JP2003105552A - Pretreatment method for electroless plating and conductive material formed by using the same - Google Patents

Pretreatment method for electroless plating and conductive material formed by using the same

Info

Publication number
JP2003105552A
JP2003105552A JP2001301462A JP2001301462A JP2003105552A JP 2003105552 A JP2003105552 A JP 2003105552A JP 2001301462 A JP2001301462 A JP 2001301462A JP 2001301462 A JP2001301462 A JP 2001301462A JP 2003105552 A JP2003105552 A JP 2003105552A
Authority
JP
Japan
Prior art keywords
electroless plating
water
base material
metal
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001301462A
Other languages
Japanese (ja)
Other versions
JP5117656B2 (en
Inventor
Susumu Takagi
進 高木
Akihide Katayama
明秀 片山
Naoki Ogoshi
尚樹 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2001301462A priority Critical patent/JP5117656B2/en
Publication of JP2003105552A publication Critical patent/JP2003105552A/en
Application granted granted Critical
Publication of JP5117656B2 publication Critical patent/JP5117656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive material having an excellent adhesion property of a metallic film. SOLUTION: The conductive material having the excellent adhesion property of the metallic film is obtained by imparting a cationic compound, such as an amine compound or ammonium salt compound, to a base material, then imparting a tannic acid thereto, thereafter subjecting the material to an electroless plating treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、繊維布帛やフィル
ム状物等の基材表面に無電解メッキ法により金属皮膜を
形成した電磁波シールド材に適した導電性材料の製造方
法に関するものである。更に詳しくは、基材に形成する
金属皮膜の密着性を向上させる為の、基材の前処理方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive material suitable for an electromagnetic wave shielding material in which a metal film is formed on the surface of a base material such as a fiber cloth or a film by electroless plating. More specifically, the present invention relates to a method for pretreating a substrate for improving the adhesion of a metal film formed on the substrate.

【0002】[0002]

【従来の技術】従来、電磁波シールド性シート材とし
て、圧延金属箔や導電性物質を樹脂シート材に積層した
ものや、繊維布帛や合成樹脂フィルムなどに金属皮膜を
形成させたものが知られている。圧延金属箔を使用した
ものは、屈曲耐久性に劣り、更に、シート材に積層する
際に接着剤などを用いるため風合いが硬くなる虞があ
る。また、導電性物質を用いたものは抵抗値が高くなる
傾向があり、シート材に積層する際にも接着用樹脂に混
ぜて積層するため、やはり風合いが硬くなる虞がある。
これらに対し、繊維布帛や合成樹脂フィルムに無電解メ
ッキ処理などにより金属皮膜を形成したものはこれらの
欠点を改善するものとして知られている。繊維布帛や合
成樹脂フィルムに金属皮膜を形成させる手段としては、
真空蒸着法、スパッタリング法、無電解メッキ法等があ
るが、中でも、金属付与のコストが安価であり、大きな
導電性を有する金属皮膜が均一に形成されるという点
で、無電解メッキ法が好ましく用いられている。
2. Description of the Related Art Heretofore, as electromagnetic wave shielding sheet materials, there have been known ones obtained by laminating a rolled metal foil or a conductive material on a resin sheet material, and ones obtained by forming a metal film on a fiber cloth or a synthetic resin film. There is. A rolled metal foil is inferior in bending durability and may have a hard texture because an adhesive or the like is used when laminating it on a sheet material. In addition, the resistance value tends to be high when a conductive material is used, and when it is laminated on a sheet material, it is mixed with an adhesive resin and laminated, so that the texture may be hard.
On the other hand, those in which a metal film is formed on a fiber cloth or a synthetic resin film by electroless plating are known to improve these drawbacks. As a means for forming a metal film on a fiber cloth or a synthetic resin film,
There are vacuum vapor deposition method, sputtering method, electroless plating method, etc. Among them, the electroless plating method is preferable because the cost of metal application is low and a metal film having large conductivity is uniformly formed. It is used.

【0003】合成樹脂のような絶縁物への無電解メッキ
では、パラジウム−スズの組み合わせによる触媒核を用
いた無電解メッキ方法が一般的に用いられている。この
手法を用いて成る金属皮膜の基材との密着性は、電磁波
シールド材などの用途においては実用に耐えるものであ
る。しかし、電磁波遮蔽材料の需要がこれまでにない様
々な分野に広がり、それに伴い従来以上に金属皮膜と基
材の密着性の向上が要求されてきている。更に、近年パ
ラジウムの価格が高騰し、パラジウムに代わる安価な無
電解メッキ用の触媒の開発が進められてきている。その
中で、ニッケルと銅の混合コロイド溶液を用いた方法が
開発されてきている。しかし、この方法によって形成さ
れた金属皮膜は、基材、特に繊維布帛との密着性におい
て満足のいくものが得られていないのが現状である。
In electroless plating on an insulating material such as a synthetic resin, an electroless plating method using a catalyst nucleus of a combination of palladium and tin is generally used. The adhesion of the metal film formed by this method to the substrate is practically usable in applications such as electromagnetic wave shielding materials. However, the demand for electromagnetic wave shielding materials has expanded to various fields that have never existed, and accordingly, improvement in the adhesion between the metal film and the substrate has been required more than ever. Further, the price of palladium has soared in recent years, and the development of an inexpensive catalyst for electroless plating, which is an alternative to palladium, has been underway. Among them, a method using a mixed colloidal solution of nickel and copper has been developed. However, at present, the metal coating formed by this method has not been satisfactory in terms of adhesion to a substrate, especially to a fiber cloth.

【0004】従来から、金属皮膜と基材との密着性を向
上させる手段としては、例えば、基材に化学的もしくは
物理的手法によりエッチング処理を行う方法がある。エ
ッチングすることで基材表面に凹凸が生じ、金属皮膜の
アンカー効果および接触面積の増加による密着性向上効
果を期待したものであるが、多くの場合、その効果は小
さく、また、エッチングにより基材の強度が低下する虞
もある。その中でも、プラズマ処理によるエッチング加
工では基材の強度劣化が比較的少なく、金属皮膜の密着
性の向上をもたらすが、凹凸のある基材の場合、全体が
均一にエッチングされにくく、更に、プラズマ処理の設
備は非常に高価であり、工業的な生産に適しているとは
言い難い。
Conventionally, as a means for improving the adhesion between the metal film and the base material, there is, for example, a method of subjecting the base material to an etching treatment by a chemical or physical method. By etching, the surface of the base material becomes uneven, and we expect the anchor effect of the metal film and the effect of improving the adhesion by increasing the contact area. However, in most cases, the effect is small, and the base material is etched. There is also a possibility that the strength of will decrease. Among them, the strength of the base material is relatively less deteriorated by the etching processing by the plasma treatment, and the adhesion of the metal film is improved. However, in the case of the base material having irregularities, it is difficult to uniformly etch the entire base material. The equipment is extremely expensive and is not suitable for industrial production.

【0005】また、その他の方法として、基材表面に金
属皮膜との密着性を高める化合物を付与することで、金
属皮膜と基材表面の密着性を向上させる方法もあるが、
接着性樹脂などを用いる方法は、樹脂の付与量が少量で
あっても基材の風合いが硬くなる虞がある。しかし、特
開平2−197579号公報で示された、ポリアミド系
繊維布帛にタンニン酸を付与して、無電解メッキ処理を
する方法は、ポリアミド系繊維の収縮、脆化などをほと
んど生ずることなく、また、繊維布帛の柔軟な風合いを
損なうことなくポリアミド系繊維と金属皮膜との密着性
を向上させることが可能である。しかし、密着性は必ず
しも十分であるとはいえなかった。
As another method, there is a method of improving the adhesion between the metal coating and the surface of the base material by adding a compound that enhances the adhesion between the surface of the base material and the metal coating.
In the method using an adhesive resin or the like, the texture of the base material may be hard even if the amount of resin applied is small. However, the method of imparting tannic acid to a polyamide fiber cloth and performing electroless plating treatment disclosed in JP-A-2-197579 does not cause shrinkage or brittleness of the polyamide fiber, and the like. Further, it is possible to improve the adhesion between the polyamide-based fiber and the metal film without impairing the soft texture of the fiber cloth. However, the adhesiveness was not always sufficient.

