WO2010095658A1 - Microcrystalline-to-amorphous gold alloy and plated film, and plating solution for those, and plated film formation method - Google Patents

Microcrystalline-to-amorphous gold alloy and plated film, and plating solution for those, and plated film formation method Download PDF

Info

Publication number
WO2010095658A1
WO2010095658A1 PCT/JP2010/052364 JP2010052364W WO2010095658A1 WO 2010095658 A1 WO2010095658 A1 WO 2010095658A1 JP 2010052364 W JP2010052364 W JP 2010052364W WO 2010095658 A1 WO2010095658 A1 WO 2010095658A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating film
amorphous
gold alloy
gold
film according
Prior art date
Application number
PCT/JP2010/052364
Other languages
French (fr)
Japanese (ja)
Inventor
逢坂哲彌
沖中裕
千田一敬
岩井良太
加藤勝
Original Assignee
学校法人早稲田大学
関東化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 関東化学株式会社 filed Critical 学校法人早稲田大学
Priority to DE112010000791T priority Critical patent/DE112010000791T5/en
Priority to US13/202,050 priority patent/US20120031764A1/en
Priority to CN2010800080735A priority patent/CN102317508A/en
Publication of WO2010095658A1 publication Critical patent/WO2010095658A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Definitions

  • the present invention has been made in view of the above circumstances, and has a fine crystal-amorphous mixed gold alloy plating film excellent in wear resistance and having good conductivity and chemical stability and improved hardness, and this fine crystal-amorphous
  • An object is to provide an electroplating solution capable of forming a mixed gold alloy plating film and an electroplating method using the electroplating solution.
  • a complex electroplating solution containing a complexing agent such as an organic acid, an inorganic acid or a salt thereof and ammonia or ammonium ions the solution is excellent
  • a microcrystalline-amorphous mixed gold alloy plating film formed by mixing a microcrystalline phase and an amorphous phase can be obtained, and this film has a good resistivity value and chemical stability inherent in gold.
  • the present inventors have completed the present invention.
  • the present invention provides (1) a fine crystal-amorphous mixed gold alloy plating film characterized by being formed by mixing a fine crystal phase and an amorphous phase, and (2) a gold cyanide salt having a gold standard of 0 .0001-0.4 mol / dm 3 concentration, nickel salt concentration of 0.001-0.5 mol / dm 3 on nickel basis, and / or cobalt salt concentration of 0.001-0.5 mol / dm 3 on cobalt basis.
  • a complexing agent such as an organic acid, an inorganic acid or a salt thereof is added at a concentration of 0.001 to 2.0 mol / dm 3
  • ammonia or ammonium ions are added at a concentration of 0.001 to 5.0 mol / liquid stability good electroplating solution, characterized in that it contains a concentration of dm 3, and (3) the electroplating solution to be plated onto the fine crystals with - amorphous mixed gold alloy Providing an electroplating method and forming the Kki film.
  • FIG. 4 is a diagram showing a TEM image (1,000,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 2.
  • FIG. 4 is a diagram showing a THEED pattern of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 2.
  • FIG. 4 is a diagram showing a TEM image (300,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 3.
  • FIG. 4 is a diagram showing a TEM image (1,000,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 3.
  • FIG. 4 is a diagram showing a THEED pattern of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 3.
  • FIG. 6 is a diagram showing a THEED pattern of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 5.
  • FIG. It is a figure which shows the TEM image (1,000,000 times) of the amorphous gold alloy plating film obtained by the comparative example 1. It is a figure which shows the THEED pattern of the amorphous gold alloy plating film obtained by the comparative example 1.
  • the fine crystal-amorphous mixed gold alloy plating film of the present invention contains nickel and / or cobalt in gold, and the fine structure is a structure in which a fine crystal phase and an amorphous phase are mixed. High hardness is achieved with good specific resistance and chemical stability compared to an amorphous gold alloy plating film with an amorphous structure.
  • Such a structure in which a fine crystal phase and an amorphous phase are mixed can be confirmed by an X-ray diffraction (XRD) pattern, a transmission electron microscope (TEM) image, and a transmission high energy electron diffraction (THEED) image.
  • the average particle size of the fine crystals is preferably 30 nm or less, particularly 20 nm or less, and more preferably 15 nm or less from the viewpoint of maintaining high hardness.
  • the fine crystal-amorphous mixed gold alloy plating film of the present invention has a characteristic of maintaining the original characteristics (good resistivity and chemical stability) of gold or high hardness not found in conventional gold or gold alloy plating films. Therefore, the volume fraction of the fine crystals is preferably 10 to 90%, particularly 15 to 60%.
  • the Knoop hardness is Hk 180 or more, particularly Hk 220 or more, further Hk 300 or more, particularly Hk 350 or more, and the specific resistance is 200 ⁇ ⁇ cm or less, particularly 150 ⁇ ⁇ cm or less, particularly 100 ⁇ ⁇ cm or less.
  • a fine crystal-amorphous mixed gold alloy plating film having high hardness and specific resistance can be obtained. Further, in the fine crystal-amorphous mixed gold alloy plating film of the present invention, the structure in which the fine crystal phase and the amorphous phase are mixed is changed by annealing at 300 ° C. or lower (held for 1 hour) (that is, crystallization occurs). The average grain size and volume fraction of the fine crystals will not increase).
  • the electroplating solution contains a gold cyanide salt, a nickel salt and / or a cobalt salt.
  • the gold cyanide salt include nickel gold cyanide, sodium gold cyanide, lithium gold cyanide and the like.
  • Specific examples of the salt include nickel sulfate and nickel nitrate, and specific examples of the cobalt salt include cobalt sulfate and cobalt nitrate.
  • the gold cyanide salt concentration in the plating solution is 0.0001 to 0.4 mol / dm 3 , preferably 0.001 to 0.2 mol / dm 3 , more preferably 0.01 to 0.1 mol / dm 3 on a gold basis.
  • the pH of the electroplating solution is preferably 3 to 11, particularly 5 to 9, and particularly around pH 6.
  • a conventionally known pH adjuster such as aqueous ammonia or potassium hydroxide can be used.
  • this electroplating solution has no significant influence on the film physical properties (volume fraction and average particle diameter of fine crystals, peak half width of XRD pattern, Knoop hardness, specific resistance) and film composition of the plating film.
  • surfactants, solvents, etc. for purposes such as improving glossiness, preventing pits, imparting conductivity, imparting buffering properties, expanding the usable current density range, promoting precipitation rate, improving heat resistance, improving wettability, etc. (See, for example, JP-A-7-11476, JP-A-2004-76026, and JP-A-2006-37164).
  • the electroplating conditions are not particularly limited, but the plating temperature is preferably 20 to 95 ° C, particularly 50 to 90 ° C.
  • Cathode current density vary with the composition of the plating solution, it is not particularly limited, low current density range (e.g. 1 mA / cm 2 or more 10 mA / cm less than 2) and a high current density range (e.g. 10 mA / cm 2 than
  • the fine crystal-amorphous mixed gold alloy plating film can be obtained at both of 200 mA / cm 2 or less.
