JP2007169706A - Electroplating solution and electroplating method for forming amorphous gold-nickel based alloy plated film - Google Patents

Electroplating solution and electroplating method for forming amorphous gold-nickel based alloy plated film Download PDF

Info

Publication number
JP2007169706A
JP2007169706A JP2005368186A JP2005368186A JP2007169706A JP 2007169706 A JP2007169706 A JP 2007169706A JP 2005368186 A JP2005368186 A JP 2005368186A JP 2005368186 A JP2005368186 A JP 2005368186A JP 2007169706 A JP2007169706 A JP 2007169706A
Authority
JP
Japan
Prior art keywords
gold
nickel
electroplating
salt
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005368186A
Other languages
Japanese (ja)
Other versions
JP4868121B2 (en
Inventor
Tetsuya Aisaka
哲彌 逢坂
Yutaka Okinaka
裕 沖中
Hirota Takesute
裕太 武捨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Waseda University
Original Assignee
Kanto Chemical Co Inc
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc, Waseda University filed Critical Kanto Chemical Co Inc
Priority to JP2005368186A priority Critical patent/JP4868121B2/en
Publication of JP2007169706A publication Critical patent/JP2007169706A/en
Application granted granted Critical
Publication of JP4868121B2 publication Critical patent/JP4868121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroplating solution and an electroplating method which achieve formation of a high hardness low contact resistant amorphous gold-nickel based alloy plated film useful as a contact material for an electric/electronic part such as relay. <P>SOLUTION: The electroplating solution contains 0.01-0.1 mol/dm<SP>3</SP>gold cyanide in terms of gold , 0.017-0.67 mol/dm<SP>3</SP>water soluble nickel salt in terms of nickel and citric acid or the salt thereof, wherein the concentration ratio (Au/Ni) of gold to nickel by mol is 0.15-0.6, the concentration ratio (Cit/Ni) of citric acid or the salt thereof to nickel is 1-3 and the pH of the plating solution is 3-11. The amorphous gold-nickel based alloy plated film having a ratio (Au:Ni) by atom of (31:69)-(60:40) is formed using the electroplating solution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アモルファス金−ニッケル系合金めっき皮膜を析出、形成することができる電気めっき液及び電気めっき方法に関する。   The present invention relates to an electroplating solution and an electroplating method capable of depositing and forming an amorphous gold-nickel alloy plating film.

電子部品の一部としてのコネクター、小型リレー、プリント配線板などの高信頼性電気接点材料としては、いわゆる硬質金めっき膜が現在広く使われている。硬質金めっき膜は極めて小さな金の微結晶(20〜30nm)からなり、その硬度は170〜200kgmm-2(ヌープ硬度)に達する。接点材料の良好な耐摩耗性を得るために必要なこのような高い硬度は、粒径の小さな結晶粒が大量に結合することによって得られている。
一方、近年の電子部品の小型化に伴い、電気接点の大きさも微小化しつつあり、近い将来には、接点の大きさが硬質金の結晶粒の大きさと対比されるまでになるものと考えられる。このような微細な接点上の金めっき膜は、それを構成する結晶粒の全数が少ないために、大きい接点で得られるような硬度が保持できなくなるものと推察される。このようなナノメータレベルの大きさになっても物性が影響を受けない微細構造としては、結晶性ではなく、アモルファス構造が理想的である。
また、接点材料として有用であるためには、接点同士が接触したときの電気抵抗が低くなければならない。しかも、接点材料の使用環境下での安定性が必要であることを考え合わせると、アモルファス構造を持った金、又は金合金が望ましい。
A so-called hard gold plating film is currently widely used as a highly reliable electrical contact material such as a connector, a small relay, and a printed wiring board as a part of an electronic component. The hard gold plating film is composed of extremely small gold crystallites (20 to 30 nm), and the hardness reaches 170 to 200 kgmm −2 (Knoop hardness). Such a high hardness necessary for obtaining good wear resistance of the contact material is obtained by bonding a large amount of crystal grains having a small grain size.
On the other hand, with the recent miniaturization of electronic components, the size of electrical contacts is also becoming smaller, and in the near future, the size of contacts will be compared with the size of hard gold crystal grains. . The gold plating film on such a fine contact is presumed to be unable to maintain the hardness obtained with a large contact because the total number of crystal grains constituting it is small. As a fine structure whose physical properties are not affected even when such a nanometer level size is reached, an amorphous structure is ideal instead of crystallinity.
Also, in order to be useful as a contact material, the electrical resistance when the contacts come into contact with each other must be low. Moreover, considering that the stability of the contact material under the usage environment is necessary, gold or a gold alloy having an amorphous structure is desirable.