【0006】また、ポリエステル系樹脂と金属皮膜との
密着性を向上させる方法として、ポリエステル系樹脂を
コロナ放電処理した後に、タンニン酸を付与する方法
が、特開昭60−131974号公報に挙げられてい
る。しかし、糸、織物や編物といった複雑な形状をもつ
ポリエステル系繊維をコロナ放電処理し、タンニン酸を
付与しても、金属皮膜と基材との密着が非常に良好な金
属被覆繊維を安定した品質で得ることが困難であった。
さらに、コロナ放電処理中はオゾンガスが発生し、決し
て好ましい作業環境ではない。
As a method for improving the adhesion between the polyester resin and the metal film, a method of applying tannic acid after subjecting the polyester resin to corona discharge treatment is disclosed in JP-A-60-131974. ing. However, even if a polyester fiber having a complicated shape such as a thread, a woven fabric or a knitted fabric is subjected to corona discharge treatment and tannic acid is added, the metal coating and the base material have a very good adhesion and the metal coated fiber has a stable quality. It was difficult to get at.
Further, ozone gas is generated during the corona discharge treatment, which is not a preferable working environment.

【0007】[0007]

【発明が解決しようとする課題】本発明は、基材の柔軟
な風合いや強度を損なうことなく、金属皮膜と基材との
密着性を向上させた導電性材料を、安定に製造する方法
を提供することである。
DISCLOSURE OF THE INVENTION The present invention provides a method for stably producing a conductive material having improved adhesion between a metal film and a base material without impairing the soft texture and strength of the base material. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、(1)基材に
カチオン性化合物を付与したのちにタンニン酸を付与す
る無電解メッキの前処理方法である。また、(2)カチ
オン性化合物がアミン化合物、または、アンモニウム塩
化合物であることを特徴とする(1)記載の無電解メッ
キの前処理方法である。また、(3)基材が合成樹脂か
ら成る繊維布帛、または、合成樹脂からなるフィルム状
物であることを特徴とする(1)乃至(2)記載の無電
解メッキの前処理方法である。また、(4)合成樹脂が
ポリエステル系樹脂、ポリアミド系樹脂であることを特
徴とする(3)記載の無電解メッキの前処理方法であ
る。また、(5)カチオン性化合物を付与し、続いてタ
ンニン酸を付与してなる基材に無電解メッキ処理により
金属皮膜を形成して成る導電性材料である。
The present invention is (1) a pretreatment method for electroless plating in which a cationic compound is applied to a substrate and then tannic acid is applied. Further, (2) the pretreatment method for electroless plating according to (1), wherein the cationic compound is an amine compound or an ammonium salt compound. Further, (3) the pretreatment method for electroless plating according to (1) or (2), wherein the base material is a fiber cloth made of a synthetic resin or a film-like material made of a synthetic resin. Further, (4) the pretreatment method for electroless plating according to (3), wherein the synthetic resin is a polyester resin or a polyamide resin. Further, (5) a conductive material obtained by forming a metal film on a base material provided with a cationic compound and subsequently provided with tannic acid by electroless plating.

【0009】[0009]

【発明の実施の形態】本発明におけるカチオン性化合物
とは、分子内にカチオン性を示す化学構造を有するアミ
ン化合物及びアンモニウム塩化合物が好ましく、更に、
該化合物中に、用いられる基材と良好な親和性を示す化
学構造を有する化合物が好ましい。また、これらカチオ
ン性化合物が水溶性であれば加工性に優れたものとな
る。カチオン性を示す化学構造を有する化合物として
は、1級アミノ基、2級アミノ基、3級アミノ基を有す
るアミン化合物、或いは、これらのアミノ基をアルキル
ハライドやベンジルハライド等のハロゲン化有機化合
物、もしくは、ジメチル硫酸などの硫酸エステルを反応
させて4級化したアンモニウム塩化合物が挙げられる。
具体的には、イミダゾール化合物及びイミダゾール化合
物の4級塩が挙げられる。これらの中でも、アミノ基が
カチオン性を示す度合いが水素イオン濃度に強く依存す
るため、アンモニウム塩化合物もしくはイミダゾール化
合物の4級塩が好ましい。また、基材に付与したカチオ
ン性化合物が基材と良好な密着性を有するように、用い
られる基材と良好な親和性を示する、例えば、エポキシ
基、ビニル基、カルボニル基、アミノ基等の官能基やそ
の他化合物を含むカチオン性化合物を適宜選択すればよ
い。また、本発明の効果を最大限に発揮するにはカチオ
ン性化合物を使用すると共に、基材の表面洗浄剤および
浸透剤の効果を有する界面活性剤を併用することが好ま
しい。ただし、アニオン系界面活性剤はカチオン性化合
物と凝集する恐れがあるため、カチオン系界面活性剤も
しくは非イオン系界面活性剤もしくはカチオン系界面活
性剤およびノニオン系界面活性剤の混合物を使用するこ
とが望ましい。上述のカチオン性化合物および界面活性
剤の付与方法は、特に限定はされず、通常の浸漬法、パ
ディング法、塗布法、スプレー法などを用いれば良い
が、その中でも、例えば、カチオン性化合物0.01〜
1%、界面活性剤0.01〜1%を含む水溶液を50〜
90℃に昇温した後、その中に基材を0.5〜10分浸
漬し、その後、界面活性剤と過剰に付着したカチオン性
化合物を水洗することにより、カチオン性化合物の付与
を行う浸漬法が好ましい。このように、カチオン性化合
物を付与した基材は、アニオン性を示すタンニン酸と良
好な親和性を持つため、得られる金属被覆材料も金属皮
膜と基材との密着性が非常に優れたものとなる。特に、
本発明によるタンニン酸との親和性を向上させる手法
は、糸、織物、編物といった複雑な構造を有する繊維布
帛を基材としても、基材表面に均一、且つ、強固にタン
ニン酸を付与することができるため、均一で密着性の良
い金属皮膜を形成できる。
BEST MODE FOR CARRYING OUT THE INVENTION The cationic compound in the present invention is preferably an amine compound and an ammonium salt compound having a chemical structure showing cationicity in the molecule.
In the compound, a compound having a chemical structure showing a good affinity for the substrate used is preferred. Further, if these cationic compounds are water-soluble, they will have excellent processability. As the compound having a chemical structure showing a cationic property, an amine compound having a primary amino group, a secondary amino group or a tertiary amino group, or a halogenated organic compound such as an alkyl halide or a benzyl halide having these amino groups, Alternatively, an ammonium salt compound quaternized by reacting a sulfuric acid ester such as dimethyl sulfuric acid can be used.
Specific examples include imidazole compounds and quaternary salts of imidazole compounds. Among these, a quaternary salt of an ammonium salt compound or an imidazole compound is preferable because the degree of cationicity of the amino group strongly depends on the hydrogen ion concentration. In addition, the cationic compound applied to the base material has good affinity with the base material so that it has good adhesion to the base material, for example, epoxy group, vinyl group, carbonyl group, amino group, etc. The cationic compound containing the functional group and other compounds may be appropriately selected. Further, in order to maximize the effects of the present invention, it is preferable to use a cationic compound together with a surface-cleaning agent for the base material and a surfactant having the effect of a penetrating agent. However, since anionic surfactants may aggregate with cationic compounds, it is recommended to use a mixture of cationic surfactants or nonionic surfactants or cationic surfactants and nonionic surfactants. desirable. The method of applying the above-mentioned cationic compound and surfactant is not particularly limited, and a usual dipping method, padding method, coating method, spray method or the like may be used. Among them, for example, the cationic compound 0. 01-
50% of an aqueous solution containing 1% and 0.01 to 1% of a surfactant.
After raising the temperature to 90 ° C., the base material is immersed therein for 0.5 to 10 minutes, and then the surface active agent and the excessively attached cationic compound are washed with water to impart the cationic compound. Method is preferred. As described above, the base material to which the cationic compound is added has a good affinity with tannic acid which exhibits anionic property, and thus the obtained metal coating material also has excellent adhesion between the metal coating and the base material. Becomes In particular,
The method of improving the affinity with tannic acid according to the present invention is to impart tannic acid to the surface of a base material uniformly and firmly even when a fiber cloth having a complicated structure such as a yarn, a woven fabric or a knitted fabric is used as the base material. As a result, a uniform metal film having good adhesion can be formed.