  • an insoluble anode such as platinum can be used for the anode.
  • Nickel and / or cobalt may be used as the anode.
  • examples of the object to be plated include metal materials such as copper and nickel used for electric wiring and the like. This metal material may be formed as a base layer on a metal substrate or a non-metal substrate.
  • this metal material may be formed as a base layer on a metal substrate or a non-metal substrate.
  • a fine crystal-amorphous mixed gold alloy plating film (film thickness: 1 ⁇ m) was formed on a copper plate having a temperature of 70 ° C. and a current density of 10 mA / cm 2 and a purity of 99.96%.
  • a platinum-coated titanium electrode (network) was used as the anode, and the plating bath during plating was vigorously stirred.
  • the obtained fine crystal-amorphous mixed gold alloy plating film was analyzed by XRD, TEM and THEED.
  • An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS.
  • the TEM image it is possible to observe a mixture of crystal stripes peculiar to crystals and irregular structures peculiar to amorphous.
  • the THEED pattern it can be observed that a diffraction spot peculiar to crystal and a halo ring peculiar to amorphous are mixed.
  • the obtained plating film has a fine crystal-amorphous mixed structure.
  • the average grain size of the fine crystals was 10 nm, and the volume fraction of the fine crystal phase was 50%.
  • composition analysis, Knoop hardness and specific resistance of the obtained fine crystal-amorphous mixed gold alloy plating film were measured. Gold was detected at a content of 41.2 atomic percent as a metallic element, 46.0 atomic percent of nickel, and 12.8 atomic percent of carbon as a nonmetallic element. The Knoop hardness was Hk347, and the specific resistance was 89 ⁇ ⁇ cm.
  • Plating was conducted in the same manner as in Example 1 except that 20 vol% of n-propanol was added, and XRD, TEM and THEED analysis was performed on the obtained plating film.
  • An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS.
  • the TEM image it is possible to observe a mixture of crystal stripes peculiar to crystals and irregular structures peculiar to amorphous.
  • the obtained plating film has a fine crystal-amorphous mixed structure.
  • the average grain size of the fine crystals was 10 nm, and the volume fraction of the fine crystal phase was 50%.
  • composition analysis, Knoop hardness and specific resistance of the obtained fine crystal-amorphous mixed gold alloy plating film were measured. Gold was detected at a content of 48.1 atomic% as a metallic element, 38.1 atomic% of nickel, and 13.8 atomic% of carbon as a nonmetallic element. The Knoop hardness was Hk348, and the specific resistance was 89 ⁇ ⁇ cm.
  • the citric acid concentration was 0.143 mol / dm 3
  • the ammonia concentration was 1.2 mol / dm 3
  • current density was 1 mA / cm 2 (energization time 50 seconds) and 10 mA / cm 2 (energization time 5 seconds), without intermission.
  • Plating was performed in the same manner as in Example 1 except that the electrolytic plating was alternately performed, and XRD, TEM and THEED analysis was performed on the obtained plating film. An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS.
  • the plating film obtained by pulse plating has a fine crystal-amorphous mixed structure. Further, as a result of observing the TEM image, the average particle diameter of the fine crystals was 10 nm, and the volume fraction of the fine crystal phase was 60%. On the other hand, composition analysis, Knoop hardness and specific resistance of the obtained plating film were measured. Gold was detected at a content of 47.4 atomic% as a metallic element, 47.0 atomic% of nickel, and 5.6 atomic% as a nonmetallic element. The Knoop hardness was Hk222, and the specific resistance was 57 ⁇ ⁇ cm.
  • XRD, TEM, and THEED analyzes were performed on the plating film obtained by annealing the film at an annealing temperature (heat retention temperature) of 400 ° C., a temperature increase rate of 10 ° C./min, and a heat retention of 1 hour in an air atmosphere.
  • An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS.
  • KAu (CN) 2 is contained in 0.035 mol / dm 3
  • CoSO 4 .7H 2 O is contained in 0.076 mol / dm 3
  • citric acid / H 2 O is contained in 0.1 mol / dm 3
  • the ammonia concentration is 0.44 mol / dm 3. and dm 3, with KOH and electroplating solution and the pH was adjusted to 6 with sulfuric acid, the temperature 70 ° C., a current density of 10 mA / cm 2 with a purity 99.96% of the copper plate on the microcrystalline - amorphous mixed gold alloy plated film ( A film thickness of 1 ⁇ m) was formed.
  • a platinum-coated titanium electrode (network) was used as the anode, and the plating bath during plating was vigorously stirred.
  • the obtained fine crystal-amorphous mixed gold alloy plating film was analyzed by XRD, TEM and THEED.
  • An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS.
  • the TEM image it is possible to observe a mixture of crystal stripes peculiar to crystals and irregular structures peculiar to amorphous.
  • the THEED pattern it can be observed that a diffraction spot peculiar to crystal and a halo ring peculiar to amorphous are mixed.
  • the obtained plating film has a fine crystal-amorphous mixed structure.
  • the average grain size of the fine crystals was 5 nm, and the volume fraction of the fine crystal phase was 15%.
  • composition analysis and Knoop hardness of the obtained fine crystal-amorphous mixed gold alloy plating film were measured. Gold was detected at a content of 36.4 atomic% as a metallic element, 40.6 atomic% of cobalt, and 23.0 atomic% of carbon as a nonmetallic element. Knoop hardness was Hk180.
  • the obtained plating film has a homogeneous amorphous structure having no fine crystals.
  • composition analysis, Knoop hardness and specific resistance of the obtained plating film were measured. Gold was detected at a content of 15.2 atomic% as a metal element, 67.5 atomic% as a nickel element, and 17.3 atomic% as a nonmetallic element. The Knoop hardness was Hk435, and the specific resistance was 251 ⁇ ⁇ cm.
  • KAu (CN) 2 contains 0.04 mol / dm 3
  • NiSO 4 .6H 2 O contains 0.0085 mol / dm 3
  • citric acid / H 2 O contains 0.5 mol / dm 3
  • KOH contains 0.7 mol / dm 3
  • the obtained hard gold plating film was analyzed by XRD, TEM and THEED.
  • the XRD pattern is shown in FIG.
  • the average particle diameter of the crystal was 13 nm.
  • composition analysis, Knoop hardness and specific resistance of the obtained plating film were measured.
  • Gold was detected as a metal element at a content of 96.5 atomic%, nickel as a 0.77 atomic%, and carbon as a nonmetallic element at a content of 2.7 atomic%.
  • the Knoop hardness was Hk160, and the specific resistance was 17 ⁇ ⁇ cm.