なお、本発明に関連する先行技術文献情報としては、以下のものがある。
特開昭60−33382号公報 特開昭62−290893号公報 川合慧,「金−ニッケル合金メッキの析出構造の研究」,金属表面技術,1968年,Vol.19,No.12,p.487−491 清水保雄 他1名,「電析Au−Ni合金の微細構造と相に関する電子顕微鏡的研究」,金属表面技術,1976年,Vol.27,No.1,p.20−24 渡辺徹著,「ファインプレーティング めっき膜の構造制御技術とその解析法」,技術情報協会,2002年2月,p256−262 渡辺徹,「めっき法による非晶質合金の形成機構」,表面技術,1989年,Vol.40,No.3,p.21−26
The prior art document information related to the present invention includes the following.
JP-A-60-33382 Japanese Patent Laid-Open No. 62-290893 Satoshi Kawai, “Study on deposition structure of gold-nickel alloy plating”, Metal Surface Technology, 1968, Vol. 19, no. 12, p. 487-491 Yasuo Shimizu et al., "Electron microscopic study on microstructure and phase of electrodeposited Au-Ni alloy", Metal Surface Technology, 1976, Vol. 27, no. 1, p. 20-24 Toru Watanabe, “Fine plating plating structure control technology and its analysis method”, Technical Information Association, February 2002, p256-262 Toru Watanabe, “Mechanism of Amorphous Alloy Formation by Plating”, Surface Technology, 1989, Vol. 40, no. 3, p. 21-26

本発明は、上記事情に鑑みなされたもので、高硬度で接触抵抗の小さいアモルファス構造の金−ニッケル合金めっき皮膜を形成することができるアモルファス金−ニッケル系合金電気めっき液及び電気めっき方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an amorphous gold-nickel alloy electroplating solution and an electroplating method capable of forming an amorphous gold-nickel alloy plating film having high hardness and low contact resistance. The purpose is to do.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、シアン化金塩、水溶性ニッケル塩、クエン酸又はその塩を特定の割合で含有する電気めっき液を用い、特定の陰極電流密度で電気めっきを行うことにより、金属成分中の組成がAu31at%,Ni69at%〜Au60at%,Ni40at%となる範囲でアモルファス金−ニッケル系合金めっき皮膜が形成されることを知見した。   As a result of intensive studies to achieve the above object, the present inventors have used a specific cathode using an electroplating solution containing a gold cyanide salt, a water-soluble nickel salt, citric acid or a salt thereof in a specific ratio. It has been found that by performing electroplating at a current density, an amorphous gold-nickel alloy plating film is formed in a range where the composition in the metal component is Au 31 at%, Ni 69 at% to Au 60 at%, Ni 40 at%.

即ち、本発明者らは、先に微細結晶を有さない均質なアモルファス相で形成された金−ニッケル系アモルファス合金めっき皮膜を得ることができる電気めっき液を提案した(特願2005−28523号)。この電気めっき液は、シアン化金塩を金基準で0.01〜0.1mol/dm3の濃度、ニッケル塩をニッケル基準で0.02〜0.2mol/dm3の濃度、及びタングステン酸塩をタングステン基準で0.1〜0.5mol/dm3の濃度で含有するもので、これにより金及びニッケルを含む金属成分を97.5質量%以上、及び炭素を2.5質量%以下で含有すると共に、上記金属成分中の金及びニッケルの組成が、金及びニッケルの総量として98質量%以上、かつ金/ニッケル=2.2〜5.0(質量比)である金−ニッケル系アモルファス合金めっき皮膜を得ることができるものであるが、上記めっき液はタングステン酸塩の添加を必須とするものである。 That is, the present inventors previously proposed an electroplating solution capable of obtaining a gold-nickel-based amorphous alloy plating film formed of a homogeneous amorphous phase having no fine crystals (Japanese Patent Application No. 2005-28523). ). This electroplating solution has a gold cyanide salt concentration of 0.01 to 0.1 mol / dm 3 on a gold basis, a nickel salt concentration of 0.02 to 0.2 mol / dm 3 on a nickel basis, and a tungstate salt. Is contained at a concentration of 0.1 to 0.5 mol / dm 3 on the basis of tungsten, thereby containing metal components including gold and nickel at 97.5% by mass or more and carbon at 2.5% by mass or less. In addition, a gold-nickel amorphous alloy in which the composition of gold and nickel in the metal component is 98% by mass or more as a total amount of gold and nickel and gold / nickel = 2.2 to 5.0 (mass ratio) A plating film can be obtained, but the plating solution requires the addition of tungstate.

これに対し、本発明者らは、更に検討を進めた結果、シアン化金塩、水溶性ニッケル塩、錯化剤としてのクエン酸又はその塩の割合を特定比率で選定して特定陰極電流密度で電気めっきを行うことにより、タングステン酸塩を添加することなしに、アモルファス金−ニッケル系合金めっき皮膜が析出、形成することを見出すと共に、この電気めっき液から得られたアモルファス金−ニッケル系合金めっき皮膜の硬度が高く、また接触抵抗が通常の硬質金めっきの値と同等に低いことを確認し、本発明をなすに至った。   On the other hand, as a result of further investigation, the present inventors have selected a specific cathode current density by selecting a specific ratio of a gold cyanide salt, a water-soluble nickel salt, a citric acid as a complexing agent or a salt thereof. By performing electroplating, it was found that an amorphous gold-nickel alloy plating film was deposited and formed without adding tungstate, and an amorphous gold-nickel alloy obtained from this electroplating solution It was confirmed that the hardness of the plating film was high and the contact resistance was as low as the value of normal hard gold plating, and the present invention was made.