【0010】また、本発明において用いられるタンニン
酸とは、タンニン酸およびタンニン酸からなる化合物、
および、それらの混合物から選定すれば良く、例えば、
五倍子等を原料に生産されたものを使用することができ
る。タンニン酸の付与方法は、浸漬法、パディング法、
スプレー法、塗布法などが挙げられるが、本発明におい
ては、例えば、酢酸を使用してpHを3〜5の酸性条件
にした水溶液にタンニン酸を0.01〜10g/Lの範
囲で溶解させた水溶液を50〜80℃にしたものに、基
材を1〜10分間程度浸漬処理した後に水洗する、所
謂、浸漬法が好ましく用いられる。この方法により、金
属皮膜を形成したい基材表面にタンニン酸を均一に付与
できる。タンニン酸水溶液のpHがアルカリ性条件では
タンニン酸の付与が不均一になり、金属皮膜と基材との
密着性が低下する虞があるため好ましくない。また、タ
ンニン酸濃度が0.01g/L未満になった場合もタン
ニン酸を均一に付与できない虞があり、10g/Lより
高い濃度にしても特に効果の向上は得られない。また、
処理温度が50℃未満では、タンニン酸を均一に付与す
ることができず、80℃より高い温度で処理した場合
は、例えば、ナイロンなどの繊維においては、タンニン
酸を付与する必要がない繊維の内部までタンニン酸が浸
透し、タンニン酸の消費量が増加してしまう。
The tannic acid used in the present invention is tannic acid and a compound consisting of tannic acid,
And it may be selected from a mixture thereof, for example,
It is possible to use those produced from quintuplets and the like as raw materials. Tannic acid is applied by a dipping method, a padding method,
Examples of the method include a spray method and a coating method. In the present invention, for example, tannic acid is dissolved in an aqueous solution of acetic acid at pH of 3 to 5 in an amount of 0.01 to 10 g / L. A so-called dipping method is preferably used in which the base material is dipped in an aqueous solution at 50 to 80 ° C. for about 1 to 10 minutes and then washed with water. By this method, tannic acid can be uniformly applied to the surface of the base material on which the metal film is to be formed. If the pH of the aqueous tannic acid solution is alkaline, the application of tannic acid becomes non-uniform, and the adhesion between the metal coating and the substrate may deteriorate, which is not preferable. Further, even if the concentration of tannic acid is less than 0.01 g / L, tannic acid may not be uniformly applied, and even if the concentration is higher than 10 g / L, no particular improvement in effect can be obtained. Also,
If the treatment temperature is less than 50 ° C, tannic acid cannot be uniformly applied. If treated at a temperature higher than 80 ° C, for example, in the case of fibers such as nylon, it is not necessary to add tannic acid to the fibers. Tannic acid penetrates into the interior, increasing the consumption of tannic acid.

【0011】本発明において用いられる基材は、合成樹
脂から成る繊維布帛、または、合成樹脂からなるフィル
ム状物が好ましく用いられる。合成樹脂の中でも、ポリ
エチレンテレフタレートなどのポリエステル系樹脂や、
ナイロン6、ナイロン66等のポリアミド系樹脂が耐久
性や、加工性の点で、好ましく用いられる。本発明は、
カチオン性を示す官能基を持たないためにタンニン酸と
良好な親和性を発現することができない樹脂基材に対
し、特に優れた効果を発揮する。その中でもポリエチレ
ンテレフタレートなどのポリエステル樹脂は非常に安価
な樹脂であるために好ましく用いられ、さらには、水酸
化ナトリウム水溶液でエッチング処理されたポリエステ
ル樹脂を基材とすることで、本発明の効果である金属皮
膜と基材との密着性向上をより効果的に発現できるので
併用して用いることが望ましい。本発明では、例えば、
ポリエステル系樹脂繊維やナイロン系樹脂繊維から成る
繊維布帛を用いる場合には、生機を精練した後に、ヒー
トセットを行う。さらにエッチング処理を行うことによ
り、密着性が向上するので好ましい。精練、ヒートセッ
ト、エッチングの各処理は、公知の技術により行えばよ
い。また、カチオン性を示す官能基を有するナイロンな
どのポリアミド系樹脂に対しては、タンニン酸を直接付
与した後、無電解メッキ処理を行うこともできるが、本
発明の方法によれば、さらなる金属皮膜の密着性の向上
を図ることができる。
The base material used in the present invention is preferably a fiber cloth made of a synthetic resin or a film-like material made of a synthetic resin. Among synthetic resins, polyester resins such as polyethylene terephthalate,
Polyamide resins such as nylon 6 and nylon 66 are preferably used in terms of durability and workability. The present invention is
It exhibits a particularly excellent effect on a resin substrate which cannot express a good affinity with tannic acid because it does not have a functional group exhibiting a cationic property. Among them, a polyester resin such as polyethylene terephthalate is preferably used because it is a very inexpensive resin, and further, by using a polyester resin etched with a sodium hydroxide aqueous solution as a base material, it is an effect of the present invention. Since it is possible to more effectively improve the adhesion between the metal film and the substrate, it is desirable to use them together. In the present invention, for example,
When a fiber cloth made of polyester resin fibers or nylon resin fibers is used, heat setting is performed after refining the raw fabric. Further etching is preferable because the adhesion is improved. The treatments such as scouring, heat setting and etching may be performed by known techniques. Further, for a polyamide resin such as nylon having a functional group exhibiting a cationic property, it is possible to directly apply tannic acid and then perform electroless plating, but according to the method of the present invention, a further metal The adhesion of the film can be improved.

【0012】無電解メッキ反応に対して触媒活性を有す
る金属化合物を付与する方法は、従来公知の方法を用い
ることができ、例えば、スズとパラジウムの組み合わせ
による触媒核を用いた無電解メッキ方法としては、塩化
第1スズ溶液に浸漬した後、強酸性の塩化パラジウム溶
液に浸漬し、基材表面に金属パラジウムを析出させ、そ
の後無電解メッキ液中に浸漬する、所謂、センシタイザ
ー・アクチベータ法がある。また、基材を強酸性のパラ
ジウム−スズコロイド溶液中に浸漬することによって基
材表面に該コロイドを付与した後、酸またはアルカリで
処理して触媒活性を発現させ、次いで無電解メッキを行
う、所謂、パラジウム−スズコロイド法がある。パラジ
ウム以外の金属を用いる手法としては、ルテニウム、ロ
ジウム、白金、銀、ニッケル、銅、コバルト等からなる
化合物およびそれら混合物を使用する方法も用いること
ができる。例えば、上記の金属化合物からなるイオン水
溶液、もしくは、コロイド溶液に基材を浸漬した後に、
ヒドラジン、塩化スズ、ホルマリン、ジ亜リン酸ナトリ
ウム、水素化ホウ素化合物、アミンボラン化合物を用い
て還元処理し、その後に無電解メッキを行う手法があ
る。その他にも、上記金属のイオン水溶液にヒドラジ
ン、塩化スズ、ホルマリン、ジ亜リン酸ナトリウム、水
素化ホウ素化合物、アミンボラン化合物と界面活性剤を
共に加えて、調製したコロイド溶液に基材を浸漬し、無
電解メッキを行う手法等がある。
As a method of imparting a metal compound having a catalytic activity to the electroless plating reaction, a conventionally known method can be used. For example, as an electroless plating method using a catalyst nucleus of a combination of tin and palladium, Is a so-called sensitizer / activator method in which it is dipped in a stannous chloride solution, then dipped in a strongly acidic palladium chloride solution to deposit metallic palladium on the substrate surface, and then dipped in an electroless plating solution. is there. Further, after soaking the base material in the strongly acidic palladium-tin colloidal solution to provide the colloid on the surface of the base material, it is treated with an acid or an alkali to develop catalytic activity, and then electroless plating is performed. , Palladium-tin colloid method. As a method of using a metal other than palladium, a method of using a compound made of ruthenium, rhodium, platinum, silver, nickel, copper, cobalt or the like and a mixture thereof can also be used. For example, after immersing the substrate in an ionic aqueous solution composed of the above metal compound or a colloidal solution,
There is a method of performing reduction treatment using hydrazine, tin chloride, formalin, sodium diphosphite, a borohydride compound, and an amine borane compound, and then performing electroless plating. In addition, hydrazine, tin chloride, formalin, sodium diphosphite, a borohydride compound, an amine borane compound and a surfactant are both added to an aqueous ion solution of the above metal, and the substrate is immersed in the prepared colloidal solution, There are methods such as electroless plating.

