JP2004176082A - Highly corrosion resistant member and production method therefor - Google Patents

Highly corrosion resistant member and production method therefor Download PDF

Info

Publication number
JP2004176082A
JP2004176082A JP2002340670A JP2002340670A JP2004176082A JP 2004176082 A JP2004176082 A JP 2004176082A JP 2002340670 A JP2002340670 A JP 2002340670A JP 2002340670 A JP2002340670 A JP 2002340670A JP 2004176082 A JP2004176082 A JP 2004176082A
Authority
JP
Japan
Prior art keywords
plating
nickel
plating film
resistant member
highly corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002340670A
Other languages
Japanese (ja)
Inventor
Taichi Nagashima
太一 長嶋
Michio Saito
道雄 斉藤
Hiroaki Matsuyoshi
弘明 松好
Shinichi Kawasaki
真一 川崎
Mitsuaki Yamada
光昭 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002340670A priority Critical patent/JP2004176082A/en
Publication of JP2004176082A publication Critical patent/JP2004176082A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a inexpensively practicable simple method capable of imparting excellent corrosion resistance to metallic substrates used for various applications by a process low in an environmental load. <P>SOLUTION: The highly corrosion resistant member is obtained by applying an amorphous nickel plating film formed by an electroplating method to the surface of a metallic substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高耐食性部材及びその製造方法に関する。
【0002】
【従来の技術】
近年、車両、装身具、航空機、船舶、ホームユーティリティー、建材、精密機器、金型、製造ライン部品、電子材料、半導体等について、装飾面・機能面において高い付加価値を有し、且つ環境負荷の低い材料が求められている。このために、各種の表面処理加工が施されており、特に、密着性、耐食性、皮膜硬度、装飾性、耐熱性、耐薬性等の向上のために、汎用的なニッケルめっきを単独で適用することや、下地めっきや仕上げめっきとして、他の表面処理と組み合わせて適用することが多い。
【0003】
ニッケルめっき皮膜を形成する方法としては、通電してめっき皮膜を形成する電解めっき法と、化学反応を利用する無電解めっき法がある。これらの方法の内で、電解めっき法は、量産時に製造コスト面で有利な方法であるが、形成されるニッケルめっき皮膜は、無電解めっき法により形成されるニッケルめっき皮膜と比べて耐食性が低いという欠点がある。このため、表面にクロメート処理等を施すことにより、低コストで耐食性の高いニッケルめっき皮膜を形成している(例えば、非特許文献1参照)。
【0004】
しかしながら、近年、環境付加の軽減の観点から、Crを用いないクロムフリーの要求が高まり、クロメート処理に代わる耐食性付与加工が求められている。
【0005】
【非特許文献1】
神戸徳蔵著、「NPシリーズ 無電解めっき」槇書店、1984年発行、55頁
【0006】
【発明が解決しようとする課題】
本発明は、上記した従来技術に鑑みてなされたものであり、その主な目的は、低コストで実施可能な簡便な手法であって、しかも、環境負荷の低い方法によって、各種用途に用いられる金属基体に優れた耐食性を付与できる方法を提供することである。
【0007】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、電解めっき法によってニッケルめっき皮膜を形成する際に、めっき液に振動を付与する方法、又はめっき液に振動を付与した後、直ちにめっきを行う方法によれば、形成されるニッケルめっき皮膜をアモルファス状のめっき皮膜とすることができることを見出した。そして、形成されるアモルファス状のニッケルめっき皮膜は、無電解めっき法により形成したニッケル皮膜と同等の耐食性を有し、しかも良好な外観を有するものとなり、低コストで高品質の高耐食性部材が得られることを見出し、ここに本発明を完成するに至った。
【0008】
即ち、本発明は、下記の高耐食性部材及びその製造方法を提供するものである。
1. 電解めっき法により形成されたアモルファス状ニッケルめっき皮膜を金属基体上に有する高耐食性部材。
2. 電解めっき法により形成されたアモルファス状ニッケルめっき皮膜上に、更に、ニッケル、金、銀、銅、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、パラジウム、白金、亜鉛およびカドミウムからなる群から選択される少なくとも1種の金属からなるめっき皮膜を少なくとも一層形成してなる複層めっき皮膜を、金属基体上に有する高耐食性部材。
3. アモルファス状ニッケルめっき皮膜が、振動が付与されためっき液を用いて電解めっき法により形成されためっき皮膜である上記項1又は2に記載の高耐食性部材。
4. アモルファス状ニッケルめっき皮膜が、ニッケルに加えて、金、銀、銅、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、パラジウム、白金、亜鉛およびカドミウムからなる群から選択される少なくとも1種の金属を含むニッケル合金めっき皮膜である上記項1〜3のいずれかに記載の高耐食性部材。
5. 車両、装身具、航空機、船舶、ホームユーティリティー、建材、精密機器、金型、製造ライン部品、電子材料又は半導体用の部材である上記項1〜4のいずれかに記載の高耐食性部材。
6. 上記項1〜5に記載の高耐食性部材を備えた車両、装身具、航空機、船舶、ホームユーティリティー、建材、精密機器、金型、製造ライン部品、電子材料または半導体。
7. 振動が付与されためっき液を用いて、電解めっき法により金属基体上にアモルファス状のニッケルめっき皮膜を形成させることを特徴とする高耐食性部材の製造方法。
8. 電解めっき中にめっき液に振動を付与する方法、又は電解めっき前にめっき液に振動を付与し振動停止後1時間以内に電解めっきを開始する方法によってニッケルめっき皮膜を形成する上記項7に記載の方法。
【0009】
【発明の実施の形態】
本発明の高耐食性部材は、電解めっき法により形成されたアモルファス状ニッケルめっき皮膜を金属基体上に有することを特徴とするものである。
【0010】
本発明の高耐食性部材の基体となる金属の種類については、特に限定はなく、例えば、車両、装身具、航空機、船舶、ホームユーティリティー、建材、精密機器、金型、製造ライン部品、電子材料、半導体等に用いられる各種金属材料を処理対象とすることができる。この様な金属としては、例えば、鉄合金(炭素鋼、特殊鋼、耐熱鋼、ステンレス鋼など)、銅、銅合金、ニッケル、ニッケル合金、コバルト、コバルト合金、アルミニウム、アルミニウム合金などを挙げることができる。
【0011】
アモルファス状ニッケルめっき皮膜を形成するためには、ニッケル塩を必須の成分として含有する公知の各種組成の電解ニッケルめっき液を用いることができる。この様な電解ニッケルめっき液の一例としては、いわゆるスルファミン酸浴、ワット浴、塩化アンモニウム浴等を例示できる。
【0012】
本発明では、この様なニッケルめっき液を用いて電解めっき法でめっきを行う際に、振動が付与されためっき液を用いることによって、形成されるニッケルめっき皮膜をアモルファス状のめっき皮膜とすることができる。この様にして形成されるアモルファス状ニッケルめっき皮膜は、無電解めっき法により形成したニッケル皮膜と同等の耐食性を有するものとなり、しかも、めっき液中に光沢剤や添加剤等を添加しない場合であっても、光沢のある良好な外観を有するめっき皮膜となる。
【0013】
めっき液に振動を付与する方法については、特に限定的ではななく、例えば、めっき液中に振動板を設置してめっき液に振動を与える方法、めっき槽の外部からめっき槽自体に振動を与える方法などを適用できる。具体的な振動板の設置場所、設置個数などについては、めっき槽の大きさ、形状、振動板の大きさなどに応じて、できるだけめっき液に均一に振動を付与できるように決めればよい。
【0014】
付与する振動の周波数については、使用するめっき液の種類、電流密度、液温などによって異なるので、アモルファス状のめっき皮膜が形成されるように適宜設定すればよい。特に、5〜100Hz程度の振動を付与することが好ましく、20〜60Hz程度の振動を付与することがより好ましい。
【0015】
アモルファス状のめっき皮膜を形成するには、通常、電解めっき中にめっき液に振動を付与すればよい。但し、電解めっきを行う前に上記した条件で3時間程度以上、好ましくは10時間程度以上めっき液に振動を付与すれば、振動を停止した後、1時間程度以内に電解めっきを開始することにより、電解めっき中に振動を付与することなく、アモルファス状ニッケルめっき皮膜を形成することができる。