従って、本発明は、シアン化金塩を金基準で0.01〜0.1モル/dm3、水溶性ニッケル塩をニッケル基準で0.017〜0.67モル/dm3、及びクエン酸又はその塩を含有し、金とニッケル濃度の比(Au/Ni)がモル比として0.15〜0.6、クエン酸又はその塩とニッケル濃度の比(Cit/Ni)がモル比として1〜3であり、pHが3〜11であることを特徴とするAu:Niの比率が原子比として31:69〜60:40であるアモルファス金−ニッケル系合金めっき皮膜を形成する電気めっき液を提供する。更に、本発明は、被めっき物を陰極として上記電気めっき液に浸漬し、温度20〜90℃、陰極電流密度3mA/cm2以上10mA/cm2未満又は20mA/cm2を超え200mA/cm2の範囲で電気めっきを行うことを特徴とする、Au:Niの原子比率が31:69〜60:40であるアモルファス金−ニッケル系合金めっき皮膜を形成する電気めっき方法を提供する。 Accordingly, the present invention relates to a gold cyanide salt of 0.01 to 0.1 mol / dm 3 on a gold basis, a water-soluble nickel salt of 0.017 to 0.67 mol / dm 3 on a nickel basis, and citric acid or It contains the salt, gold to nickel concentration ratio (Au / Ni) as a molar ratio of 0.15-0.6, citric acid or its salt to nickel concentration ratio (Cit / Ni) as a molar ratio of 1 to 1 3. An electroplating solution for forming an amorphous gold-nickel alloy plating film with an Au: Ni ratio of 31:69 to 60:40 as the atomic ratio is 3 and has a pH of 3 to 11 To do. Furthermore, the present invention is immersed in the electroplating solution to be plated as a cathode, the temperature 20 to 90 ° C., cathode current density 3mA / cm 2 or more 10 mA / cm 2 or less than 20 mA / cm 2, greater 200 mA / cm 2 An electroplating method for forming an amorphous gold-nickel alloy plating film having an atomic ratio of Au: Ni of 31:69 to 60:40 is provided.

本発明によれば、高硬度で接触抵抗の低いアモルファス金−ニッケル系合金めっき皮膜を形成することができ、リレー等の電気・電子部品の接点材料として有用である。   According to the present invention, an amorphous gold-nickel alloy plating film having high hardness and low contact resistance can be formed, which is useful as a contact material for electrical / electronic parts such as relays.

本発明のアモルファス金−ニッケル系合金電気めっき液は、シアン化金塩、水溶性ニッケル塩、クエン酸又はその塩を含有する。   The amorphous gold-nickel alloy electroplating solution of the present invention contains a gold cyanide salt, a water-soluble nickel salt, citric acid or a salt thereof.

この場合、シアン化金塩としては、シアン化金カリウム、シアン化金ナトリウム、シアン化金リチウム等が挙げられ、その濃度は金基準で0.01〜0.1モル/dm3であり、例えばKAu(CN)2を用いた場合、2.9〜29g/dm3とすることができる。 In this case, examples of the gold cyanide salt include potassium gold cyanide, sodium gold cyanide, lithium gold cyanide and the like, and the concentration thereof is 0.01 to 0.1 mol / dm 3 on a gold basis. When KAu (CN) 2 is used, it can be 2.9 to 29 g / dm 3 .

水溶性ニッケル塩としては、硫酸ニッケル、硝酸ニッケル等が挙げられ、その濃度はニッケル基準で0.017〜0.67モル/dm3であり、例えばNiSO4・6H2Oを用いた場合、4.5〜176g/dm3とすることができる。 Examples of the water-soluble nickel salt include nickel sulfate and nickel nitrate, and the concentration thereof is 0.017 to 0.67 mol / dm 3 on the basis of nickel. For example, when NiSO 4 .6H 2 O is used, 4 0.5 to 176 g / dm 3 .

この場合、金とニッケル濃度の割合は、モル比としてAu/Ni=0.15〜0.6であることが好ましく、この範囲外ではアモルファス構造が得難いものである。   In this case, the ratio of gold and nickel concentration is preferably Au / Ni = 0.15 to 0.6 as a molar ratio, and it is difficult to obtain an amorphous structure outside this range.

本発明のめっき液は、錯化剤としてクエン酸又はそのナトリウム塩、カリウム塩、アンモニウム塩等の水溶性塩を含有する。その濃度は、クエン酸濃度(Cit)とニッケルの比率がモル比としてCit/Ni=1〜3、特に1.2〜2.0の範囲となる量である。クエン酸濃度が低すぎると、めっき液が分解するおそれがあり、クエン酸濃度が高すぎると、アモルファス構造が得られない。   The plating solution of the present invention contains citric acid or a water-soluble salt such as a sodium salt, potassium salt or ammonium salt as a complexing agent. The concentration is such that the ratio of citric acid concentration (Cit) to nickel is in the range of Cit / Ni = 1-3, especially 1.2-2.0, as a molar ratio. If the citric acid concentration is too low, the plating solution may be decomposed. If the citric acid concentration is too high, an amorphous structure cannot be obtained.