【0013】その中でも、パラジウム−スズコロイド法
において、基材をパラジウム−スズコロイド溶液で処理
した後に、ホウフッ化水素酸で処理し、その後に無電解
メッキを行う手法と、基材を2価のニッケル化合物と2
価の銅化合物の混合物からなるコロイド溶液で処理した
後、水素化ホウ素ナトリウムで還元処理し、その後に無
電解メッキを行う手法により得られる金属被覆材料は、
他の方法により得た金属被覆材料に比べて、金属皮膜と
基材との密着性および、表面抵抗値に優れる上に、外観
も美麗であり、処理浴の安定性も優れているため好まし
いが、これらの方法に限定されるものではない。
Among them, in the palladium-tin colloidal method, the substrate is treated with the palladium-tin colloidal solution, then with borofluoric acid and then electroless plating, and the substrate is a divalent nickel compound. And 2
After treatment with a colloidal solution consisting of a mixture of valent copper compounds, reduction treatment with sodium borohydride, and then the metal coating material obtained by the method of electroless plating,
Compared with metal coating materials obtained by other methods, the adhesion between the metal coating and the substrate and the surface resistance value are excellent, the appearance is beautiful, and the stability of the treatment bath is excellent, which is preferable. However, the method is not limited to these.

【0014】本発明記載の無電解メッキは公知の条件で
行えば良く、また、付与する金属種に限定はないが、高
い導電性を低コストで得られることから、銅の無電解メ
ッキが好ましく、更に電気メッキを併用することによ
り、メッキ厚を大きくしたり、異種の金属皮膜を積層す
ることも可能である。
The electroless plating according to the present invention may be carried out under known conditions, and the metal species to be applied is not limited, but electroless plating of copper is preferable because high conductivity can be obtained at low cost. By additionally using electroplating, it is possible to increase the plating thickness or stack different kinds of metal coatings.

【0015】[0015]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【評価方法】表面抵抗値 得られた金属被覆皮膜材料の表面抵抗値は三菱化学株式
会社製の抵抗率計(ロレスタ−EP JIS−K−71
94準拠)を用いて測定した。 金属皮膜密着性 JIS−H−3430に準じて行い、接着テープへの金
属皮膜の移行量を観察した。 ○ 金属の移行がほとんどない △ 金属の移行が少しある × 金属の移行が多い
[Evaluation method] Surface resistance value The surface resistance value of the obtained metal coating film material is a resistivity meter manufactured by Mitsubishi Chemical Corporation (Loresta-EP JIS-K-71).
94). Adhesion to metal film The adhesion was performed according to JIS-H-3430, and the amount of metal film transferred to the adhesive tape was observed. ○ Almost no metal transfer △ Some metal transfer × Many metal transfer

【0016】[0016]

【実施例1】55.6デシテックス24フィラメントの
ポリエステル繊維を経密度160本/インチ、緯密度9
5本/インチで平織りに製織したものを、精練、ヒート
セット後、アルカリ加水分解により20%の減量処理を
行った。その後、MK140(室町テクノス社製 2−
アミノエタノール 29.0%、ポリイミダゾール4級
塩水溶液 10.0%、ポリオキシエチレンノニルフェ
ニルエーテル 7.0% を含むカチオン性化合物、及
び、界面活性剤の混合されたもの)を2.5%含む水溶
液に60℃で2分浸漬し、十分水洗した後、続いて、タ
ンニン酸2g/Lと酢酸0.5ml/Lを含む水溶液に
70℃で2分間浸漬し、十分水洗した。更に、塩化ニッ
ケル及び塩化銅を含む水溶液と水酸化ナトリウム水溶液
とを混合して得られる、pH=7.8かつニッケル濃度
30mmolかつ銅濃度60mmolであるコロイド溶
液に、基材を20℃で5分間浸漬した後、水洗し、その
後は、ヒートセッターにて、130℃で2分間処理し、
水素化ホウ素ナトリウムを1g/L含む水溶液に20℃
で2分間浸漬し、続いて水洗いした。次に硫酸銅7.5
g/L、37%ホルマリン30ml/L、ロッシェル塩
85g/Lからなる無電解銅メッキ液に浸漬後水洗し
た。15g/mの銅が析出した金属被覆繊維を得た。
評価結果を表1に示す。
Example 1 Polyester fiber of 55.6 decitex 24 filaments has a warp density of 160 fibers / inch and a weft density of 9
A plain weave of 5 yarns / inch was scoured, heat-set, and then alkali-hydrolyzed to reduce the weight by 20%. After that, MK140 (Muromachi Technos 2-
Aminoethanol 29.0%, polyimidazole quaternary salt aqueous solution 10.0%, polyoxyethylene nonylphenyl ether 7.0%, a cationic compound containing 7.0%, and a surfactant mixed) 2.5% After dipping in an aqueous solution containing 60 ° C. for 2 minutes and washing thoroughly with water, it was then immersed in an aqueous solution containing 2 g / L of tannic acid and 0.5 ml / L of acetic acid for 2 minutes at 70 ° C. and thoroughly washing with water. Furthermore, the base material is added to a colloidal solution having a pH of 7.8, a nickel concentration of 30 mmol and a copper concentration of 60 mmol, which is obtained by mixing an aqueous solution containing nickel chloride and copper chloride and an aqueous sodium hydroxide solution, at 20 ° C. for 5 minutes. After soaking, washing with water, and then heat-setter for 2 minutes at 130 ℃,
20 ° C in an aqueous solution containing 1 g / L of sodium borohydride
It was soaked for 2 minutes in water and then washed with water. Then copper sulfate 7.5
After dipping in an electroless copper plating solution consisting of g / L, 37% formalin 30 ml / L, and Rochelle salt 85 g / L, it was washed with water. A metal-coated fiber having 15 g / m 2 of copper deposited was obtained.
The evaluation results are shown in Table 1.