  • the Knoop hardness of the fine crystal-amorphous mixed gold alloy plating film of Example 1 is that of additive-free hard gold (AFHG), nickel hard gold (NiHG), and CoHG, which are considered to have high hardness in the gold plating film. It can be seen that the Knoop hardness does not reach Hk200, but has a high hardness corresponding to 2 to 3 times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Disclosed is a microcrystalline-to-amorphous gold alloy-plated film having excellent electrical properties and excellent mechanical properties. Physical properties including both the advantageous properties of a crystalline structure and the advantageous properties of an amorphous structure can be obtained by allowing a microcrystalline phase and an amorphous phase to exist in a mixed state at a specific ratio. The average particle diameter of the microcrystals is 30 nm or smaller, the volume fraction of the microcrystals is 10 to 90%, the knoop hardness is Hk 180 or more, the specific resistivity is 200 μΩ·cm or less. In the film, hardness and abrasion resistance can be improved while maintaining a good specific resistivity value and chemical stability both inherent to gold at practically insignificant levels. Therefore, the film is useful as a material for connecting an electric or electronic component such as a connector and a relay.

Description

微細結晶-アモルファス混在金合金およびめっき皮膜、そのためのめっき液およびめっき皮膜形成方法Fine crystal-amorphous mixed gold alloy and plating film, and plating solution and plating film forming method therefor
 本発明は、電子機器部品の端子のめっき皮膜として有用であり、電気特性及び機械特性に優れた微細結晶-アモルファス混在金合金めっき皮膜、この微細結晶-アモルファス混在金合金めっき皮膜を成膜できる電気めっき液、及びこの電気めっき液を用いた電気めっき方法に関する。 INDUSTRIAL APPLICABILITY The present invention is useful as a plating film for terminals of electronic device parts, and has a fine crystal-amorphous mixed gold alloy plating film excellent in electrical characteristics and mechanical characteristics, and an electric that can form this fine crystal-amorphous mixed gold alloy plating film. The present invention relates to a plating solution and an electroplating method using the electroplating solution.
 電気・電子部品のコネクタ、電気機械式小型リレー、プリント配線板などにおいて、特に、高信頼性を要求される部位の電気接点材料として、現在、硬質金めっき皮膜と呼ばれる金めっき皮膜が広く使用されている。硬質金めっき皮膜は、金にコバルト、ニッケル等が添加されたもので、金本来の良好な導電性や化学的安定性を低下させることなく皮膜の硬度を向上させたものである。この硬質金めっき皮膜は、金の微細結晶(20~30nm)が集合した微細構造を有しており、この微細構造により、接点材料に要求される耐摩耗性を得るために最低限必要とされる硬さ(ヌープ硬さでHk170程度)が得られるものと考えられる。 Gold plating films called hard gold plating films are currently widely used as electrical contact materials for parts that require high reliability, especially in connectors for electrical and electronic parts, small electromechanical relays, and printed wiring boards. ing. The hard gold plating film is obtained by adding cobalt, nickel or the like to gold, and improves the hardness of the film without deteriorating the good conductivity and chemical stability of gold. This hard gold plating film has a fine structure in which gold fine crystals (20 to 30 nm) are aggregated, and this fine structure is at least required to obtain the wear resistance required for contact materials. It is considered that the hardness (Knoop hardness is about Hk 170) can be obtained.
 一方、近年の電子部品の小型化に伴い、電気接点のサイズも微小化しているが、このような微小接点において形成されるめっき皮膜も小サイズ化、薄膜化され、高い摩耗性を得るために更なる硬度の向上が求められている。 On the other hand, with the recent miniaturization of electronic components, the size of electrical contacts has also been miniaturized, but the plating film formed at such microcontacts has also been reduced in size and thickness to obtain high wear resistance. There is a need for further improvement in hardness.
 また、近い将来には、接点のサイズが上述した硬質金めっき皮膜の微細結晶のサイズに近づくものと考えられ、このような微細な接点上に、上述したような硬質金めっき皮膜を形成した場合、皮膜を構成する微細結晶の絶対数が少なくなるために、現在適用されている程度の大きさの接点上に硬質金めっき皮膜を形成した場合と同等の耐久性が得られなくなることが予想される。そこで本発明者らは微細結晶を有さない均質なアモルファス相で形成されたアモルファス金合金めっき皮膜を発明した(例えば、特許文献6~8)。しかしながら、金本来の良好な比抵抗や化学的安定性を実用上問題にならない程度に維持しつつ、硬度が向上したものを得るという目的においては、なお改善の余地があるといえる。 Also, in the near future, the size of the contact is considered to approach the size of the fine crystal of the hard gold plating film described above, and when the hard gold plating film as described above is formed on such a fine contact Because the absolute number of fine crystals constituting the film is reduced, it is expected that the durability equivalent to the case where a hard gold plating film is formed on a contact having a size that is currently applied will not be obtained. The Therefore, the present inventors have invented an amorphous gold alloy plating film formed of a homogeneous amorphous phase having no fine crystals (for example, Patent Documents 6 to 8). However, it can be said that there is still room for improvement in order to obtain a material with improved hardness while maintaining the good resistivity and chemical stability inherent in gold to such an extent that they do not become a practical problem.
 なお、本発明に関連する先行技術文献情報としては、以下のものがある。
特開昭60-33382号公報 特開昭62-290893号公報 特許第3452724号公報 特許第3983207号公報 特開2004-300483号公報 特開2006-241594号公報 特開2007-92157号公報 特開2007-169706号公報
The prior art document information related to the present invention includes the following.
JP-A-60-33382 Japanese Patent Laid-Open No. 62-290893 Japanese Patent No. 3454724 Japanese Patent No. 3983207 JP 2004-300483 A JP 2006-241594 A JP 2007-92157 A JP 2007-169706 A
 本発明は上記事情に鑑みなされたもので、良好な導電性や化学的安定性を有しつつ硬度が向上した耐摩耗性に優れた微細結晶-アモルファス混在金合金めっき皮膜、この微細結晶-アモルファス混在金合金めっき皮膜を成膜できる電気めっき液、及びこの電気めっき液を用いた電気めっき方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a fine crystal-amorphous mixed gold alloy plating film excellent in wear resistance and having good conductivity and chemical stability and improved hardness, and this fine crystal-amorphous An object is to provide an electroplating solution capable of forming a mixed gold alloy plating film and an electroplating method using the electroplating solution.
 本発明者は、上記目的を達成するため鋭意検討を重ねる中で、微小接点でも硬度を下げることがないめっき皮膜の微細構造としては、結晶性の構造よりもアモルファス相構造の方が、金本来の良好な比抵抗や化学的安定性を実用上問題にならない程度に維持しつつ、硬度や耐摩耗性を向上せしめることができるものの、電子の平均自由行程が結晶皮膜に比べて短いため、電気伝導性が低く、また内部応力によりめっき膜にクラックが発生しやすくなることも予想した上で研究を進めたところ、シアン化金塩、ニッケル塩および/またはコバルト塩を所定濃度で含有し、好ましくは更に、有機酸、無機酸又はその塩等の錯化剤とアンモニアまたはアンモニウムイオンを含有する液安定性の良好な電気めっき液を用いて電気めっきすることにより、驚くべきことに微細結晶相とアモルファス相を混在して形成された微細結晶-アモルファス混在金合金めっき皮膜が得られること、およびこの膜が、金本来の良好な比抵抗値や化学的安定性を実用上有用な程度に保ちつつ、硬度が向上したものとなることを発見し、さらに研究を進めた結果、本発明を完成するに至った。 The present inventor has made extensive studies to achieve the above object, and as a fine structure of a plating film that does not lower the hardness even with a minute contact, the amorphous phase structure is more gold than the crystalline structure. Although the hardness and wear resistance can be improved while maintaining good specific resistance and chemical stability at a level that does not cause any practical problems, the mean free path of electrons is shorter than that of crystal films, so Research was conducted with the expectation that cracks would easily occur in the plating film due to low conductivity and internal stress, and contained gold cyanide salt, nickel salt and / or cobalt salt at a predetermined concentration. Further, by electroplating using a complex electroplating solution containing a complexing agent such as an organic acid, an inorganic acid or a salt thereof and ammonia or ammonium ions, the solution is excellent Surprisingly, a microcrystalline-amorphous mixed gold alloy plating film formed by mixing a microcrystalline phase and an amorphous phase can be obtained, and this film has a good resistivity value and chemical stability inherent in gold. As a result of further research, the present inventors have completed the present invention.