なお、上記めっき液には、必要に応じ、他の錯化剤として酒石酸、りんご酸等、更にホウ酸等の緩衝剤などを本発明の効果を損なわない範囲で添加してもよい。   If necessary, the plating solution may contain other complexing agents such as tartaric acid, malic acid and the like, and buffering agents such as boric acid as long as the effects of the present invention are not impaired.

また、めっき液のpHは3〜11、好ましくは5〜9である。   Moreover, pH of a plating solution is 3-11, Preferably it is 5-9.

本発明のめっき方法は、上記めっき液に被めっき物を陰極として浸漬して電気めっきを行うものである。この場合、めっき液の温度は20〜90℃、特に50〜70℃とすることが好ましく、陰極電流密度(Dk)は3mA/cm2以上10mA/cm2未満とするか、20mA/cm2を超え200mA/cm2以下とする。好ましくは30〜150mA/cm2である。Dk50mA/cm2以上ではめっき皮膜中の金/ニッケルは浴組成の比率に比例する。電流密度が低くなるとニッケルが多く析出し、Dk10〜20mA/cm2ではアモルファスとなる組成から外れる。更に、低電流密度になると金の析出割合が増し、再びアモルファス領域に入る。 In the plating method of the present invention, electroplating is performed by immersing an object to be plated in the above plating solution as a cathode. In this case, the temperature of the plating solution is preferably 20 to 90 ° C., particularly preferably 50 to 70 ° C., and the cathode current density (D k ) is 3 mA / cm 2 or more and less than 10 mA / cm 2 , or 20 mA / cm 2. Exceeding 200 mA / cm 2 . Preferably it is 30-150 mA / cm < 2 >. When D k is 50 mA / cm 2 or more, gold / nickel in the plating film is proportional to the ratio of the bath composition. When the current density is lowered, a large amount of nickel is precipitated, and at D k of 10 to 20 mA / cm 2 , the composition becomes amorphous. Furthermore, when the current density becomes low, the deposition rate of gold increases and enters the amorphous region again.

なお、陽極としては、白金、白金被覆チタン等の不溶性陽極やニッケル等の可溶性陽極を使用することができる。また、撹拌は特に必要としないが、カソードロッキング等の緩やかな撹拌を行ってもよい。   As the anode, an insoluble anode such as platinum or platinum-coated titanium or a soluble anode such as nickel can be used. Further, although stirring is not particularly required, gentle stirring such as cathode locking may be performed.

本発明のめっき液を用いて得られるめっき皮膜は、アモルファスな金−ニッケル合金であり、この場合、その割合は原子比(atomic%)としてAu:Ni=31:69〜60:40である。質量比としてはAu/Niが1.5〜5.0であり、金とニッケルの総含有量が97質量%以上、特に98質量%以上で、非金属成分として炭素、窒素を含んでもよく、その含有量がC2.5質量%以下、N0.5質量%以下である。   The plating film obtained by using the plating solution of the present invention is an amorphous gold-nickel alloy. In this case, the ratio is Au: Ni = 31: 69 to 60:40 as an atomic ratio (atomic%). As the mass ratio, Au / Ni is 1.5 to 5.0, the total content of gold and nickel is 97 mass% or more, particularly 98 mass% or more, and may contain carbon and nitrogen as non-metallic components, Its content is C2.5 mass% or less and N 0.5 mass% or less.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において、各分析、測定の方法及び条件は、以下のとおりである。また、質量%をwt%と記す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, the methods and conditions for each analysis and measurement are as follows. Moreover, mass% is described as wt%.

XRD
理学電機社製 RINT−TTRによる:CuKα(50kV/200mA)
金属組成
理学電機工業 RIX2100による:蛍光X線法
ヌープ硬さ
JIS Z 2251に準じて測定:荷重49.0mN(HK0.005) 荷重保持時間5秒
接触抵抗
山崎精機製電気接点シミュレータCRS−112−ALによる:四端子法で、荷重1N、印加電流10mAの条件で測定
XRD
RINT-TTR manufactured by Rigaku Corporation: CuKα (50 kV / 200 mA)
Metal composition Rigaku Denki Kogyo RIX2100: X-ray fluorescence method
Knoop hardness Measured according to JIS Z 2251: Load 49.0 mN (HK0.005) Load holding time 5 seconds
Contact resistance Using electrical contact simulator CRS-112-AL manufactured by Yamazaki Seiki: Measured under the conditions of a load of 1 N and an applied current of 10 mA by the four-terminal method.