【0017】[0017]

【実施例2】55.6デシテックス24フィラメントの
ポリエステル繊維を経密度160本/インチ、緯密度9
5本/インチで平織りに製織したものを、精練、ヒート
セット後、アルカリ加水分解により20%の減量処理を
行った。その後、MK140(室町テクノス社製)を2.
5%含む水溶液に繊維布帛を60℃で2分浸漬し、十分
水洗した後、続いて、タンニン酸2g/Lと酢酸0.5
ml/Lを含む水溶液に70℃で2分間浸漬し、十分水
洗したものを基材とした。引き続き、基材をパラジウム
濃度0.06g/Lであるパラジウム−スズコロイド溶
液に20℃で1分間浸漬した後に水洗し、続いてホウフ
ッ化水素酸濃度0.8%である水溶液に40℃で2分間
処理し、水洗し、その後は、実施例1と同様に無電解銅
メッキを行い、15g/mの銅が析出した金属被覆繊
維を得た。実施例2の評価は、実施例1と同じ方法で評
価した。それらの結果は表1に示す。
Example 2 55.6 decitex 24 filament polyester fiber having a warp density of 160 fibers / inch and a weft density of 9
A plain weave of 5 yarns / inch was scoured, heat-set, and then alkali-hydrolyzed to reduce the weight by 20%. After that, MK140 (Muromachi Technos Co., Ltd.)
The fiber cloth is dipped in an aqueous solution containing 5% at 60 ° C. for 2 minutes and thoroughly washed with water, and then tannic acid 2 g / L and acetic acid 0.5
The substrate was immersed in an aqueous solution containing ml / L for 2 minutes at 70 ° C. and thoroughly washed with water. Subsequently, the substrate was immersed in a palladium-tin colloidal solution having a palladium concentration of 0.06 g / L at 20 ° C. for 1 minute and then washed with water, and then in an aqueous solution having a borofluoric acid concentration of 0.8% at 40 ° C. for 2 minutes. After treatment and washing with water, electroless copper plating was performed in the same manner as in Example 1 to obtain a metal-coated fiber having 15 g / m 2 of copper deposited. The evaluation of Example 2 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0018】[0018]

【実施例3】55.6デシテックス36フィラメントの
ナイロン繊維を経密度160本/インチ、緯密度113
本/インチで平織りに製織したものを、精練、ヒートセ
ット後、MK140(室町テクノス社製)を2.5%含む
水溶液に60℃で2分浸漬し、十分水洗した後、続い
て、タンニン酸2g/Lと酢酸0.5ml/Lを含む水
溶液に70℃で2分間浸漬し、十分水洗したものを基材
とした。更に、塩化ニッケル及び塩化銅を含む水溶液と
水酸化ナトリウム水溶液とを混合して得られる、pH=
7.8かつニッケル濃度30mmolかつ銅濃度60m
molであるコロイド溶液に、基材を20℃で5分間浸
漬した後、水洗し、その後は、ヒートセッターにて、1
30℃で2分間処理し、その後に、水素化ホウ素ナトリ
ウムを1g/L含む水溶液に20℃で2分間浸漬し、続
いて水洗いした。更に、実施例1と同様に無電解銅メッ
キを行い、15g/mの銅が析出した金属被覆繊維を
得た。実施例3の評価は、実施例1と同じ方法で評価し
た。それらの結果は表1に示す。
[Embodiment 3] Nylon fiber of 55.6 decitex 36 filaments has a warp density of 160 fibers / inch and a weft density of 113
After scouring and heat-setting a plain weave with a book / inch, it was immersed in an aqueous solution containing 2.5% MK140 (Muromachi Technos Co., Ltd.) at 60 ° C for 2 minutes, thoroughly washed with water, and then tannic acid. A substrate was immersed in an aqueous solution containing 2 g / L and 0.5 ml / L of acetic acid at 70 ° C. for 2 minutes and thoroughly washed with water to obtain a substrate. Further, obtained by mixing an aqueous solution containing nickel chloride and copper chloride with an aqueous sodium hydroxide solution, pH =
7.8 and nickel concentration 30mmol and copper concentration 60m
The substrate was immersed in a colloidal solution of mol for 5 minutes at 20 ° C., then washed with water, and then 1 with a heat setter.
It was treated at 30 ° C. for 2 minutes, then immersed in an aqueous solution containing 1 g / L of sodium borohydride at 20 ° C. for 2 minutes, and subsequently washed with water. Further, electroless copper plating was performed in the same manner as in Example 1 to obtain a metal-coated fiber having 15 g / m 2 of copper deposited. The evaluation of Example 3 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0019】[0019]

【実施例4】55.6デシテックス36フィラメントの
ナイロン繊維を経密度160本/インチ、緯密度113
本/インチで平織りに、精練、ヒートセット後、MK1
40(室町テクノス社製)を2.5%含む水溶液に繊維布
帛を60℃で2分浸漬し、十分水洗した後、続いて、タ
ンニン酸2g/Lと酢酸0.5ml/Lを含む水溶液に
70℃で2分間浸漬し、十分水洗したものを基材とし
た。更に、基材をパラジウム濃度0.06g/Lである
パラジウム−スズコロイド溶液に20℃で1分間浸漬し
た後に水洗し、続いてホウフッ化水素酸濃度0.8%で
ある水溶液に40℃で2分間浸漬した後、水洗し、その
後は、実施例1と同様に無電解銅メッキを行い、15g
/mの銅が析出した金属被覆繊維を得た。実施例4の
評価は、実施例1と同じ方法で評価した。それらの結果
は表1に示す。
[Example 4] Nylon fiber of 55.6 decitex 36 filaments has a warp density of 160 fibers / inch and a weft density of 113
Book / inch, plain weave, scouring, heat setting, MK1
40 (manufactured by Muromachi Technos Co., Ltd.) was immersed in an aqueous solution containing 2.5% of the fiber cloth for 2 minutes at 60 ° C., thoroughly washed with water, and then an aqueous solution containing 2 g / L of tannic acid and 0.5 ml / L of acetic acid. The substrate was soaked at 70 ° C. for 2 minutes and washed thoroughly with water. Further, the substrate is immersed in a palladium-tin colloidal solution having a palladium concentration of 0.06 g / L at 20 ° C. for 1 minute and then washed with water, and then in an aqueous solution having a borofluoric acid concentration of 0.8% at 40 ° C. for 2 minutes. After immersion, it is washed with water, and then electroless copper plating is performed in the same manner as in Example 1 to obtain 15 g.
A metal-coated fiber in which copper of / m 2 was deposited was obtained. The evaluation of Example 4 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0020】[0020]

【実施例5】厚さ80μmのポリエステルフィルムに、
エッチングを行い、水洗乾燥した。更に、脱脂および洗
浄後MK140(室町テクノス社製)を2.5%含む水溶
液にフィルムを60℃で2分浸漬し、十分水洗し、続い
て、タンニン酸2g/Lと酢酸0.5ml/Lを含む水
溶液に70℃で2分間浸漬し、十分水洗したものを基材
とした。引き続き、基材をパラジウム濃度0.06g/
Lであるパラジウム−スズコロイド溶液に20℃で1分
間浸漬した後に水洗し、続いてホウフッ化水素酸濃度
0.8%である水溶液に40℃で2分間処理し、水洗
し、その後は、実施例1と同様に無電解銅メッキを行
い、15g/mの銅が析出した金属被覆フィルムを得
た。実施例5の評価は、実施例1と同じ方法で評価し
た。それらの結果は表1に示す。
Example 5 A polyester film having a thickness of 80 μm
It was etched, washed with water and dried. Further, after degreasing and washing, the film was immersed in an aqueous solution containing 2.5% of MK140 (manufactured by Muromachi Technos Co., Ltd.) at 60 ° C. for 2 minutes and thoroughly washed with water, and subsequently 2 g / L of tannic acid and 0.5 ml / L of acetic acid. It was dipped in an aqueous solution containing a solution at 70 ° C. for 2 minutes and washed sufficiently with water to obtain a substrate. Sequentially, the substrate concentration of palladium was 0.06 g /
It was immersed in a palladium-tin colloidal solution of L for 1 minute at 20 ° C. and then washed with water, subsequently treated with an aqueous solution having a borofluoric acid concentration of 0.8% for 2 minutes at 40 ° C., washed with water, and then the Examples. Electroless copper plating was performed in the same manner as in 1 to obtain a metal-coated film on which 15 g / m 2 of copper was deposited. The evaluation of Example 5 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0021】[0021]