 すなわち、本発明は、(1)微細結晶相とアモルファス相が混在して形成されてなることを特徴とする微細結晶-アモルファス混在金合金めっき皮膜、(2)シアン化金塩を金基準で0.0001~0.4mol/dmの濃度、ニッケル塩をニッケル基準で0.001~0.5mol/dmの濃度、および/またはコバルト塩をコバルト基準で0.001~0.5mol/dmの濃度で含有し、好ましくは更に、有機酸、無機酸又はその塩等の錯化剤を0.001~2.0mol/dmの濃度、アンモニアまたはアンモニウムイオンを0.001~5.0mol/dmの濃度含有することを特徴とする液安定性の良好な電気めっき液、並びに(3)この電気めっき液を用いて被めっき物上に微細結晶-アモルファス混在金合金めっき皮膜を形成することを特徴とする電気めっき方法を提供する。 That is, the present invention provides (1) a fine crystal-amorphous mixed gold alloy plating film characterized by being formed by mixing a fine crystal phase and an amorphous phase, and (2) a gold cyanide salt having a gold standard of 0 .0001-0.4 mol / dm 3 concentration, nickel salt concentration of 0.001-0.5 mol / dm 3 on nickel basis, and / or cobalt salt concentration of 0.001-0.5 mol / dm 3 on cobalt basis. Preferably, a complexing agent such as an organic acid, an inorganic acid or a salt thereof is added at a concentration of 0.001 to 2.0 mol / dm 3 , and ammonia or ammonium ions are added at a concentration of 0.001 to 5.0 mol / liquid stability good electroplating solution, characterized in that it contains a concentration of dm 3, and (3) the electroplating solution to be plated onto the fine crystals with - amorphous mixed gold alloy Providing an electroplating method and forming the Kki film.
 本発明の微細結晶-アモルファス混在金合金めっき皮膜は、微細結晶相とアモルファス相が混在して形成されており、その結果金本来の良好な比抵抗値や化学的安定性を実用上有用な程度に保ちつつ、硬度が向上したものであることから、リレー等の電気・電子部品の接点材料として有用である。一般的に微細結晶からなる結晶膜の場合、構成する結晶粒の大きさが小さくなると、ある限界(例えばニッケルの場合は4nm位)までは硬度が増大するが、さらに結晶粒が小さくなると硬度が低下してしまうことが知られている。金においても一般論が適用できるかどうかは実測した例がないが、金において、初めて微結晶-アモルファス混在結晶膜を実現した本発明によって、微細結晶-アモルファス混在金合金めっき皮膜が、そのような問題点をすべて解決し、かつ電気伝導性も高く、クラックの発生もしにくいため、コネクタやリレー等の電気・電子部品の微小接点材料として十分に適用可能なものであることを、初めて確認したのである。 The fine crystal-amorphous mixed gold alloy plating film of the present invention is formed by a mixture of a fine crystal phase and an amorphous phase, and as a result, the good resistivity value and chemical stability inherent in gold are practically useful. Therefore, it is useful as a contact material for electrical and electronic parts such as relays. In general, in the case of a crystal film composed of fine crystals, if the size of the constituting crystal grains is reduced, the hardness increases up to a certain limit (for example, about 4 nm in the case of nickel), but if the crystal grains are further reduced, the hardness It is known to decline. Although there is no example of whether or not the general theory can be applied to gold, the present invention, which has realized a microcrystalline-amorphous mixed crystal film for the first time in gold, enables a fine crystal-amorphous mixed gold alloy plating film to Since we have confirmed for the first time that it can be applied as a microcontact material for electrical and electronic parts such as connectors and relays because it solves all the problems, has high electrical conductivity, and does not easily crack. is there.
実施例1,2,3,4,5で得られた微細結晶-アモルファス混在金合金めっき皮膜及び比較例1,2で得られた金合金めっき皮膜のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the fine crystal-amorphous mixed gold alloy plating film obtained in Examples 1, 2, 3, 4, and 5 and the gold alloy plating film obtained in Comparative Examples 1 and 2. 実施例1で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(10万倍)を示す図である。1 is a diagram showing a TEM image (100,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 1. FIG. 実施例1で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(100万倍)を示す図である。1 is a diagram showing a TEM image (1,000,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 1. FIG. 実施例1で得られた微細結晶-アモルファス混在金合金めっき皮膜のTHEEDパターンを示す図である。2 is a diagram showing a THEED pattern of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 1. FIG. 実施例2で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(50万倍)を示す図である。4 is a diagram showing a TEM image (500,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 2. FIG. 実施例2で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(100万倍)を示す図である。4 is a diagram showing a TEM image (1,000,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 2. FIG. 実施例2で得られた微細結晶-アモルファス混在金合金めっき皮膜のTHEEDパターンを示す図である。4 is a diagram showing a THEED pattern of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 2. FIG. 実施例3で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(30万倍)を示す図である。4 is a diagram showing a TEM image (300,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 3. FIG. 実施例3で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(100万倍)を示す図である。4 is a diagram showing a TEM image (1,000,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 3. FIG. 実施例3で得られた微細結晶-アモルファス混在金合金めっき皮膜のTHEEDパターンを示す図である。4 is a diagram showing a THEED pattern of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 3. FIG. 実施例4で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(20万倍)を示す図である。6 is a diagram showing a TEM image (200,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 4. FIG. 実施例4で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(70万倍)を示す図である。6 is a diagram showing a TEM image (700,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 4. FIG. 実施例4で得られた微細結晶-アモルファス混在金合金めっき皮膜のTHEEDパターンを示す図である。6 is a diagram showing a THEED pattern of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 4. FIG. 実施例5で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(40万倍)を示す図である。6 is a diagram showing a TEM image (400,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 5. FIG. 実施例5で得られた微細結晶-アモルファス混在金合金めっき皮膜のTEM像(100万倍)を示す図である。6 is a diagram showing a TEM image (1,000,000 times) of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 5. FIG. 実施例5で得られた微細結晶-アモルファス混在金合金めっき皮膜のTHEEDパターンを示す図である。6 is a diagram showing a THEED pattern of a fine crystal-amorphous mixed gold alloy plating film obtained in Example 5. FIG. 比較例1で得られたアモルファス金合金めっき皮膜のTEM像(100万倍)を示す図である。It is a figure which shows the TEM image (1,000,000 times) of the amorphous gold alloy plating film obtained by the comparative example 1. 比較例1で得られたアモルファス金合金めっき皮膜のTHEEDパターンを示す図である。It is a figure which shows the THEED pattern of the amorphous gold alloy plating film obtained by the comparative example 1.