[実施例1]
KAu(CN)2を0.035mol/dm3、NiSO4・6H2Oを0.076mol/dm3、クエン酸を0.076mol/dm3含有し、アンモニア水によりpHを6に調整した電気めっき液を用い、温度70℃、電流密度150mA/cm2で純度99.96%の銅板に金−ニッケルアモルファス合金めっき皮膜(膜厚5μm)を形成した。なお、アノードには白金板を用い、めっき中のめっき浴撹拌は行わなかった。
得られた合金めっき皮膜の構造をXRDにより、組成を蛍光X線により解析した。XRDパターンは図1に示すようにブロードでアモルファス構造をとっていることがわかる。皮膜の金属成分解析結果は表1に示すとおりであり、金73wt%、ニッケル27wt%であった。
[Example 1]
KAu (CN) 2 and 0.035mol / dm 3, NiSO 4 · 6H 2 O and 0.076 mol / dm 3, citric acid 0.076 mol / dm 3 and containing, electroplating was adjusted to pH 6 with aqueous ammonia Using the solution, a gold-nickel amorphous alloy plating film (film thickness: 5 μm) was formed on a copper plate having a temperature of 70 ° C. and a current density of 150 mA / cm 2 and a purity of 99.96%. A platinum plate was used as the anode, and the plating bath was not stirred during plating.
The structure of the obtained alloy plating film was analyzed by XRD, and the composition was analyzed by fluorescent X-rays. It can be seen that the XRD pattern has a broad and amorphous structure as shown in FIG. The metal component analysis results of the coating are as shown in Table 1, and were 73 wt% gold and 27 wt% nickel.

[実施例2]
クエン酸濃度を0.143mol/dm3とした以外は、実施例1と同じ条件でめっきを行った。得られためっき膜のXRDパターンは図1に示すようにブロードで、アモルファス構造をとっていた。皮膜の金属成分解析結果は表1に示すとおりであり、金75wt%、ニッケル25wt%であった。更に、めっき皮膜のヌープ硬度及び接触抵抗を測定したところ、ヌープ硬度は460kg/mm2、接触抵抗は1.9mΩであった。なお、ヌープ硬度測定は、めっき厚みを30μmとして測定した。
[Example 2]
Plating was performed under the same conditions as in Example 1 except that the citric acid concentration was 0.143 mol / dm 3 . The XRD pattern of the obtained plating film was broad as shown in FIG. 1 and had an amorphous structure. The metal component analysis results of the coating are as shown in Table 1 and were 75 wt% gold and 25 wt% nickel. Furthermore, when the Knoop hardness and contact resistance of the plating film were measured, the Knoop hardness was 460 kg / mm 2 and the contact resistance was 1.9 mΩ. The Knoop hardness was measured with a plating thickness of 30 μm.

[実施例3]
電流密度を50mA/cm2とした以外は実施例2と同じ条件にてめっきを行った。得られためっき膜のXRDパターンは図1に示すようにブロードで、アモルファス構造をとっていた。皮膜の金属成分解析結果は表1に示すとおりであり、金72wt%、ニッケル28wt%であった。
[Example 3]
Plating was performed under the same conditions as in Example 2 except that the current density was 50 mA / cm 2 . The XRD pattern of the obtained plating film was broad as shown in FIG. 1 and had an amorphous structure. The metal component analysis results of the coating are as shown in Table 1, and were gold 72 wt% and nickel 28 wt%.

[実施例4]
NiSO4・6H2Oを0.057mol/dm3、クエン酸濃度を0.143mol/dm3、電流密度を100mA/cm2とした以外は実施例1と同じ条件にてめっきを行った。得られためっき膜のXRDパターンは図1に示すようにブロードで、アモルファス構造をとっていた。皮膜の金属成分解析結果は表1に示すとおりであり、金79wt%、ニッケル21wt%であった。
[Example 4]
Plating was performed under the same conditions as in Example 1 except that NiSO 4 .6H 2 O was 0.057 mol / dm 3 , the citric acid concentration was 0.143 mol / dm 3 , and the current density was 100 mA / cm 2 . The XRD pattern of the obtained plating film was broad as shown in FIG. 1 and had an amorphous structure. The metal component analysis results of the film are as shown in Table 1, and were 79 wt% gold and 21 wt% nickel.

[実施例5]
電流密度を5A/cm2とした以外は実施例1と同じ条件にてめっきを行った。得られためっき膜のXRDパターンはブロードで、アモルファス構造をとっていた。皮膜の金属成分解析結果は表1に示すとおりであり、金64wt%、ニッケル36wt%であった。
[Example 5]
Plating was performed under the same conditions as in Example 1 except that the current density was 5 A / cm 2 . The obtained plating film had a broad XRD pattern and an amorphous structure. The metal component analysis results of the coating are as shown in Table 1, and were 64 wt% gold and 36 wt% nickel.