【比較例1】55.6デシテックス24フィラメントの
ポリエステル繊維を経密度160本/インチ、緯密度9
5本/インチで平織りに製織したものを、精練、ヒート
セット後、アルカリ加水分解により20%の減量処理を
行ったものを基材とした。更に、塩化ニッケル及び塩化
銅を含む水溶液と水酸化ナトリウム水溶液とを混合して
得られる、pH=7.8かつニッケル濃度30mmol
かつ銅濃度60mmolであるコロイド溶液に、基材を
20℃で5分間浸漬した後、水洗し、その後は、ヒート
セッターにて、130℃で2分間処理し、引き続き、水
素化ホウ素ナトリウムを1g/L含む水溶液に20℃で
2分間浸漬し、水洗いした。その後は、実施例1と同様
に無電解銅メッキを行い、15g/mの銅が析出した
金属被覆繊維を得た。比較例1の評価は、実施例1と同
じ方法で評価した。それらの結果は表1に示す。
Comparative Example 1 Polyester fiber of 55.6 decitex 24 filaments has a warp density of 160 fibers / inch and a weft density of 9
A plain weave of 5 pieces / inch was scoured, heat-set, and then alkali-hydrolyzed to reduce the weight by 20%. Further, obtained by mixing an aqueous solution containing nickel chloride and copper chloride with an aqueous sodium hydroxide solution, pH = 7.8 and nickel concentration 30 mmol
The substrate was immersed in a colloidal solution having a copper concentration of 60 mmol at 20 ° C. for 5 minutes, washed with water, and then treated with a heat setter at 130 ° C. for 2 minutes, and subsequently, sodium borohydride (1 g / g) was added. It was immersed in an aqueous solution containing L at 20 ° C. for 2 minutes and washed with water. After that, electroless copper plating was performed in the same manner as in Example 1 to obtain a metal-coated fiber on which 15 g / m 2 of copper was deposited. The evaluation of Comparative Example 1 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0022】[0022]

【比較例2】55.6デシテックス24フィラメントの
ポリエステル繊維を経密度160本/インチ、緯密度9
5本/インチで平織りに製織したものを、精練、ヒート
セット後、アルカリ加水分解により20%の減量処理を
行い、その後、MK140(室町テクノス社製)を2.5
%含む水溶液に繊維布帛を60℃で2分浸漬し、十分水
洗したものを基材とした。パラジウム濃度0.06g/
Lであるパラジウム−スズコロイド溶液に20℃で1分
間浸漬した後に水洗し、続いてホウフッ化水素酸濃度
0.8%である水溶液に40℃で2分間浸漬した後、水
洗し、引き続き、実施例1と同様に無電解銅メッキを行
い、15g/mの銅が析出した金属被覆繊維を得た。
比較例2の評価は、実施例1と同じ方法で評価した。そ
れらの結果は表1に示す。
Comparative Example 2 Polyester fiber of 55.6 decitex 24 filaments has a warp density of 160 fibers / inch and a weft density of 9
A plain weave with 5 pieces / inch is scoured, heat-set, and alkali-hydrolyzed to reduce the weight by 20%, and then MK140 (Muromachi Technos Co., Ltd.) 2.5
Of the fiber cloth was immersed in an aqueous solution containing 60% of water at 60 ° C. for 2 minutes and sufficiently washed with water to obtain a base material. Palladium concentration 0.06g /
After being immersed in a palladium-tin colloidal solution of L for 1 minute at 20 ° C., washed with water, subsequently immersed in an aqueous solution having a borofluoric acid concentration of 0.8% for 2 minutes at 40 ° C., then washed with water, and then the Examples. Electroless copper plating was performed in the same manner as in 1 to obtain a metal-coated fiber in which 15 g / m 2 of copper was deposited.
The evaluation of Comparative Example 2 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0023】[0023]

【比較例3】55.6デシテックス24フィラメントの
ポリエステル繊維を経密度160本/インチ、緯密度9
5本/インチで平織りに製織したものを、精練、ヒート
セット後、アルカリ加水分解により20%の減量処理を
行ったものを基材とした。パラジウム濃度0.06g/
Lであるパラジウム−スズコロイド溶液に20℃で1分
間基材を浸漬した後に水洗し、続いてホウフッ化水素酸
濃度0.8%である水溶液を用いて40℃で2分間処理
し、水洗し、その後は、実施例1と同様に無電解銅メッ
キを行い、15g/mの銅が析出した金属被覆繊維を
得た。比較例3の評価は、実施例1と同じ方法で評価し
た。それらの結果は表1に示す。
[Comparative Example 3] Polyester fiber of 55.6 decitex 24 filaments has a warp density of 160 fibers / inch and a weft density of 9
A plain weave of 5 pieces / inch was scoured, heat-set, and then alkali-hydrolyzed to reduce the weight by 20%. Palladium concentration 0.06g /
After immersing the substrate in a palladium-tin colloid solution of L for 1 minute at 20 ° C., it was washed with water, then treated with an aqueous solution having a borofluoric acid concentration of 0.8% at 40 ° C. for 2 minutes, and washed with water, After that, electroless copper plating was performed in the same manner as in Example 1 to obtain a metal-coated fiber on which 15 g / m 2 of copper was deposited. The evaluation of Comparative Example 3 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0024】[0024]

【比較例4】55.6デシテックス24フィラメントの
ポリエステル繊維を経密度160本/インチ、緯密度9
5本/インチで平織りに製織したものを、精練、ヒート
セット後、アルカリ加水分解により20%の減量処理を
行った。その後、タンニン酸2g/Lと酢酸0.5ml
/Lを含む水溶液に70℃で2分間浸漬し、十分水洗し
たものを基材とした。更に、基材を、パラジウム濃度
0.06g/Lであるパラジウム−スズコロイド溶液に
20℃で1分間浸漬した後に水洗し、続いてホウフッ化
水素酸濃度0.8%である水溶液を用いて40℃で2分
間処理し、水洗し、その後は、実施例1と同様に無電解
銅メッキを行い、15g/mの銅が析出した金属被覆
繊維を得た。比較例4の評価は、実施例1と同じ方法で
評価した。それらの結果は表1に示す。
[Comparative Example 4] Polyester fiber of 55.6 decitex 24 filaments has a warp density of 160 fibers / inch and a weft density of 9
A plain weave of 5 yarns / inch was scoured, heat-set, and then alkali-hydrolyzed to reduce the weight by 20%. Then 2 g / L tannic acid and 0.5 ml acetic acid
It was immersed in an aqueous solution containing / L at 70 ° C. for 2 minutes and thoroughly washed with water to obtain a substrate. Further, the substrate is immersed in a palladium-tin colloidal solution having a palladium concentration of 0.06 g / L at 20 ° C. for 1 minute and then washed with water, and subsequently at 40 ° C. using an aqueous solution having a borofluoric acid concentration of 0.8%. For 2 minutes, washing with water, and then electroless copper plating in the same manner as in Example 1 to obtain a metal-coated fiber having 15 g / m 2 of copper deposited. The evaluation of Comparative Example 4 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0025】[0025]

【比較例5】55.6デシテックス36フィラメントの
ナイロン繊維を経密度160本/インチ、緯密度113
本/インチで平織りに製織したものを、精練、ヒートセ
ットした。更に、塩化ニッケル及び塩化銅を含む水溶液
と水酸化ナトリウム水溶液とを混合して得られる、pH
=7.8かつニッケル濃度30mmolかつ銅濃度60
mmolであるコロイド溶液に、基材を20℃で5分間
浸漬した後、水洗し、その後は、ヒートセッターにて、
130℃で2分間処理し、引き続き、水素化ホウ素ナト
リウムを1g/L含む水溶液に20℃で2分間浸漬し
て、水洗いした。その後は、実施例1と同様に無電解銅
メッキを行い、15g/mの銅が析出した金属被覆繊
維を得た。比較例5の評価は、実施例1と同じ方法で評
価した。それらの結果は表1に示す。
Comparative Example 5 Nylon fiber of 55.6 decitex 36 filaments has a warp density of 160 fibers / inch and a weft density of 113
A plain weave of books / inch was scoured and heat set. Further, a pH value obtained by mixing an aqueous solution containing nickel chloride and copper chloride with an aqueous sodium hydroxide solution,
= 7.8 and nickel concentration 30 mmol and copper concentration 60
The base material was immersed in a colloidal solution of mmol at 20 ° C. for 5 minutes, washed with water, and then with a heat setter.
It was treated at 130 ° C. for 2 minutes, subsequently immersed in an aqueous solution containing 1 g / L of sodium borohydride at 20 ° C. for 2 minutes and washed with water. After that, electroless copper plating was performed in the same manner as in Example 1 to obtain a metal-coated fiber on which 15 g / m 2 of copper was deposited. The evaluation of Comparative Example 5 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0026】[0026]