【0016】
電解めっきを行う際のその他のめっき条件、例えば、液温、電流密度などについては、使用するめっき浴の種類に応じて、通常の範囲内から適宜決めればよい。
【0017】
めっき方法としては、常法に従って、脱脂、酸洗等の前処理を行った後、振動による活性化を施す他は常法に従って電解めっきを行えばよい。また、基体に対するアモルファス状ニッケルめっき皮膜の密着性を向上させるために、必要に応じて、公知の方法によりストライクめっきを行った後、ニッケルめっき皮膜を形成しても良い。また、装飾性を向上させるために、加工後に研磨を行っても良い。
【0018】
アモルファス状のニッケルめっき皮膜は、ニッケル金属単独のめっき皮膜だけではなく、ニッケルに加えて、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、ホウ素、リンなどの合金元素の1種または2種以上を含有するニッケル合金めっき皮膜であっても良い。この様なニッケル合金めっき皮膜は、上記した公知の電解ニッケルめっき液中に、これらの合金成分を含む可溶性塩を添加して電解めっきを行うことによって形成できる。また、めっき液中には、金属イオンを安定化させるために、錯化剤などの添加剤を必要に応じて加えても良い。
【0019】
この様なニッケル合金めっき皮膜では、主となるニッケルの含有率は、ニッケル合金めっき皮膜中50重量%程度以上であることが好ましく、具体的には50〜90重量%程度であることが好ましい。
【0020】
上記した成分を含むめっき皮膜を形成するには、所望の成分を公知の電解ニッケルめっき浴中に添加して電解めっきを行えばよい。めっき液中には、これらの成分を安定化させるための界面活性剤などの添加剤を必要に応じて添加してもよい。
【0021】
形成されるアモルファス状ニッケルめっき皮膜の厚さについては、部材の材質及び形状、該部材を使用する環境の種類などにより異なるが、通常、5〜1000μm程度、好ましくは10〜100μm程度とすればよい。
【0022】
尚、本発明方法によって形成されるアモルファス状ニッケルめっき皮膜とは、FIB(集束イオンビーム)法を用いて観察されたSIM像において、電解めっき法により形成される皮膜に特有の柱状結晶が観察されないものをいう。
【0023】
本発明の高耐食性部材では、上記した方法で形成されたアモルファス状ニッケルめっき皮膜上に、更に、ニッケル、金、銀、銅、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、パラジウム、白金、亜鉛およびカドミウムからなる群から選択される少なくとも1種の金属からなるめっき皮膜を少なくとも一層積層しても良い。金属基体上に、この様な複層めっき皮膜を形成する場合には、アモルファス状ニッケルめっき皮膜の存在によって、金属基体の腐食が抑制されるので、金属基体の腐食の影響を受けることなく、アモルファス状ニッケルめっき皮膜上に形成されるめっき皮膜の特性を有効に利用することができる。
【0024】
アモルファス状ニッケルめっき皮膜の上に形成されるめっき皮膜は、一層又は二層以上とすることができる。その膜厚は、形成されるめっき皮膜の利用目的などに応じて適宜決めれば良く、通常、0.1〜300μm程度の範囲内から適宜決めればよい。
【0025】
この様なめっき皮膜は、目的とするめっき皮膜を形成するために使用できる公知のめっき液を用いて、電解法によって形成すればよい。めっき条件については、使用するめっき液の種類に応じて、公知のめっき条件を適宜適用すればよい。
【0026】
本発明の高耐食性部材は、例えば、車両、装身具、航空機、船舶、ホームユーティリティー、建材、精密機器、金型、製造ライン部品、電子材料、半導体等の部材またはその材料として好適に用いることができる。装身具としては、例えば、ネックレス、ピアス、イヤリング、めがねフレーム、腕時計バンド等が例示できる。ホームユーティリティーとしては、例えば、アイロンの底板、洗濯機の内槽、家具の装飾品等が例示できる。精密機器としては、ギア、シャフト、軸受け、モーター、スイッチ、ネジ等が例示できる。金型としては、インジェクション金型、プレス金型、引き抜き金型等が例示できる。
【0027】
更に、本発明の部材は、そのまま高耐食性部材として使用する他、この上に、更に、各種表面処理を施すこともでき、利用価値の極めて高い部材である。
【0028】
【発明の効果】
本発明によれば、下記の様な優れた効果が奏される。
(1)外観の劣化や強度の脆化、腐食による劣化等に対して優れた耐久性を有する高耐食性部材を得ることができる。
(2)簡便な手法で優れた高耐食性部材を製造することができる。
(3)低コストで優れた高耐食性部材を製造することができる。
(4)光沢剤や添加剤等を用いることなく光沢のある良好な外観を有する高耐食性部材を製造することができる。
【0029】
【実施例】
以下、本発明の実施例を比較例と共に挙げ、本発明をより具体的に説明する。
【0030】
実施例1
1)ニッケルストライクめっき液の調製
以下のような組成を有するニッケルストライクめっき液を調製した。
塩化ニッケル 245g/l
塩酸 120g/l
2)電解ニッケルめっき液の調製
以下のような組成を有する電解ニッケルめっき液を調製した。
スルファミン酸ニッケル 450g/l
塩化ニッケル 5g/l
ホウ酸 35g/l
3)めっき法
基体(試験片)としては、以下のものを用いた。
・試験片(材質SUS430、50mm×50mm、厚さ3mm)
上記の試験片をアルカリ脱脂液で脱脂した後、負極として用いて、以下の方法でめっきを行った。
【0031】
まず、上記1)の組成のニッケルストライクめっき液を含むニッケルストライク槽を用いて、液温25℃、電流密度10A/dmの条件下で2分間のニッケルストライク処理を行った。
【0032】
次いで、上記2)の組成の電解ニッケルめっき液を含むめっき槽を用いて、液温50℃、pH4.0、電流密度2A/dmの条件下に約40Hzの振動を与えながら、膜厚が10μmとなるまで電解めっきを行って、アモルファス状ニッケルめっき皮膜を形成した。めっき終了後、水洗して100℃で5分間乾燥させた。
【0033】
上記ニッケル皮膜を形成したSUS430試験片に対して塩水噴霧試験(35℃、45g/lのNaCl溶液)を行ったところ、48時間後でも大きな腐食は認められなかった。また、FIB(集束イオンビーム)法を用いてSIM像を観察したところ、電解めっき法により形成された皮膜に特有の柱状結晶は見られず、無電解めっき法により形成された皮膜に類似したアモルファス状態が観察された。
【0034】
実施例2
実施例1と同様の試験片をアルカリ脱脂液で脱脂した後、これを負極として用いて、以下の方法でめっきを行った。
【0035】
まず、上記1)の組成のニッケルストライクめっき液を含むニッケルストライク槽を用いて、液温25℃、電流密度10A/dmの条件下で2分間のニッケルストライク処理を行った。
【0036】
次いで、上記2)の組成の電解ニッケルめっき液に約40Hzの振動を10時間与えた後、振動を止めて3分後から、液温50℃、pH4.0、電流密度2A/dmの条件下に、膜厚が10μmとなるまで電解めっきを行って、アモルファス状ニッケルめっき皮膜を形成した。めっき終了後、水洗して100℃で5分間乾燥させた。
【0037】
上記ニッケル皮膜を形成したSUS430試験片に対して塩水噴霧試験(35℃、45g/lのNaCl溶液)を行ったところ、48時間後でも大きな腐食は見られなかった。また、FIB法を用いてSIM像を観察したところ、電解めっき法により形成された皮膜に特有の柱状結晶は見られず、無電解めっき法により形成された皮膜に類似したアモルファス状態が観察された。
【0038】
比較例1
実施例1と同様の試験片をアルカリ脱脂液で脱脂した後、負極として用いて、以下の方法でめっきを行った。
【0039】
まず、上記1)の組成のニッケルストライクめっき液を含むニッケルストライク槽を用いて、液温25℃、電流密度10A/dmの条件下で2分間のニッケルストライク処理を行った。
【0040】
次いで、上記2)の組成の電解ニッケルめっき液を含むめっき槽を用いて、液温50℃、pH4.0、電流密度2A/dmの条件下に、膜厚が10μmとなるまで電解めっきを行って、無光沢ニッケルめっき皮膜を形成した。めっき終了後、水洗して100℃で5分間乾燥させた。
【0041】
上記ニッケル皮膜を形成したSUS430試験片に対して塩水噴霧試験(35℃、45g/LのNaCl溶液)を行ったところ、48時間後には5点で腐食が見られた。また、FIB法を用いてSIM像を観察したところ、電解めっき法により形成された皮膜に特有の柱状結晶がはっきりと見られ、無電解めっき法により形成された皮膜に見られるアモルファス状態とは異なる形状が観察された。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high corrosion resistant member and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, vehicles, accessories, aircraft, ships, home utilities, building materials, precision equipment, molds, production line components, electronic materials, semiconductors, etc. have high added value in decorative and functional aspects and low environmental impact. Materials are needed. For this purpose, various surface treatments have been applied, and in particular, general-purpose nickel plating is applied alone to improve adhesion, corrosion resistance, film hardness, decorativeness, heat resistance, chemical resistance, etc. Often, it is often applied in combination with other surface treatments as base plating or finish plating.