 以下、本発明について更に詳しく説明する。
 本発明の微細結晶-アモルファス混在金合金めっき皮膜は、微細結晶相とアモルファス相が混在して形成されている。
Hereinafter, the present invention will be described in more detail.
The fine crystal-amorphous mixed gold alloy plating film of the present invention is formed by mixing a fine crystal phase and an amorphous phase.
 本発明の微細結晶-アモルファス混在金合金めっき皮膜は、金にニッケルおよび/またはコバルトを含むものであると共に、その微細構造は、微細結晶相とアモルファス相を混在した構造であり、これらの特徴により、純アモルファス構造のアモルファス金合金めっき皮膜と比べて良好な比抵抗値及び化学的安定性と共に、高い硬度が達成される。このような微細結晶相とアモルファス相を混在した構造は、X線回折(XRD)パターン、透過型電子顕微鏡(TEM)像及び透過型高エネルギー電子線回折(THEED)像により確認することができる。 The fine crystal-amorphous mixed gold alloy plating film of the present invention contains nickel and / or cobalt in gold, and the fine structure is a structure in which a fine crystal phase and an amorphous phase are mixed. High hardness is achieved with good specific resistance and chemical stability compared to an amorphous gold alloy plating film with an amorphous structure. Such a structure in which a fine crystal phase and an amorphous phase are mixed can be confirmed by an X-ray diffraction (XRD) pattern, a transmission electron microscope (TEM) image, and a transmission high energy electron diffraction (THEED) image.
 本発明の微細結晶-アモルファス混在金合金めっき皮膜は、高硬度を維持する観点から微細結晶の平均粒径が30nm以下、特に20nm以下、更に15nm以下であることが好ましい。 In the fine crystal-amorphous mixed gold alloy plating film of the present invention, the average particle size of the fine crystals is preferably 30 nm or less, particularly 20 nm or less, and more preferably 15 nm or less from the viewpoint of maintaining high hardness.
 また、本発明の微細結晶-アモルファス混在金合金めっき皮膜は、金本来の特性(良好な比抵抗値や化学的安定性)もしくは従来の金又は金合金めっき皮膜にはない高い硬度を維持する観点から、微細結晶の体積分率が10~90%、特に15~60%であることが好ましい。 In addition, the fine crystal-amorphous mixed gold alloy plating film of the present invention has a characteristic of maintaining the original characteristics (good resistivity and chemical stability) of gold or high hardness not found in conventional gold or gold alloy plating films. Therefore, the volume fraction of the fine crystals is preferably 10 to 90%, particularly 15 to 60%.
 本発明によれば、ヌープ硬さがHk180以上、特にHk220以上、更にはHk300以上、とりわけHk350以上、また、比抵抗が200μΩ・cm以下、特に150μΩ・cm以下、とりわけ100μΩ・cm以下という、優れた硬度と比抵抗を有する微細結晶-アモルファス混在金合金めっき皮膜を得ることができる。また、本発明の微細結晶-アモルファス混在金合金めっき皮膜は、300℃以下のアニール処理(1時間保持)では、微細結晶相とアモルファス相を混在した構造が変化する(即ち、結晶化が起こって、微細結晶の平均粒径や体積分率が増大する)ことはない。 According to the present invention, the Knoop hardness is Hk 180 or more, particularly Hk 220 or more, further Hk 300 or more, particularly Hk 350 or more, and the specific resistance is 200 μΩ · cm or less, particularly 150 μΩ · cm or less, particularly 100 μΩ · cm or less. A fine crystal-amorphous mixed gold alloy plating film having high hardness and specific resistance can be obtained. Further, in the fine crystal-amorphous mixed gold alloy plating film of the present invention, the structure in which the fine crystal phase and the amorphous phase are mixed is changed by annealing at 300 ° C. or lower (held for 1 hour) (that is, crystallization occurs). The average grain size and volume fraction of the fine crystals will not increase).
 本発明の微細結晶-アモルファス混在金合金めっき皮膜は、その優れた比抵抗値及び化学的安定性と共に、従来の金又は金合金めっき皮膜にはない高い硬度を有するという特徴から、電磁開閉器、ブレーカー、サーモスタット、リレー、タイマー、各種スイッチ、プリント配線基板などの電気・電子部品の端子等の導通接点として有効である。 The fine crystal-amorphous mixed gold alloy plating film of the present invention has an excellent specific resistance value and chemical stability, and has a high hardness not found in conventional gold or gold alloy plating films. It is effective as a conduction contact for terminals of electrical and electronic parts such as breakers, thermostats, relays, timers, various switches, and printed wiring boards.
 本発明の微細結晶-アモルファス混在金合金めっき皮膜は、組成式:Au100-x-yx (ただし、AuまたはMが主成分であり不可避不純物が含有されても良く、MはNiおよび/またはCoであり、Cは炭素である。1原子%≦x≦80原子%、1原子%≦y≦30原子%)で表すことができる。 The fine crystal-amorphous mixed gold alloy plating film of the present invention has a composition formula: Au 100-xy M x Cy (where Au or M is the main component and unavoidable impurities may be contained, and M is Ni And / or Co and C is carbon, which can be represented by 1 atomic% ≦ x ≦ 80 atomic%, 1 atomic% ≦ y ≦ 30 atomic%).
 本発明の微細結晶-アモルファス混在金合金めっき皮膜は、シアン化金塩、ニッケル塩および/またはコバルト塩を含有する電気めっき液を用いた電気めっきにより形成することができる。 The fine crystal-amorphous mixed gold alloy plating film of the present invention can be formed by electroplating using an electroplating solution containing a gold cyanide salt, a nickel salt and / or a cobalt salt.