[比較例1]
クエン酸濃度を0.357mol/dm3とした以外は実施例1と同じ条件でめっきを行った。得られた皮膜の金属成分分析結果は表1に示すように金75wt%、ニッケル25wt%であったが、XRDパターンは図2に示すように2θ=38°付近にAu(111)又はAu−Ni固溶体に由来する微小なピークが認められ、アモルファス構造から外れていることがわかった。
[Comparative Example 1]
Plating was performed under the same conditions as in Example 1 except that the citric acid concentration was 0.357 mol / dm 3 . The metal component analysis results of the obtained film were 75 wt% gold and 25 wt% nickel as shown in Table 1, but the XRD pattern was Au (111) or Au-- around 2θ = 38 ° as shown in FIG. A minute peak derived from the Ni solid solution was observed, and it was found that it was out of the amorphous structure.

[比較例2]
クエン酸濃度を0.257mol/dm3とした以外は実施例1と同じ条件でめっきを行った。得られた皮膜の金属成分分析結果は表1に示すように金76wt%、ニッケル24wt%であったが、XRDパターンは図2に示すように比較的に鋭いピークが認められ、アモルファス構造から外れていると判断した。
[Comparative Example 2]
Plating was performed under the same conditions as in Example 1 except that the citric acid concentration was 0.257 mol / dm 3 . The metal component analysis results of the obtained film were 76 wt% gold and 24 wt% nickel as shown in Table 1, but the XRD pattern showed a relatively sharp peak as shown in Fig. 2 and deviated from the amorphous structure. It was judged that.

[比較例3]
電流密度を10mA/cm2とした以外は実施例3と同じ条件にてめっきを行った。得られためっき皮膜の金属成分分析結果は表1に示すように金49wt%、ニッケル51wt%であり、XRDパターンには図2に示すように2θ=45°付近にNi(111)又はAu−Ni固溶体に由来するピークが認められた。また、2θ=39°付近にAu(111)又はAu−Ni固溶体に由来するピークが認められ、アモルファス構造はとっていないことがわかった。
[Comparative Example 3]
Plating was performed under the same conditions as in Example 3 except that the current density was 10 mA / cm 2 . The metal component analysis results of the obtained plating film are 49 wt% gold and 51 wt% nickel as shown in Table 1, and the XRD pattern shows Ni (111) or Au− around 2θ = 45 ° as shown in FIG. A peak derived from the Ni solid solution was observed. Further, a peak derived from Au (111) or Au—Ni solid solution was observed in the vicinity of 2θ = 39 °, and it was found that an amorphous structure was not taken.

[比較例4]
電流密度10mA/cm2とした以外は実施例4と同じ条件にてめっきを行った。得られためっき皮膜の金属成分分析結果は表1に示すように金87wt%、ニッケル13wt%であり、XRDパターンには図2に示すように2θ=38°付近にAu(111)又はAu−Ni固溶体に由来するピークが認められ、アモルファス構造はとっていないことがわかった。
[Comparative Example 4]
Plating was performed under the same conditions as in Example 4 except that the current density was 10 mA / cm 2 . The metal component analysis results of the obtained plating film are 87 wt% gold and 13 wt% nickel as shown in Table 1. As shown in FIG. 2, the XRD pattern shows Au (111) or Au− around 2θ = 38 °. A peak derived from the Ni solid solution was observed, and it was found that an amorphous structure was not taken.

以上のめっき液組成、電流密度、得られためっき皮膜中の金属成分組成を表1,2に示す。   Tables 1 and 2 show the above plating solution composition, current density, and metal component composition in the obtained plating film.

Figure 2007169706
Figure 2007169706

Figure 2007169706
Figure 2007169706

実施例で得られた金−ニッケル合金めっき皮膜のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the gold- nickel alloy plating film obtained in the Example. 比較例で得られた金−ニッケル合金めっき皮膜のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the gold- nickel alloy plating film obtained by the comparative example.

Claims (2)

シアン化金塩を金基準で0.01〜0.1モル/dm3、水溶性ニッケル塩をニッケル基準で0.017〜0.67モル/dm3、及びクエン酸又はその塩を含有し、金とニッケル濃度の比(Au/Ni)がモル比として0.15〜0.6、クエン酸又はその塩とニッケル濃度の比(Cit/Ni)がモル比として1〜3であり、pHが3〜11であることを特徴とするAu:Niの比率が原子比として31:69〜60:40であるアモルファス金−ニッケル系合金めっき皮膜を形成する電気めっき液。 Containing 0.01 to 0.1 mol / dm 3 of gold cyanide salt based on gold, 0.017 to 0.67 mol / dm 3 of water-soluble nickel salt based on nickel, and citric acid or a salt thereof, The ratio of gold to nickel concentration (Au / Ni) is 0.15 to 0.6 as the molar ratio, the ratio of citric acid or its salt to nickel concentration (Cit / Ni) is 1 to 3 as the molar ratio, and the pH is An electroplating solution for forming an amorphous gold-nickel alloy plating film having an Au: Ni ratio of 31:69 to 60:40 as an atomic ratio, which is 3 to 11. 被めっき物を陰極として請求項1記載の電気めっき液に浸漬し、温度20〜90℃、陰極電流密度3mA/cm2以上10mA/cm2未満又は20mA/cm2を超え200mA/cm2の範囲で電気めっきを行うことを特徴とする、Au:Niの原子比率が31:69〜60:40であるアモルファス金−ニッケル系合金めっき皮膜を形成する電気めっき方法。
Immersed in an electroplating solution of claim 1, wherein the object to be plated as a cathode, the temperature 20 to 90 ° C., the cathode current density 3mA / cm 2 or more 10 mA / cm 2 or less than 20 mA / cm 2, greater 200 mA / cm 2 range An electroplating method for forming an amorphous gold-nickel alloy plating film having an Au: Ni atomic ratio of 31:69 to 60:40, characterized in that electroplating is performed.
JP2005368186A 2005-12-21 2005-12-21 Electroplating solution and method for forming amorphous gold-nickel alloy plating film Expired - Fee Related JP4868121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005368186A JP4868121B2 (en) 2005-12-21 2005-12-21 Electroplating solution and method for forming amorphous gold-nickel alloy plating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005368186A JP4868121B2 (en) 2005-12-21 2005-12-21 Electroplating solution and method for forming amorphous gold-nickel alloy plating film