[0003]
As a method of forming a nickel plating film, there are an electroplating method in which a plating film is formed by energization, and an electroless plating method using a chemical reaction. Among these methods, the electrolytic plating method is advantageous in terms of manufacturing cost during mass production, but the formed nickel plating film has lower corrosion resistance than the nickel plating film formed by the electroless plating method. There is a disadvantage that. Therefore, a nickel plating film having low cost and high corrosion resistance is formed by subjecting the surface to chromate treatment or the like (for example, see Non-Patent Document 1).
[0004]
However, in recent years, from the viewpoint of reducing environmental load, the demand for chromium-free without using Cr has increased, and a process for imparting corrosion resistance instead of chromate treatment has been required.
[0005]
[Non-patent document 1]
Tokuzo Kobe, "NP Series Electroless Plating" Maki Shoten, 1984, p. 55 [0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned prior art, and its main purpose is to provide a simple method that can be implemented at low cost, and that it is used for various purposes by a method with a low environmental load. An object of the present invention is to provide a method capable of imparting excellent corrosion resistance to a metal substrate.
[0007]
[Means for Solving the Problems]
The present inventor has made intensive studies to achieve the above-mentioned object. As a result, when a nickel plating film is formed by an electrolytic plating method, according to a method of applying vibration to a plating solution or a method of immediately plating after applying vibration to a plating solution, a nickel plating film to be formed is formed. Can be formed into an amorphous plating film. The formed amorphous nickel plating film has the same corrosion resistance as the nickel film formed by the electroless plating method, and has a good appearance, so that a low-cost, high-quality, high-corrosion-resistant member can be obtained. The present invention was completed here.
[0008]
That is, the present invention provides the following highly corrosion-resistant member and a method for producing the same.
1. A highly corrosion resistant member having an amorphous nickel plating film formed by an electrolytic plating method on a metal substrate.
2. Nickel, gold, silver, copper, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, palladium are further formed on the amorphous nickel plating film formed by the electrolytic plating method. A highly corrosion-resistant member having, on a metal substrate, a multilayer plating film formed by forming at least one plating film made of at least one metal selected from the group consisting of platinum, zinc and cadmium.
3. 3. The highly corrosion-resistant member according to item 1 or 2, wherein the amorphous nickel plating film is a plating film formed by an electrolytic plating method using a plating solution to which vibration has been applied.
4. Amorphous nickel plating film is made of gold, silver, copper, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, palladium, platinum, zinc and cadmium in addition to nickel. Item 4. The highly corrosion-resistant member according to any one of Items 1 to 3, which is a nickel alloy plating film containing at least one metal selected from the group consisting of:
5. 5. The highly corrosion-resistant member according to any one of the above items 1 to 4, which is a member for a vehicle, an accessory, an aircraft, a ship, a home utility, a building material, a precision instrument, a mold, a production line component, an electronic material, or a semiconductor.
6. 6. A vehicle, accessory, aircraft, ship, home utility, building material, precision equipment, mold, manufacturing line component, electronic material, or semiconductor provided with the highly corrosion-resistant member according to any one of the above items 1 to 5.
7. A method for producing a highly corrosion-resistant member, comprising forming an amorphous nickel plating film on a metal substrate by electrolytic plating using a plating solution to which vibration has been applied.