 この電気めっき液にはシアン化金塩、ニッケル塩および/またはコバルト塩が含まれるが、シアン化金塩として具体的には、シアン化金カリウム、シアン化金ナトリウム、シアン化金リチウムなど、ニッケル塩として具体的には、硫酸ニッケル、硝酸ニッケルなど、コバルト塩として具体的には、硫酸コバルト、硝酸コバルトなどが挙げられる。めっき液中のシアン化金塩濃度は金基準で0.0001~0.4mol/dm、好ましくは0.001~0.2mol/dm、より好ましくは0.01~0.1mol/dm、ニッケル塩濃度はニッケル基準で0.001~0.5mol/dm、好ましくは0.01~0.2mol/dm、コバルト塩濃度はコバルト基準で0.001~0.5mol/dm、好ましくは0.01~0.2mol/dmである。めっき液中の金とニッケルおよび/またはコバルトの比率〔(Ni+Co)/Au〕は、モル比として好ましくは0.01~300、より好ましくは1~30の範囲である。 The electroplating solution contains a gold cyanide salt, a nickel salt and / or a cobalt salt. Specific examples of the gold cyanide salt include nickel gold cyanide, sodium gold cyanide, lithium gold cyanide and the like. Specific examples of the salt include nickel sulfate and nickel nitrate, and specific examples of the cobalt salt include cobalt sulfate and cobalt nitrate. The gold cyanide salt concentration in the plating solution is 0.0001 to 0.4 mol / dm 3 , preferably 0.001 to 0.2 mol / dm 3 , more preferably 0.01 to 0.1 mol / dm 3 on a gold basis. The nickel salt concentration is 0.001 to 0.5 mol / dm 3 , preferably 0.01 to 0.2 mol / dm 3 based on nickel, and the cobalt salt concentration is 0.001 to 0.5 mol / dm 3 based on cobalt. Preferably, it is 0.01 to 0.2 mol / dm 3 . The ratio [(Ni + Co) / Au] of gold and nickel and / or cobalt in the plating solution is preferably in the range of 0.01 to 300, more preferably 1 to 30 as a molar ratio.
 また、この電気めっき液は、更に錯化剤を含有することが好ましい。この錯化剤としては錯化作用及びpH緩衝作用を有する有機酸、無機酸又はその塩が挙げられ、有機酸、無機酸及びその塩としてはくえん酸、酒石酸、りんご酸、ピロりん酸、りん酸、スルファミン酸及びそれらのナトリウム塩、カリウム塩、アンモニウム塩などが挙げられる。めっき液中の錯化剤の濃度は0.001~2.0mol/dm、特に0.01~1.0mol/dm、とりわけ0.1~0.3mol/dmであることが好ましい。めっき液中の錯化剤とニッケルおよび/またはコバルトの比率〔錯化剤/(Ni+Co)〕は、モル比として好ましくは0.01~100、より好ましくは1~4の範囲である。 The electroplating solution preferably further contains a complexing agent. Examples of the complexing agent include organic acids, inorganic acids or salts thereof having a complexing action and pH buffering action. Examples of organic acids, inorganic acids and salts thereof include citric acid, tartaric acid, malic acid, pyrophosphoric acid, phosphorus. Examples include acids, sulfamic acids, and sodium salts, potassium salts, and ammonium salts thereof. The concentration of the complexing agent in the plating solution is 0.001 ~ 2.0mol / dm 3, particularly 0.01 ~ 1.0mol / dm 3, it is preferred especially is 0.1 ~ 0.3mol / dm 3. The ratio of complexing agent to nickel and / or cobalt in the plating solution [complexing agent / (Ni + Co)] is preferably in the range of 0.01-100, more preferably 1-4.
 また、この電気めっき液は、更にアンモニアまたはアンモニウムイオンを含有することが好ましい。アンモニアまたはアンモニウムイオンとして具体的には、アンモニア水、硫酸アンモニウム、錯化剤のアンモニウム塩などが挙げられる。めっき液中のアンモニアまたはアンモニウムイオンの濃度は0.001~5.0mol/dm、特に0.01~2.0mol/dmであることが好ましい。このアンモニアは、結晶相の平均粒径、微細結晶(またはアモルファス)の体積分率といった、めっき膜の結晶状態、めっき浴の安定性に大きく関与する。 The electroplating solution preferably further contains ammonia or ammonium ions. Specific examples of ammonia or ammonium ions include aqueous ammonia, ammonium sulfate, and ammonium salts of complexing agents. The concentration of ammonia or ammonium ions in the plating solution is preferably 0.001 to 5.0 mol / dm 3 , particularly preferably 0.01 to 2.0 mol / dm 3 . This ammonia is greatly involved in the crystal state of the plating film, such as the average grain size of the crystal phase and the volume fraction of fine crystals (or amorphous), and the stability of the plating bath.
 なお、この電気めっき液のpHは3~11、特にpH5~9、とりわけpH6前後が好ましい。pH調整には、アンモニア水、水酸化カリウムなどの従来公知のpH調整剤を用いることができる。 The pH of the electroplating solution is preferably 3 to 11, particularly 5 to 9, and particularly around pH 6. For pH adjustment, a conventionally known pH adjuster such as aqueous ammonia or potassium hydroxide can be used.
 さらに、この電気めっき液には、めっき膜の膜物性(微細結晶の体積分率および平均粒径、XRDパターンのピーク半値幅、ヌープ硬さ、比抵抗)および膜組成に大きな影響を与えない限り、必要に応じて、光沢性向上、ピット防止、導電性付与、緩衝性付与、使用可能な電流密度範囲拡大、析出速度促進、耐熱性向上、濡れ性改善などの目的で界面活性剤、溶剤などの各種添加剤を含有できる(例えば、特開平7-11476号公報、特開2004-76026号公報、特開2006-37164号公報を参照)。 Further, this electroplating solution has no significant influence on the film physical properties (volume fraction and average particle diameter of fine crystals, peak half width of XRD pattern, Knoop hardness, specific resistance) and film composition of the plating film. If necessary, surfactants, solvents, etc. for purposes such as improving glossiness, preventing pits, imparting conductivity, imparting buffering properties, expanding the usable current density range, promoting precipitation rate, improving heat resistance, improving wettability, etc. (See, for example, JP-A-7-11476, JP-A-2004-76026, and JP-A-2006-37164).
 電気めっき条件は、特に限定されるものではないが、めっき温度は20~95℃、特に50~90℃が好適である。陰極電流密度もめっき液の組成により変わり、特に限定されるものではないが、低電流密度域(例えば1mA/cm以上10mA/cm未満)及び高電流密度域(例えば10mA/cmを超え200mA/cm以下)の両方で微細結晶-アモルファス混在金合金めっき皮膜を得ることができる。また、アノードには白金等の不溶性アノードを用いることができる。また、ニッケルおよび/またはコバルトをアノードとして用いてもよい。一方、被めっき物としては、電気配線などに用いられる銅、ニッケルなどの金属材料が挙げられる。この金属材料は、金属基材又は非金属基材上に下地層として形成したものであってもよい。なお、撹拌の有無は問わないが、撹拌下でめっきすることが好ましく、また、パルス電流により電流を印加してもよい。 The electroplating conditions are not particularly limited, but the plating temperature is preferably 20 to 95 ° C, particularly 50 to 90 ° C. Cathode current density vary with the composition of the plating solution, it is not particularly limited, low current density range (e.g. 1 mA / cm 2 or more 10 mA / cm less than 2) and a high current density range (e.g. 10 mA / cm 2 than The fine crystal-amorphous mixed gold alloy plating film can be obtained at both of 200 mA / cm 2 or less. Further, an insoluble anode such as platinum can be used for the anode. Nickel and / or cobalt may be used as the anode. On the other hand, examples of the object to be plated include metal materials such as copper and nickel used for electric wiring and the like. This metal material may be formed as a base layer on a metal substrate or a non-metal substrate. In addition, although the presence or absence of stirring is not ask | required, it is preferable to plate with stirring and you may apply an electric current with a pulse current.