Publications (2)

Publication Number Publication Date
JP2007169706A true JP2007169706A (en) 2007-07-05
JP4868121B2 JP4868121B2 (en) 2012-02-01

Family

ID=38296648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368186A Expired - Fee Related JP4868121B2 (en) 2005-12-21 2005-12-21 Electroplating solution and method for forming amorphous gold-nickel alloy plating film

Country Status (1)

Country Link
JP (1) JP4868121B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095658A1 (en) * 2009-02-17 2010-08-26 学校法人早稲田大学 Microcrystalline-to-amorphous gold alloy and plated film, and plating solution for those, and plated film formation method
CN105316732A (en) * 2015-11-30 2016-02-10 苏州市金星工艺镀饰有限公司 Cyanide-free gold-cobalt alloy electroplating liquid and electroplating method thereof
CN106661751A (en) * 2014-08-25 2017-05-10 德国艾托特克公司 Composition, use thereof and method for electrodepositing gold containing layers

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102738A (en) * 1972-04-10 1973-12-24
JPS4915634A (en) * 1972-06-06 1974-02-12
JPS5594490A (en) * 1978-12-22 1980-07-17 Int Gold Corp Ltd Electrolyte liquid for white gold covered electrolysis precipitation
JPS6033382A (en) * 1983-08-03 1985-02-20 Nippon Pureeteingu Kk Electrodeposition of amorphous alloy by pulse electrolysis
JPS60169591A (en) * 1984-02-10 1985-09-03 Inoue Japax Res Inc Manufacture of metallic mold for synthetic resin
JPS62290893A (en) * 1986-06-09 1987-12-17 Nippon Mining Co Ltd Gold-nickel alloy plating solution and plating method
JPH01106566A (en) * 1987-10-19 1989-04-24 Fuji Photo Film Co Ltd Image reading method
JPH06184788A (en) * 1990-02-20 1994-07-05 Enthone Omi Inc Gold and gold alloy plating composition and method
JPH07188974A (en) * 1993-12-28 1995-07-25 Seiko Instr Inc Gold alloy plating solution
JP2000028868A (en) * 1998-07-10 2000-01-28 Nau Chemical:Kk Optical fiber for optical module and its production
JP2001342591A (en) * 2000-03-27 2001-12-14 Takayasu Mochizuki High strength alloy and manufacturing method, and coated metal with high strength alloy and micro structural body using it
JP2003502513A (en) * 1999-06-17 2003-01-21 デグサ ガルヴァノテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Acid bath and electrodeposition brightener for electrodepositing shiny gold and gold alloy layers
JP2003239082A (en) * 2002-02-18 2003-08-27 Hitachi Cable Ltd Copper foil for resin bonding, and its manufacturing method
JP2004176082A (en) * 2002-11-25 2004-06-24 Osaka Gas Co Ltd Highly corrosion resistant member and production method therefor
JP2006241594A (en) * 2005-02-04 2006-09-14 Univ Waseda Gold-nickel based amorphous alloy plating film, electroplating liquid and electroplating method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102738A (en) * 1972-04-10 1973-12-24
JPS4915634A (en) * 1972-06-06 1974-02-12
JPS5594490A (en) * 1978-12-22 1980-07-17 Int Gold Corp Ltd Electrolyte liquid for white gold covered electrolysis precipitation
JPS6033382A (en) * 1983-08-03 1985-02-20 Nippon Pureeteingu Kk Electrodeposition of amorphous alloy by pulse electrolysis
JPS60169591A (en) * 1984-02-10 1985-09-03 Inoue Japax Res Inc Manufacture of metallic mold for synthetic resin
JPS62290893A (en) * 1986-06-09 1987-12-17 Nippon Mining Co Ltd Gold-nickel alloy plating solution and plating method
JPH01106566A (en) * 1987-10-19 1989-04-24 Fuji Photo Film Co Ltd Image reading method
JPH06184788A (en) * 1990-02-20 1994-07-05 Enthone Omi Inc Gold and gold alloy plating composition and method
JPH07188974A (en) * 1993-12-28 1995-07-25 Seiko Instr Inc Gold alloy plating solution
JP2000028868A (en) * 1998-07-10 2000-01-28 Nau Chemical:Kk Optical fiber for optical module and its production
JP2003502513A (en) * 1999-06-17 2003-01-21 デグサ ガルヴァノテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Acid bath and electrodeposition brightener for electrodepositing shiny gold and gold alloy layers
JP2001342591A (en) * 2000-03-27 2001-12-14 Takayasu Mochizuki High strength alloy and manufacturing method, and coated metal with high strength alloy and micro structural body using it
JP2003239082A (en) * 2002-02-18 2003-08-27 Hitachi Cable Ltd Copper foil for resin bonding, and its manufacturing method
JP2004176082A (en) * 2002-11-25 2004-06-24 Osaka Gas Co Ltd Highly corrosion resistant member and production method therefor
JP2006241594A (en) * 2005-02-04 2006-09-14 Univ Waseda Gold-nickel based amorphous alloy plating film, electroplating liquid and electroplating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095658A1 (en) * 2009-02-17 2010-08-26 学校法人早稲田大学 Microcrystalline-to-amorphous gold alloy and plated film, and plating solution for those, and plated film formation method
JP2010189685A (en) * 2009-02-17 2010-09-02 Waseda Univ Microcrystal-amorphous coexisting gold alloy and plated film, plating liquid therefor and method of forming plated film
CN102317508A (en) * 2009-02-17 2012-01-11 学校法人早稻田大学 Crystallite-amorphous mixing au-alloy and plated film, plating liquid and plated film formation method
DE112010000791T5 (en) 2009-02-17 2012-07-26 Kanto Kagaku K.K. MIXED-MICROCRYSTALLINE-AMORPHIC GOLD ALLOYING OF ELECTROCHEMICALLY DISPOSED FILM AND BATHING SOLUTION, AND METHOD FOR PRODUCING AN ELECTROCHEMICALLY DISPOSED FILM THEREFOR
CN106661751A (en) * 2014-08-25 2017-05-10 德国艾托特克公司 Composition, use thereof and method for electrodepositing gold containing layers
CN105316732A (en) * 2015-11-30 2016-02-10 苏州市金星工艺镀饰有限公司 Cyanide-free gold-cobalt alloy electroplating liquid and electroplating method thereof