8. Item 7. The nickel plating film is formed by a method of applying vibration to the plating solution during electrolytic plating, or a method of applying vibration to the plating solution before electrolytic plating and starting electrolytic plating within one hour after stopping the vibration. the method of.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The highly corrosion-resistant member of the present invention has an amorphous nickel plating film formed by an electrolytic plating method on a metal substrate.
[0010]
There is no particular limitation on the type of metal serving as the base of the highly corrosion-resistant member of the present invention. For example, vehicles, accessories, aircraft, ships, home utilities, building materials, precision equipment, molds, production line parts, electronic materials, semiconductors Various kinds of metal materials used for the processing can be processed. Examples of such a metal include iron alloys (carbon steel, special steel, heat-resistant steel, stainless steel, etc.), copper, copper alloy, nickel, nickel alloy, cobalt, cobalt alloy, aluminum, aluminum alloy, and the like. it can.
[0011]
In order to form an amorphous nickel plating film, it is possible to use electrolytic nickel plating solutions of various known compositions containing a nickel salt as an essential component. Examples of such an electrolytic nickel plating solution include a so-called sulfamic acid bath, a Watt bath, and an ammonium chloride bath.
[0012]
In the present invention, when plating is performed by an electrolytic plating method using such a nickel plating solution, a nickel plating film to be formed is formed into an amorphous plating film by using a plating solution to which vibration is imparted. Can be. The amorphous nickel plating film formed in this manner has the same corrosion resistance as the nickel film formed by the electroless plating method, and is a case where no brightener or additive is added to the plating solution. However, the resulting plating film has a glossy and good appearance.
[0013]
The method of applying vibration to the plating solution is not particularly limited. For example, a method of installing a diaphragm in the plating solution to apply vibration to the plating solution, or applying vibration to the plating bath itself from outside the plating bath. Methods can be applied. The specific location and number of diaphragms to be installed may be determined in accordance with the size and shape of the plating tank, the size of the diaphragm, and the like so that vibrations can be applied to the plating solution as uniformly as possible.
[0014]
The frequency of the applied vibration varies depending on the type of plating solution used, current density, solution temperature, and the like, and thus may be appropriately set so that an amorphous plating film is formed. In particular, it is preferable to apply a vibration of about 5 to 100 Hz, and it is more preferable to apply a vibration of about 20 to 60 Hz.
[0015]
In order to form an amorphous plating film, generally, vibration may be applied to the plating solution during electrolytic plating. However, if vibration is applied to the plating solution for about 3 hours or more, preferably about 10 hours or more under the above-described conditions before performing the electrolytic plating, after the vibration is stopped, the electrolytic plating is started within about 1 hour. In addition, an amorphous nickel plating film can be formed without applying vibration during electrolytic plating.
[0016]
Other plating conditions for performing the electrolytic plating, such as the solution temperature and the current density, may be appropriately determined within a normal range according to the type of the plating bath to be used.
[0017]
As a plating method, after performing pretreatment such as degreasing and pickling according to a conventional method, electrolytic plating may be performed according to a conventional method except that activation by vibration is performed. Further, in order to improve the adhesion of the amorphous nickel plating film to the substrate, the nickel plating film may be formed after performing strike plating by a known method, if necessary. Polishing may be performed after processing to improve decorativeness.
[0018]
The amorphous nickel plating film is not only a nickel metal plating film but also nickel, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, palladium, platinum. It may be a nickel alloy plating film containing one or more alloying elements such as copper, silver, gold, zinc, cadmium, boron and phosphorus. Such a nickel alloy plating film can be formed by adding a soluble salt containing these alloy components to the above-mentioned known electrolytic nickel plating solution and performing electrolytic plating. Further, an additive such as a complexing agent may be added to the plating solution as needed in order to stabilize metal ions.