 以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、実施例において、各分析、測定の方法及び条件は、以下のとおりである。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the examples, methods and conditions for each analysis and measurement are as follows.
結晶性、結晶粒径
 理学電機社製 RINT2100‐Ultima+による:XRD法 CuKα(40kV/40mA)
 または、日立ハイテクノロイジーズ社製 HF-2200による:TEM及びTHEED法 加速電圧200V 明視野像
体積分率
日立ハイテクノロイジーズ社製 HF-2200による:TEM法及びTHEED法 加速電圧200V 明視野像
金属組成
 エスアイアイ・ナノテクノロジー社製 SEA5100による:EDXRF法
非金属元素測定
 堀場製作所社製 EMIA-920V、米国LECO社製 TC-436による
ヌープ硬さ
 JIS Z 2251に準じて測定:荷重5gf 荷重保持時間30秒 銅板上に形成された30μm厚みのめっき皮膜で測定した
比抵抗
 共和理研社製 K-705RSによる:JIS K 7194に準じて測定(四探針法)
Crystalline, by the grain size manufactured by Rigaku Corporation RINT2100-Ultima +: XRD method CuKα (40kV / 40mA)
Or, by HF-2200 manufactured by Hitachi High-Technologies Corporation: TEM and THEED method Acceleration voltage 200V Bright field image
Volume fraction <br/> HF-2200 manufactured by Hitachi High-Technologies Corporation: TEM method and THEED method Acceleration voltage 200V Bright field image
According to SEA5100, metal composition SII Nanotechnology, Inc .: EDXRF method
Non-metallic element measurement EMIA-920V manufactured by HORIBA, Ltd., TC-436 manufactured by LECO, USA
Knoop hardness Measured according to JIS Z 2251: Load 5 gf Load holding time 30 seconds Measured with a 30 μm-thick plating film formed on a copper plate
According to the specific resistance Kyowa Riken Co., Ltd. K-705RS: measured in accordance with JIS K 7194 (the four-probe method)
 KAu(CN)を0.035mol/dm、NiSO4・6HOを0.076mol/dm、くえん酸三アンモニウムを0.21mol/dm含有し、KOHおよび硫酸によりpHを6に調整した電気めっき液を用い、温度70℃、電流密度10mA/cmで純度99.96%の銅板上に微細結晶-アモルファス混在金合金めっき皮膜(膜厚1μm)を形成した。なお、アノードには白金被覆チタン電極(網状)を用い、めっき中のめっき浴は激しく撹拌した。 Contains KAu (CN) 2 0.035 mol / dm 3 , NiSO 4 · 6H 2 O 0.076 mol / dm 3 , triammonium citrate 0.21 mol / dm 3 and adjusts the pH to 6 with KOH and sulfuric acid Using the electroplating solution, a fine crystal-amorphous mixed gold alloy plating film (film thickness: 1 μm) was formed on a copper plate having a temperature of 70 ° C. and a current density of 10 mA / cm 2 and a purity of 99.96%. A platinum-coated titanium electrode (network) was used as the anode, and the plating bath during plating was vigorously stirred.
 得られた微細結晶-アモルファス混在金合金めっき皮膜をXRD、TEMおよびTHEEDにより分析した。XRDパターンを図1に、TEM像及びTHEEDパターンを図2~4に示す。XRDパターンの2θ=40度付近には微細結晶またはアモルファス特有のピーク半値幅1度以上のブロードピークが確認できる。また、TEM像には結晶特有の結晶縞とアモルファス特有の不規則構造の混在した様子が観察できる。そして、THEEDパターンには結晶特有の回折スポットとアモルファス特有のハローリングの混在した様子が観察できる。この結果から、得られためっき皮膜は、微細結晶-アモルファス混在構造をとっていることがわかる。また、TEM像を観察した結果、微細結晶の平均粒径は10nmであり、微細結晶相の体積分率は50%であった。一方、得られた微細結晶-アモルファス混在金合金めっき皮膜の組成分析、ヌープ硬さ及び比抵抗を測定した。金属元素として金が41.2原子%、ニッケルが46.0原子%、非金属元素として炭素が12.8原子%の含有率で検出された。ヌープ硬さはHk347、比抵抗は89μΩ・cmであった。 The obtained fine crystal-amorphous mixed gold alloy plating film was analyzed by XRD, TEM and THEED. An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS. A broad peak having a peak half-value width of 1 degree or more peculiar to fine crystals or amorphous can be confirmed in the vicinity of 2θ = 40 degrees of the XRD pattern. Further, in the TEM image, it is possible to observe a mixture of crystal stripes peculiar to crystals and irregular structures peculiar to amorphous. In the THEED pattern, it can be observed that a diffraction spot peculiar to crystal and a halo ring peculiar to amorphous are mixed. This result shows that the obtained plating film has a fine crystal-amorphous mixed structure. As a result of observing the TEM image, the average grain size of the fine crystals was 10 nm, and the volume fraction of the fine crystal phase was 50%. On the other hand, composition analysis, Knoop hardness and specific resistance of the obtained fine crystal-amorphous mixed gold alloy plating film were measured. Gold was detected at a content of 41.2 atomic percent as a metallic element, 46.0 atomic percent of nickel, and 12.8 atomic percent of carbon as a nonmetallic element. The Knoop hardness was Hk347, and the specific resistance was 89 μΩ · cm.
 n-プロパノールを20voL%添加した以外は、実施例1と同様にめっきを行い、得られためっき皮膜についてXRD、TEM及びTHEED分析を行った。XRDパターンを図1に、TEM像及びTHEEDパターンを図5~7に示す。XRDパターンの2θ=40度付近には微細結晶またはアモルファス特有のピーク半値幅1度以上のブロードピークが確認できる。また、TEM像には結晶特有の結晶縞とアモルファス特有の不規則構造の混在した様子が観察できる。そして、THEEDパターンには結晶特有の回折スポットとアモルファス特有のハローリングの混在した様子が観察できる。この結果から、得られためっき皮膜は、微細結晶-アモルファス混在構造をとっていることがわかる。また、TEM像を観察した結果、微細結晶の平均粒径は10nmであり、微細結晶相の体積分率は50%であった。一方、得られた微細結晶-アモルファス混在金合金めっき皮膜の組成分析、ヌープ硬さ及び比抵抗を測定した。金属元素として金が48.1原子%、ニッケルが38.1原子%、非金属元素として炭素が13.8原子%の含有率で検出された。ヌープ硬さはHk348、比抵抗は89μΩ・cmであった。 Plating was conducted in the same manner as in Example 1 except that 20 vol% of n-propanol was added, and XRD, TEM and THEED analysis was performed on the obtained plating film. An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS. In the vicinity of 2θ = 40 degrees of the XRD pattern, a broad peak having a peak half-value width of 1 degree or more peculiar to fine crystals or amorphous can be confirmed. Further, in the TEM image, it is possible to observe a mixture of crystal stripes peculiar to crystals and irregular structures peculiar to amorphous. In the THEED pattern, it can be observed that a diffraction spot peculiar to crystal and a halo ring peculiar to amorphous are mixed. This result shows that the obtained plating film has a fine crystal-amorphous mixed structure. As a result of observing the TEM image, the average grain size of the fine crystals was 10 nm, and the volume fraction of the fine crystal phase was 50%. On the other hand, composition analysis, Knoop hardness and specific resistance of the obtained fine crystal-amorphous mixed gold alloy plating film were measured. Gold was detected at a content of 48.1 atomic% as a metallic element, 38.1 atomic% of nickel, and 13.8 atomic% of carbon as a nonmetallic element. The Knoop hardness was Hk348, and the specific resistance was 89 μΩ · cm.