【比較例6】55.6デシテックス36フィラメントの
ナイロン繊維を経密度160本/インチ、緯密度113
本/インチで平織りに製織したものを、精練、ヒートセ
ットした。その後、MK140(室町テクノス社製)を
2.5%含む水溶液に繊維布帛を60℃で2分浸漬し、
十分水洗したものを基材とした。パラジウム濃度0.0
6g/Lであるパラジウム−スズコロイド溶液に基材を
20℃で1分間浸漬した後に水洗し、続いてホウフッ化
水素酸濃度0.8%である水溶液に40℃で2分間浸漬
した後、水洗し、その後は、実施例1と同様に無電解銅
メッキを行い、15g/mの銅が析出した金属被覆繊
維を得た。比較例6の評価は、実施例1と同じ方法で評
価した。それらの結果は表1に示す。
Comparative Example 6 Nylon fiber of 55.6 decitex 36 filaments has a warp density of 160 / inch and a weft density of 113
A plain weave of books / inch was scoured and heat set. Then, the fiber cloth is dipped in an aqueous solution containing 2.5% of MK140 (manufactured by Muromachi Technos Co., Ltd.) at 60 ° C. for 2 minutes,
Thoroughly washed with water was used as a base material. Palladium concentration 0.0
The substrate was immersed in a 6 g / L palladium-tin colloidal solution at 20 ° C. for 1 minute and then washed with water, and then immersed in an aqueous solution having a borofluoric acid acid concentration of 0.8% at 40 ° C. for 2 minutes, and then washed with water. After that, electroless copper plating was performed in the same manner as in Example 1 to obtain a metal-coated fiber in which 15 g / m 2 of copper was deposited. Comparative Example 6 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0027】[0027]

【比較例7】55.6デシテックス36フィラメントの
ナイロン繊維を経密度160本/インチ、緯密度113
本/インチで平織りに製織したものを、精練、ヒートセ
ットした。更に、パラジウム濃度0.06g/Lである
パラジウム−スズコロイド溶液に基材を20℃で1分間
浸漬した後に水洗し、続いてホウフッ化水素酸濃度0.
8%である水溶液を用いて40℃で2分間処理し、水洗
し、その後は、実施例1と同様に無電解銅メッキを行
い、15g/mの銅が析出した金属被覆繊維を得た。
比較例7の評価は、実施例1と同じ方法で評価した。そ
れらの結果は表1に示す。
[Comparative Example 7] Nylon fiber of 55.6 decitex 36 filaments has a warp density of 160 fibers / inch and a weft density of 113
A plain weave of books / inch was scoured and heat set. Further, the substrate was immersed in a palladium-tin colloidal solution having a palladium concentration of 0.06 g / L at 20 ° C. for 1 minute and then washed with water, and subsequently, a borofluoric acid concentration of 0.
It was treated with an 8% aqueous solution at 40 ° C. for 2 minutes, washed with water, and thereafter subjected to electroless copper plating in the same manner as in Example 1 to obtain a metal-coated fiber having 15 g / m 2 of copper deposited. .
The evaluation of Comparative Example 7 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0028】[0028]

【比較例8】55.6デシテックス36フィラメントの
ナイロン繊維を経密度160本/インチ、緯密度113
本/インチ平織りに製織したものを、精練、ヒートセッ
トした。その後、タンニン酸2g/Lと酢酸0.5ml
/Lを含む水溶液に70℃で2分間浸漬し、十分水洗し
たものを基材とした。更に、パラジウム濃度0.06g
/Lであるパラジウム−スズコロイド溶液に20℃で1
分間浸漬した後に水洗し、続いてホウフッ化水素酸濃度
0.8%である水溶液に基材を40℃で2分間処理し、
水洗し、その後は、実施例1と同様に無電解銅メッキを
行い、15g/mの銅が析出した金属被覆繊維を得
た。比較例8の評価は、実施例1と同じ方法で評価し
た。それらの結果は表1に示す。
[Comparative Example 8] Nylon fiber of 55.6 decitex 36 filaments has a warp density of 160 fibers / inch and a weft density of 113
A woven book / inch plain weave was scoured and heat set. Then 2 g / L tannic acid and 0.5 ml acetic acid
It was immersed in an aqueous solution containing / L at 70 ° C. for 2 minutes and thoroughly washed with water to obtain a substrate. Furthermore, palladium concentration is 0.06g
/ L at the palladium-tin colloidal solution at 20 ℃ 1
After soaking for a minute, it is washed with water, and then the substrate is treated with an aqueous solution having a borofluoric acid concentration of 0.8% at 40 ° C. for 2 minutes,
After washing with water, electroless copper plating was performed in the same manner as in Example 1 to obtain a metal-coated fiber having 15 g / m 2 of copper deposited. Comparative Example 8 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0029】[0029]

【比較例9】厚さ80μmのポリエステルフィルムをエ
ッチングし、水洗乾燥した。更に、脱脂および洗浄後、
パラジウム濃度0.06g/Lであるパラジウム−スズ
コロイド溶液に20℃で1分間基材を浸漬した後に水洗
し、続いてホウフッ化水素酸濃度0.8%である水溶液
を用いて40℃で2分間処理し、水洗し、その後は、実
施例1と同様に無電解銅メッキを行い、15g/m
銅が析出した金属被覆フィルムを得た。比較例9の評価
は、実施例1と同じ方法で評価した。それらの結果は表
1に示す。
Comparative Example 9 A polyester film having a thickness of 80 μm was etched, washed with water and dried. Furthermore, after degreasing and washing,
The substrate was immersed in a palladium-tin colloidal solution having a palladium concentration of 0.06 g / L at 20 ° C. for 1 minute and then washed with water, and then at 40 ° C. for 2 minutes using an aqueous solution having a borofluoric acid concentration of 0.8%. After treatment and washing with water, electroless copper plating was performed in the same manner as in Example 1 to obtain a metal-coated film on which 15 g / m 2 of copper was deposited. The evaluation of Comparative Example 9 was performed in the same manner as in Example 1. The results are shown in Table 1.

【0030】[0030]

【発明の効果】本発明により、カチオン性を示す官能基
を持たない基材はもとより、カチオン性を示す官能基を
有する基材も、上記本発明の特徴である基材表面へカチ
オン性化合物を付与した後に、タンニン酸を付与する手
法を併用することで得られる金属被覆導電性材料は、本
発明を併用しない手法で得られる金属被覆導電性材料に
比べ、金属皮膜と基材との密着性が良好になり、かつ安
定に製造できることを実現する事ができる。
INDUSTRIAL APPLICABILITY According to the present invention, not only a base material having no cationic functional group but also a base material having a cationic functional group can be coated with a cationic compound on the surface of the base material, which is the feature of the present invention. After the application, the metal-coated conductive material obtained by using the method of adding tannic acid together has a higher adhesiveness between the metal film and the base material than the metal-coated conductive material obtained by the method not using the present invention. It is possible to realize that the product has a good quality and can be manufactured stably.