[0019]
In such a nickel alloy plating film, the content of main nickel is preferably about 50% by weight or more in the nickel alloy plating film, and more preferably about 50 to 90% by weight.
[0020]
In order to form a plating film containing the above components, a desired component may be added to a known electrolytic nickel plating bath and electrolytic plating may be performed. If necessary, additives such as a surfactant for stabilizing these components may be added to the plating solution.
[0021]
The thickness of the formed amorphous nickel plating film varies depending on the material and shape of the member, the type of environment in which the member is used, and the like, but is usually about 5 to 1000 μm, preferably about 10 to 100 μm. .
[0022]
In the amorphous nickel plating film formed by the method of the present invention, a columnar crystal peculiar to the film formed by the electrolytic plating method is not observed in a SIM image observed using a FIB (focused ion beam) method. A thing.
[0023]
In the highly corrosion-resistant member of the present invention, nickel, gold, silver, copper, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, and osmium are further formed on the amorphous nickel plating film formed by the above method. And at least one plating film made of at least one metal selected from the group consisting of cobalt, rhodium, iridium, palladium, platinum, zinc and cadmium. When such a multi-layer plating film is formed on a metal substrate, the corrosion of the metal substrate is suppressed by the presence of the amorphous nickel plating film. The characteristics of the plating film formed on the nickel-plated nickel film can be effectively used.
[0024]
The plating film formed on the amorphous nickel plating film may be a single layer or two or more layers. The film thickness may be appropriately determined according to the intended use of the plating film to be formed, and may be generally determined as appropriate within a range of about 0.1 to 300 μm.
[0025]
Such a plating film may be formed by an electrolytic method using a known plating solution that can be used to form a target plating film. As for plating conditions, known plating conditions may be appropriately applied according to the type of plating solution to be used.
[0026]
The highly corrosion-resistant member of the present invention can be suitably used, for example, as a member of a vehicle, an accessory, an aircraft, a ship, a home utility, a building material, a precision device, a mold, a production line component, an electronic material, a semiconductor, or the like or a material thereof. . Examples of the accessory include a necklace, piercing, earring, eyeglass frame, watch band, and the like. Examples of the home utility include a bottom plate of an iron, an inner tub of a washing machine, and a decorative article of furniture. Examples of precision equipment include gears, shafts, bearings, motors, switches, screws, and the like. Examples of the mold include an injection mold, a press mold, and a drawing mold.
[0027]
Furthermore, the member of the present invention can be used as it is as a high corrosion-resistant member, and can be further subjected to various surface treatments, and is a member having extremely high utility value.
[0028]
【The invention's effect】
According to the present invention, the following excellent effects can be obtained.
(1) A highly corrosion-resistant member having excellent durability against deterioration of appearance, embrittlement of strength, deterioration due to corrosion, and the like can be obtained.
(2) An excellent high corrosion resistance member can be manufactured by a simple method.
(3) An excellent high corrosion resistance member can be manufactured at low cost.
(4) A highly corrosion-resistant member having a glossy and good appearance can be manufactured without using a brightener or an additive.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples of the present invention and Comparative Examples.
[0030]
Example 1
1) Preparation of nickel strike plating solution A nickel strike plating solution having the following composition was prepared.
Nickel chloride 245g / l
Hydrochloric acid 120g / l