Also Published As

Publication number Publication date
JP4868121B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
Rao et al. Chemical and electrochemical depositions of platinum group metals and their applications
Donten et al. Pulse electroplating of rich-in-tungsten thin layers of amorphous Co-W alloys
JP4868116B2 (en) Gold-cobalt amorphous alloy plating film, electroplating solution and electroplating method
Carlos et al. Effect of tartrate on the morphological characteristics of the copper–tin electrodeposits from a noncyanide acid bath
JP4790191B2 (en) Electrolytic bath for electrochemical deposition of palladium or its alloys
Ibrahim et al. New cyanide-free ammonia bath for brass alloy coatings on steel substrate by electrodeposition
JP4868123B2 (en) Gold-nickel amorphous alloy plating film, electroplating solution and electroplating method
JP4868121B2 (en) Electroplating solution and method for forming amorphous gold-nickel alloy plating film
JP4740508B2 (en) Palladium complex salts and their use to adjust the palladium concentration of electrolytic baths for depositing palladium or one of its alloys
JP2007308801A (en) Nickel/cobalt/phosphorus electroplating composition and its application
JP5424666B2 (en) Fine crystal-amorphous mixed gold alloy and plating film, and plating solution and plating film forming method therefor
Moniruzzaman et al. Fe-Ni alloy electrodeposition from simple and complex type sulfate electrolytes containing Ni/Fe ratio of 1 and 12
JP5312842B2 (en) Electrolytic alloy plating solution and plating method using the same
Karahan et al. Effect of TMAB concentration on structural, mechanical and corrosion properties of electrodeposited Ni–B alloys
JP4561149B2 (en) Alloy electrode for hydrogen generation and method for producing the same
Mallory Ternary and quaternary electroless nickel alloys
WO2021141987A1 (en) Nickel-gold alloy and methods of forming the same
US4470886A (en) Gold alloy electroplating bath and process
JPH07292491A (en) High corrosion resistant plating film and plating liquid
JP2012233223A (en) Electroplating composition and electroplating liquid
Elias et al. Development of Ni-P alloy coatings for better corrosion protection using glycerol as additive
JP2620816B2 (en) Palladium-nickel-phosphorus alloy electroplating solution
Baumgärtner et al. Palladium-Iron alloy electrodeposition. part I single metal systems
JP2001271132A (en) High strength alloy, and metal coated with the high strength alloy
JP2012184468A (en) Plating film, electronic part, plating liquid, and method for forming plating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4868121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees