ... Fluorescent X-rays dispersed by the spectroscopic element, 8 ... Semiconductor detector, 10 ...
Rotating means, 11 ... Slit, 13 ... Fluorescent X-ray passing through the slit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21K 1/06 G21K 1/06 T ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) G21K 1/06 G21K 1/06 T

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料が載置される試料台と、 試料に1次X線を照射するX線源と、 試料から発生した蛍光X線を通過させるスリットと、 前記スリットを通過する蛍光X線の光路に設けられ入射
した蛍光X線を分光する分光素子と、 前記分光素子で分光された蛍光X線の強度を測定する検
出器と、 前記分光素子で分光される蛍光X線の波長を変えなが
ら、その分光された蛍光X線が前記検出器に入射するよ
うに、前記分光素子と前記検出器を1:2の角速比で回
転させる回動手段とを備えた蛍光X線分析装置におい
て、 前記検出器としてペルチェ素子で冷却する半導体検出器
を採用すると共に、前記分光素子を交換する交換器を設
けずに、前記分光素子として、原子番号が異なる2つの
元素を多数層積層した一定の格子面間隔を有する人工多
層膜格子を採用したことを特徴とする蛍光X線分析装
置。
1. A sample table on which a sample is placed, an X-ray source for irradiating the sample with primary X-rays, a slit for passing fluorescent X-rays generated from the sample, and a fluorescent X-ray passing through the slit. A spectroscopic element that is provided in the optical path for spectroscopically incident fluorescent X-rays, a detector that measures the intensity of the fluorescent X-rays that are spectroscopically dispersed by the spectroscopic element, and a wavelength of the fluorescent X-rays that is spectroscopically spectroscopically dispersed However, in a fluorescent X-ray analyzer including the spectroscopic element and a rotating unit that rotates the detector at an angular velocity ratio of 1: 2 so that the spectral X-ray fluorescence is incident on the detector. A semiconductor detector that is cooled by a Peltier element is used as the detector, and a plurality of layers of two elements having different atomic numbers are stacked as the spectroscopic element without providing an exchanger for exchanging the spectroscopic element. Artificial poly with lattice spacing An X-ray fluorescence analyzer characterized by employing a layered film lattice.
【請求項2】 請求項1において、 前記人工多層膜格子は、原子番号が42番以上の第1元
素を含む第1の層と、 原子番号が14番以下の第2元素からなる第2の層とが
交互に多数積層されてなり、 前記人工多層膜格子の格子面間隔dは20〜40オングスト
ロームに設定されており、 前記第2の層の厚さが前記第1の層の厚さの2倍以上に
設定されている蛍光X線分析装置。
2. The artificial multilayer film lattice according to claim 1, wherein the artificial multilayer film lattice includes a first layer containing a first element having an atomic number of 42 or more and a second layer having an atomic number of 14 or less. A plurality of layers are alternately laminated, the lattice plane spacing d of the artificial multilayer lattice is set to 20 to 40 angstroms, and the thickness of the second layer is equal to the thickness of the first layer. An X-ray fluorescence analyzer set to double or more.
【請求項3】 請求項1もしくは2において、 前記X線源として空冷式のX線管を採用した蛍光X線分
析装置。
3. The fluorescent X-ray analyzer according to claim 1, wherein an air-cooled X-ray tube is used as the X-ray source.
JP2001299271A 2001-09-28 2001-09-28 Fluorescent x-ray analyzer Pending JP2003107021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001299271A JP2003107021A (en) 2001-09-28 2001-09-28 Fluorescent x-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001299271A JP2003107021A (en) 2001-09-28 2001-09-28 Fluorescent x-ray analyzer

Publications (1)

Publication Number Publication Date
JP2003107021A true JP2003107021A (en) 2003-04-09

Family

ID=19120049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001299271A Pending JP2003107021A (en) 2001-09-28 2001-09-28 Fluorescent x-ray analyzer

Country Status (1)

Country Link
JP (1) JP2003107021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287643A (en) * 2006-03-22 2007-11-01 Tomohei Sakabe X-ray generation method and x-ray generator
JP2008256698A (en) * 2007-04-05 2008-10-23 Panalytical Bv Fluorescent x-ray analyzer
JPWO2021152928A1 (en) * 2020-01-27 2021-08-05

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287643A (en) * 2006-03-22 2007-11-01 Tomohei Sakabe X-ray generation method and x-ray generator
JP2008256698A (en) * 2007-04-05 2008-10-23 Panalytical Bv Fluorescent x-ray analyzer
JPWO2021152928A1 (en) * 2020-01-27 2021-08-05
JP7287507B2 (en) 2020-01-27 2023-06-06 株式会社島津製作所 X-ray fluorescence analyzer

Similar Documents

Publication Publication Date Title
US9823203B2 (en) X-ray surface analysis and measurement apparatus
CN1246858C (en) Wavelength dispersive XRF system using focusing optic for excitation and a focusing monochromator for collection
JP5855573B2 (en) Method and apparatus for performing X-ray analysis of sample
US9448190B2 (en) High brightness X-ray absorption spectroscopy system
JPH11304728A (en) X-ray measuring device
US6577704B1 (en) Analysis device which uses X-ray fluorescence
CN110530907B (en) X-ray absorption measurement system
JP2843529B2 (en) X-ray fluorescence analyzer
JPH0769477B2 (en) X-ray spectrometer
WO2005005969A1 (en) Energy dispersion type x-ray diffraction/spectral device
EP0095207A1 (en) Double crystal X-ray spectrometer
JP2003107021A (en) Fluorescent x-ray analyzer
JP2000504422A (en) X-ray analyzer having two collimator masks
JP2000329714A (en) X-ray fluorescence analyzer
JP2922758B2 (en) X-ray spectrometer
JP2000206061A (en) Fluorescent x-ray measuring device
US6546069B1 (en) Combined wave dispersive and energy dispersive spectrometer
JPH03209156A (en) Fluorescent x-ray analysis apparatus and composite artificial multilayered film body
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JP2000009666A (en) X-ray analyzer
JP2001194325A (en) Device and method for x-ray analysis
WO1995023963A1 (en) X-ray spectrometer with a grazing take-off angle
JPH0798285A (en) X-ray evaluation apparatus
JP3222720B2 (en) Wavelength dispersion type X-ray detector
US6650728B2 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive X-ray spectrometric devices

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20050624

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050624

A521 Written amendment

Effective date: 20050624

Free format text: JAPANESE INTERMEDIATE CODE: A821