2) Preparation of electrolytic nickel plating solution An electrolytic nickel plating solution having the following composition was prepared.
Nickel sulfamate 450g / l
Nickel chloride 5g / l
Boric acid 35g / l
3) The following was used as a plating substrate (test piece).
-Test piece (material: SUS430, 50 mm x 50 mm, thickness 3 mm)
After the above test piece was degreased with an alkaline degreasing solution, plating was performed using the negative electrode by the following method.
[0031]
First, a nickel strike treatment was performed for 2 minutes at a solution temperature of 25 ° C. and a current density of 10 A / dm 2 using a nickel strike bath containing a nickel strike plating solution having the composition of 1) above.
[0032]
Next, using a plating tank containing an electrolytic nickel plating solution having the composition of the above 2), while applying a vibration of about 40 Hz under the conditions of a liquid temperature of 50 ° C., a pH of 4.0 and a current density of 2 A / dm 2 , Electroplating was performed until the thickness became 10 μm to form an amorphous nickel plating film. After the plating was completed, it was washed with water and dried at 100 ° C. for 5 minutes.
[0033]
When a salt spray test (35 ° C., 45 g / l NaCl solution) was performed on the SUS430 test piece on which the nickel coating was formed, no significant corrosion was observed even after 48 hours. When a SIM image was observed using a FIB (focused ion beam) method, no columnar crystal peculiar to the film formed by the electrolytic plating method was observed, and an amorphous crystal similar to the film formed by the electroless plating method was not observed. A condition was observed.
[0034]
Example 2
After a test piece similar to that of Example 1 was degreased with an alkaline degreasing solution, plating was performed by the following method using this as a negative electrode.
[0035]
First, a nickel strike treatment was performed for 2 minutes at a solution temperature of 25 ° C. and a current density of 10 A / dm 2 using a nickel strike bath containing a nickel strike plating solution having the composition of 1) above.
[0036]
Then, after applying a vibration of about 40 Hz to the electrolytic nickel plating solution having the composition of the above 2) for 10 hours, the vibration was stopped, and after 3 minutes, the conditions of a liquid temperature of 50 ° C., a pH of 4.0, and a current density of 2 A / dm 2 . Underneath, electrolytic plating was performed until the film thickness became 10 μm to form an amorphous nickel plating film. After the plating was completed, it was washed with water and dried at 100 ° C. for 5 minutes.
[0037]
A salt spray test (35 ° C., 45 g / l NaCl solution) was performed on the SUS430 test piece having the nickel film formed thereon, and no significant corrosion was observed even after 48 hours. Further, when a SIM image was observed by using the FIB method, no columnar crystal peculiar to the film formed by the electrolytic plating method was observed, and an amorphous state similar to the film formed by the electroless plating method was observed. .
[0038]
Comparative Example 1
The same test piece as in Example 1 was degreased with an alkaline degreasing solution, and then used as a negative electrode and plated by the following method.
[0039]
First, a nickel strike treatment was performed for 2 minutes at a solution temperature of 25 ° C. and a current density of 10 A / dm 2 using a nickel strike bath containing a nickel strike plating solution having the composition of 1) above.
[0040]
Then, using a plating bath containing an electrolytic nickel plating solution having the composition of the above 2), electrolytic plating was performed under the conditions of a solution temperature of 50 ° C., a pH of 4.0, and a current density of 2 A / dm 2 until the film thickness became 10 μm. As a result, a dull nickel plating film was formed. After the plating was completed, it was washed with water and dried at 100 ° C. for 5 minutes.
[0041]
A salt spray test (35 ° C., 45 g / L NaCl solution) was performed on the SUS430 test piece having the nickel film formed thereon, and corrosion was observed at 5 points after 48 hours. Further, when a SIM image was observed using the FIB method, columnar crystals peculiar to the film formed by the electrolytic plating method were clearly seen, which was different from the amorphous state observed in the film formed by the electroless plating method. Shape was observed.