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K022 AA15 AA16 AA32 AA36 AA41 BA08 BA14 BA17 CA05 CA16 CA22 CA23 DA01 5E321 BB23 BB41 BB44 GG05    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4K022 AA15 AA16 AA32 AA36 AA41                       BA08 BA14 BA17 CA05 CA16                       CA22 CA23 DA01                 5E321 BB23 BB41 BB44 GG05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基材にカチオン性化合物を付与したのちに
タンニン酸を付与する無電解メッキの前処理方法。
1. A pretreatment method for electroless plating, which comprises applying a tannic acid after applying a cationic compound to a substrate.
【請求項2】カチオン性化合物がアミン化合物、また
は、アンモニウム塩化合物であることを特徴とする請求
項1記載の無電解メッキ前処理方法。
2. The pretreatment method for electroless plating according to claim 1, wherein the cationic compound is an amine compound or an ammonium salt compound.
【請求項3】基材が合成樹脂から成る繊維布帛、また
は、合成樹脂からなるフィルム状物であることを特徴と
する請求項1乃至2記載の無電解メッキ前処理方法。
3. The pretreatment method for electroless plating according to claim 1, wherein the base material is a fiber cloth made of a synthetic resin or a film-like material made of a synthetic resin.
【請求項4】合成樹脂がポリエステル系樹脂、または、
ポリアミド系樹脂であることを特徴とする請求項3記載
の無電解メッキの前処理方法。
4. The synthetic resin is a polyester resin, or
The pretreatment method for electroless plating according to claim 3, which is a polyamide resin.
【請求項5】カチオン性化合物を付与し、続いてタンニ
ン酸を付与してなる基材に無電解メッキ処理により金属
皮膜を形成して成る導電性材料。
5. A conductive material obtained by forming a metal film on a base material provided with a cationic compound and subsequently provided with tannic acid by electroless plating.
JP2001301462A 2001-09-28 2001-09-28 Electroless plating pretreatment method and conductive material using the same Expired - Lifetime JP5117656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301462A JP5117656B2 (en) 2001-09-28 2001-09-28 Electroless plating pretreatment method and conductive material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301462A JP5117656B2 (en) 2001-09-28 2001-09-28 Electroless plating pretreatment method and conductive material using the same

Publications (2)

Publication Number Publication Date
JP2003105552A true JP2003105552A (en) 2003-04-09
JP5117656B2 JP5117656B2 (en) 2013-01-16

Family

ID=19121868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301462A Expired - Lifetime JP5117656B2 (en) 2001-09-28 2001-09-28 Electroless plating pretreatment method and conductive material using the same

Country Status (1)

Country Link
JP (1) JP5117656B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012891A (en) * 2004-06-22 2006-01-12 Fujikura Kasei Co Ltd Method of manufacturing electromagnetic shielding film
JP2008302324A (en) * 2007-06-08 2008-12-18 Kurita Water Ind Ltd Blocking rate improvement method of permeation membrane, permeation membrane with improved blocking rate, and permeation membrane treatment method and apparatus
JP2021535055A (en) * 2018-08-27 2021-12-16 ルクセンブルク・インスティテュート・オブ・サイエンス・アンド・テクノロジー・(エルアイエスティ) Metal-CNT complexes, their manufacturing methods and materials

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131974A (en) * 1983-11-29 1985-07-13 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of setting metal mirror on article
JPS60159172A (en) * 1983-12-27 1985-08-20 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Metal layer setting method
JPS60175549A (en) * 1983-09-28 1985-09-09 ロ−ム アンド ハ−ス カンパニ− Catalytic method and system
JPS61183191A (en) * 1984-12-10 1986-08-15 コルモーゲン コーポレイション Method of avoiding foaming formation in electroless plating for ceramic substrate
JPH02197579A (en) * 1989-01-25 1990-08-06 Nippon Senka Kogyo Kk Pretreating agent for electroless plating of polyamide resin
JPH0320472A (en) * 1988-09-08 1991-01-29 Philips Gloeilampenfab:Nv Manufacture of metal matrix
JPH0436470A (en) * 1990-05-30 1992-02-06 Daicel Chem Ind Ltd Method of electroless plating
JPH07173636A (en) * 1993-12-16 1995-07-11 Toyobo Co Ltd Production of electroless-plated fiber
JP2001247974A (en) * 2000-03-08 2001-09-14 Sekisui Chem Co Ltd Method for producing electrically conducive fine particle and electrically conductive fine particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175549A (en) * 1983-09-28 1985-09-09 ロ−ム アンド ハ−ス カンパニ− Catalytic method and system
JPS60131974A (en) * 1983-11-29 1985-07-13 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of setting metal mirror on article
JPS60159172A (en) * 1983-12-27 1985-08-20 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Metal layer setting method
JPS61183191A (en) * 1984-12-10 1986-08-15 コルモーゲン コーポレイション Method of avoiding foaming formation in electroless plating for ceramic substrate
JPH0320472A (en) * 1988-09-08 1991-01-29 Philips Gloeilampenfab:Nv Manufacture of metal matrix
JPH02197579A (en) * 1989-01-25 1990-08-06 Nippon Senka Kogyo Kk Pretreating agent for electroless plating of polyamide resin
JPH0436470A (en) * 1990-05-30 1992-02-06 Daicel Chem Ind Ltd Method of electroless plating
JPH07173636A (en) * 1993-12-16 1995-07-11 Toyobo Co Ltd Production of electroless-plated fiber
JP2001247974A (en) * 2000-03-08 2001-09-14 Sekisui Chem Co Ltd Method for producing electrically conducive fine particle and electrically conductive fine particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012891A (en) * 2004-06-22 2006-01-12 Fujikura Kasei Co Ltd Method of manufacturing electromagnetic shielding film
JP2008302324A (en) * 2007-06-08 2008-12-18 Kurita Water Ind Ltd Blocking rate improvement method of permeation membrane, permeation membrane with improved blocking rate, and permeation membrane treatment method and apparatus
JP2021535055A (en) * 2018-08-27 2021-12-16 ルクセンブルク・インスティテュート・オブ・サイエンス・アンド・テクノロジー・(エルアイエスティ) Metal-CNT complexes, their manufacturing methods and materials
JP7397061B2 (en) 2018-08-27 2023-12-12 ルクセンブルク・インスティテュート・オブ・サイエンス・アンド・テクノロジー・(エルアイエスティ) Metal-CNT composites, their manufacturing methods and materials

Also Published As

Publication number Publication date
JP5117656B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
US5422142A (en) Process for making electroless plated aramid fibrids
US3962494A (en) Sensitized substrates for chemical metallization
US5292361A (en) Electroless palladium plating composition
EP1343921A1 (en) Method for electroless nickel plating
CA1169720A (en) Process for activating surfaces for currentless metallization
JP4109615B2 (en) Method for activating substrate for synthetic electroplating
JPS6155263A (en) Improved metallization of polyester fiber-containing fiber material
US4244739A (en) Catalytic solution for the electroless deposition of metals
JP4897165B2 (en) Method for producing metal-plated organic polymer fiber
JP3052515B2 (en) Electroless copper plating bath and plating method
US4643918A (en) Continuous process for the metal coating of fiberglass
KR101664857B1 (en) Conductive yarn and method for preparing the same
JP2003105552A (en) Pretreatment method for electroless plating and conductive material formed by using the same
JP2004176082A (en) Highly corrosion resistant member and production method therefor
JP4298946B2 (en) Electromagnetic shielding material
KR100798870B1 (en) Conductive metal plated polyimide substrate including coupling agent and method for producing the same
JP2004346349A (en) Plated textile
JPH07173636A (en) Production of electroless-plated fiber
US7297373B2 (en) Conductive composites
JPH0762311B2 (en) Method for producing metal-coated fiber
JPS6215637B2 (en)
JP2005048243A (en) Conductive plated fibrous structure, and its production method
JPH06212439A (en) Production of electroless plating material
JP2004091877A (en) Pretreatment method in electroless plating, and electroless plated substrate treated with the method
JP2009135526A (en) Electromagnetic wave shielding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250