Claims (8)

電解めっき法により形成されたアモルファス状ニッケルめっき皮膜を金属基体上に有する高耐食性部材。A highly corrosion resistant member having an amorphous nickel plating film formed by an electrolytic plating method on a metal substrate. 電解めっき法により形成されたアモルファス状ニッケルめっき皮膜上に、更に、ニッケル、金、銀、銅、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、パラジウム、白金、亜鉛およびカドミウムからなる群から選択される少なくとも1種の金属からなるめっき皮膜を少なくとも一層形成してなる複層めっき皮膜を、金属基体上に有する高耐食性部材。Nickel, gold, silver, copper, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, palladium are further formed on the amorphous nickel plating film formed by the electrolytic plating method. A highly corrosion-resistant member having a multi-layer plating film formed on a metal substrate by forming at least one plating film made of at least one metal selected from the group consisting of platinum, zinc and cadmium. アモルファス状ニッケルめっき皮膜が、振動が付与されためっき液を用いて電解めっき法により形成されためっき皮膜である請求項1又は2に記載の高耐食性部材。The highly corrosion-resistant member according to claim 1 or 2, wherein the amorphous nickel plating film is a plating film formed by an electrolytic plating method using a plating solution to which vibration is applied. アモルファス状ニッケルめっき皮膜が、ニッケルに加えて、金、銀、銅、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、パラジウム、白金、亜鉛およびカドミウムからなる群から選択される少なくとも1種の金属を含むニッケル合金めっき皮膜である請求項1〜3のいずれかに記載の高耐食性部材。Amorphous nickel plating film is made of gold, silver, copper, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, palladium, platinum, zinc and cadmium in addition to nickel. The highly corrosion-resistant member according to any one of claims 1 to 3, which is a nickel alloy plating film containing at least one metal selected from the group consisting of: 車両、装身具、航空機、船舶、ホームユーティリティー、建材、精密機器、金型、製造ライン部品、電子材料又は半導体用の部材である請求項1〜4のいずれかに記載の高耐食性部材。The highly corrosion-resistant member according to any one of claims 1 to 4, which is a member for a vehicle, an accessory, an aircraft, a ship, a home utility, a building material, a precision instrument, a mold, a production line component, an electronic material, or a semiconductor. 請求項1〜5に記載の高耐食性部材を備えた車両、装身具、航空機、船舶、ホームユーティリティー、建材、精密機器、金型、製造ライン部品、電子材料または半導体。A vehicle, an accessory, an aircraft, a ship, a home utility, a building material, a precision instrument, a mold, a production line component, an electronic material, or a semiconductor provided with the highly corrosion-resistant member according to claim 1. 振動が付与されためっき液を用いて、電解めっき法により金属基体上にアモルファス状のニッケルめっき皮膜を形成させることを特徴とする高耐食性部材の製造方法。A method for producing a highly corrosion-resistant member, comprising forming an amorphous nickel plating film on a metal substrate by electrolytic plating using a plating solution to which vibration has been applied. 電解めっき中にめっき液に振動を付与する方法、又は電解めっき前にめっき液に振動を付与し振動停止後1時間以内に電解めっきを開始する方法によってニッケルめっき皮膜を形成する請求項7に記載の方法。The nickel plating film is formed by a method of applying vibration to a plating solution during electrolytic plating or a method of applying vibration to a plating solution before electrolytic plating and starting electrolytic plating within one hour after stopping vibration. the method of.
JP2002340670A 2002-11-25 2002-11-25 Highly corrosion resistant member and production method therefor Pending JP2004176082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340670A JP2004176082A (en) 2002-11-25 2002-11-25 Highly corrosion resistant member and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340670A JP2004176082A (en) 2002-11-25 2002-11-25 Highly corrosion resistant member and production method therefor

Publications (1)

Publication Number Publication Date
JP2004176082A true JP2004176082A (en) 2004-06-24

Family

ID=32703231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340670A Pending JP2004176082A (en) 2002-11-25 2002-11-25 Highly corrosion resistant member and production method therefor

Country Status (1)

Country Link
JP (1) JP2004176082A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241594A (en) * 2005-02-04 2006-09-14 Univ Waseda Gold-nickel based amorphous alloy plating film, electroplating liquid and electroplating method
JP2007082615A (en) * 2005-09-20 2007-04-05 Nelson Precision Casting Co Ltd Rustproof coating of golf club head
JP2007169706A (en) * 2005-12-21 2007-07-05 Univ Waseda Electroplating solution and electroplating method for forming amorphous gold-nickel based alloy plated film
JP2012021174A (en) * 2010-07-12 2012-02-02 Nomura Plating Co Ltd Forming roll and method for manufacturing the same
JP2014148754A (en) * 2014-03-24 2014-08-21 Nomura Plating Co Ltd Forming roll and method for manufacturing the same
US9564255B2 (en) 2013-01-30 2017-02-07 Hitachi Metals, Ltd. High-speed transmission cable conductor, and producing method thereof, and high-speed transmission cable
JPWO2016151793A1 (en) * 2015-03-25 2017-08-03 三菱重工業株式会社 Impeller of rotating machine, compressor, supercharger, and manufacturing method of impeller of rotating machine
US9769933B2 (en) 2013-11-29 2017-09-19 Hitachi Metals, Ltd. Printed circuit board and method of manufacturing the same
US9884467B2 (en) 2012-06-01 2018-02-06 Hitachi Cable, Ltd. Copper-based material and method for producing the same
US10006138B2 (en) 2013-11-29 2018-06-26 Hitachi Metals, Ltd. Copper foil and method of manufacturing the same
US11015250B2 (en) 2015-03-17 2021-05-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller for rotary machine, compressor, supercharger, and method for producing impeller for rotary machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241594A (en) * 2005-02-04 2006-09-14 Univ Waseda Gold-nickel based amorphous alloy plating film, electroplating liquid and electroplating method
JP2007082615A (en) * 2005-09-20 2007-04-05 Nelson Precision Casting Co Ltd Rustproof coating of golf club head
JP2007169706A (en) * 2005-12-21 2007-07-05 Univ Waseda Electroplating solution and electroplating method for forming amorphous gold-nickel based alloy plated film
JP2012021174A (en) * 2010-07-12 2012-02-02 Nomura Plating Co Ltd Forming roll and method for manufacturing the same
US9884467B2 (en) 2012-06-01 2018-02-06 Hitachi Cable, Ltd. Copper-based material and method for producing the same
US9564255B2 (en) 2013-01-30 2017-02-07 Hitachi Metals, Ltd. High-speed transmission cable conductor, and producing method thereof, and high-speed transmission cable
US9769933B2 (en) 2013-11-29 2017-09-19 Hitachi Metals, Ltd. Printed circuit board and method of manufacturing the same
US10006138B2 (en) 2013-11-29 2018-06-26 Hitachi Metals, Ltd. Copper foil and method of manufacturing the same
JP2014148754A (en) * 2014-03-24 2014-08-21 Nomura Plating Co Ltd Forming roll and method for manufacturing the same
US11015250B2 (en) 2015-03-17 2021-05-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller for rotary machine, compressor, supercharger, and method for producing impeller for rotary machine
JPWO2016151793A1 (en) * 2015-03-25 2017-08-03 三菱重工業株式会社 Impeller of rotating machine, compressor, supercharger, and manufacturing method of impeller of rotating machine

Similar Documents

Publication Publication Date Title
JP4857340B2 (en) Pretreatment of magnesium substrate for electroplating
US5292361A (en) Electroless palladium plating composition
GB2266318A (en) Electroless plating solution containing thiodiglycolic acid and arylsulphonic acid condensate with formalin
JP5436569B2 (en) Precious metal-containing layer continuum for decorative articles
JP2004176082A (en) Highly corrosion resistant member and production method therefor
WO2012114737A1 (en) Method for producing trivalent chromium-plated molded article and trivalent chromium-plated molded article
US2162789A (en) Method of preparing metal surface for plating
KR101861626B1 (en) PC-ABS Resin parts Non-degradable Metal plating method
JP2007009261A (en) Copper foil for printed circuit board, and its manufacturing method
US4082908A (en) Gold plating process and product produced thereby
WO2013135396A2 (en) Alkaline plating bath for electroless deposition of cobalt alloys
JPH0734254A (en) Electroless plating method to aluminum material
US20200224325A1 (en) Surface treatment method
JP3035676B2 (en) Method for electroless nickel plating on zinc-aluminum alloy, composition for catalytic treatment, composition for activation treatment, and composition for electroless nickel strike plating
US6827834B2 (en) Non-cyanide copper plating process for zinc and zinc alloys
CN111733432B (en) Zinc dipping solution and preparation method thereof, metal surface treatment method and aluminum part
JP2001295061A (en) Electroless palladium-nickel bath and plating method using the same as well as plated products obtained by the method
TWI448590B (en) Novel cyanide-free electroplating process for zinc and zinc alloy die-cast components
JPH031383B2 (en)
JPS62236345A (en) Electronic wrist watch
JP2560842B2 (en) Method for manufacturing corrosion resistant film
JP2002235182A (en) Metallic molding material essentially consisting of magnesium and production method therefor
US20230349049A1 (en) Multilayer corrosion system
KR20130057064A (en) Plating method using the ni-free three element alloys plating and tri-valent chromium plating
JPH0711478A (en) Production of noble metal plated material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060306

A02 Decision of refusal

Effective date: 20060705

Free format text: JAPANESE INTERMEDIATE CODE: A02