 くえん酸濃度を0.143mol/dm、アンモニア濃度を1.2mol/dmとし、電流密度1mA/cm(通電時間50秒)と10mA/cm(通電時間5秒)で間髪入れずに交互に電解めっきした以外は、実施例1と同様にめっきを行い、得られためっき皮膜についてXRD、TEM及びTHEED分析を行った。XRDパターンを図1に、TEM像及びTHEEDパターンを図8~10に示す。XRDパターンの2θ=40度付近には微細結晶またはアモルファス特有のピーク半値幅1度以上のブロードピークが確認できる。また、TEM像には結晶特有の結晶縞とアモルファス特有の不規則構造の混在した様子が観察できる。そして、THEEDパターンには結晶特有の回折スポットとアモルファス特有のハローリングの混在した様子が観察できる。定電流めっきの場合は電流密度1mA/cmで結晶相のみ、10mA/cmでアモルファス相のみが得られた。この結果から、パルスめっきで得られためっき皮膜は、微細結晶-アモルファス混在構造をとっていることがわかる。また、TEM像を観察した結果、微細結晶の平均粒径は10nmであり、微細結晶相の体積分率は60%であった。一方、得られためっき皮膜の組成分析、ヌープ硬さ及び比抵抗を測定した。金属元素として金が47.4原子%、ニッケルが47.0原子%、非金属元素として炭素が5.6原子%の含有率で検出された。ヌープ硬さはHk222、比抵抗は57μΩ・cmであった。 The citric acid concentration was 0.143 mol / dm 3 , the ammonia concentration was 1.2 mol / dm 3, and current density was 1 mA / cm 2 (energization time 50 seconds) and 10 mA / cm 2 (energization time 5 seconds), without intermission. Plating was performed in the same manner as in Example 1 except that the electrolytic plating was alternately performed, and XRD, TEM and THEED analysis was performed on the obtained plating film. An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS. A broad peak having a peak half-value width of 1 degree or more peculiar to fine crystals or amorphous can be confirmed in the vicinity of 2θ = 40 degrees of the XRD pattern. Further, in the TEM image, it is possible to observe a mixture of crystal stripes peculiar to crystals and irregular structures peculiar to amorphous. In the THEED pattern, it can be observed that a diffraction spot peculiar to crystal and a halo ring peculiar to amorphous are mixed. In the case of constant current plating, only a crystalline phase was obtained at a current density of 1 mA / cm 2 and only an amorphous phase was obtained at 10 mA / cm 2 . From this result, it can be seen that the plating film obtained by pulse plating has a fine crystal-amorphous mixed structure. Further, as a result of observing the TEM image, the average particle diameter of the fine crystals was 10 nm, and the volume fraction of the fine crystal phase was 60%. On the other hand, composition analysis, Knoop hardness and specific resistance of the obtained plating film were measured. Gold was detected at a content of 47.4 atomic% as a metallic element, 47.0 atomic% of nickel, and 5.6 atomic% as a nonmetallic element. The Knoop hardness was Hk222, and the specific resistance was 57 μΩ · cm.
 くえん酸濃度を0.143mol/dm、アンモニア濃度を1.2mol/dm、電流密度を50mA/cmとした以外は、実施例1と同様にめっきを行い、得られたアモルファス金合金めっき皮膜を、アニール温度(保温温度)400℃、昇温速度10℃/分、保温1時間、大気雰囲気下でアニール処理しためっき皮膜についてXRD、TEM及びTHEED分析を行った。XRDパターンを図1に、TEM像及びTHEEDパターンを図11~13に示す。XRDパターンの2θ=40度付近には微細結晶またはアモルファス特有のピーク半値幅1度以上のブロードピークが確認できる。また、TEM像には結晶特有の結晶縞とアモルファス特有の不規則構造の混在した様子が観察できる。そして、THEEDパターンには結晶特有の回折スポットとアモルファス特有のハローリングの混在した様子が観察できる。この結果から、得られためっき皮膜は、微細結晶-アモルファス混在構造をとっていることがわかる。また、TEM像を観察した結果、微細結晶の平均粒径は15nmであり、微細結晶相の体積分率は60%であった。 Amorphous gold alloy plating obtained by plating in the same manner as in Example 1 except that the citric acid concentration was 0.143 mol / dm 3 , the ammonia concentration was 1.2 mol / dm 3 , and the current density was 50 mA / cm 2. XRD, TEM, and THEED analyzes were performed on the plating film obtained by annealing the film at an annealing temperature (heat retention temperature) of 400 ° C., a temperature increase rate of 10 ° C./min, and a heat retention of 1 hour in an air atmosphere. An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS. A broad peak having a peak half-value width of 1 degree or more peculiar to fine crystals or amorphous can be confirmed in the vicinity of 2θ = 40 degrees of the XRD pattern. Further, in the TEM image, it is possible to observe a mixture of crystal stripes peculiar to crystals and irregular structures peculiar to amorphous. In the THEED pattern, it can be observed that a diffraction spot peculiar to crystal and a halo ring peculiar to amorphous are mixed. This result shows that the obtained plating film has a fine crystal-amorphous mixed structure. As a result of observing the TEM image, the average grain size of the fine crystals was 15 nm, and the volume fraction of the fine crystal phase was 60%.
 KAu(CN)を0.035mol/dm、CoSO4・7HOを0.076mol/dm、くえん酸・HOを0.1mol/dm含有し、アンモニア濃度を0.44mol/dmとし、KOHおよび硫酸によりpHを6に調整した電気めっき液を用い、温度70℃、電流密度10mA/cmで純度99.96%の銅板上に微細結晶-アモルファス混在金合金めっき皮膜(膜厚1μm)を形成した。なお、アノードには白金被覆チタン電極(網状)を用い、めっき中のめっき浴は激しく撹拌した。 KAu (CN) 2 is contained in 0.035 mol / dm 3 , CoSO 4 .7H 2 O is contained in 0.076 mol / dm 3 , citric acid / H 2 O is contained in 0.1 mol / dm 3, and the ammonia concentration is 0.44 mol / dm 3. and dm 3, with KOH and electroplating solution and the pH was adjusted to 6 with sulfuric acid, the temperature 70 ° C., a current density of 10 mA / cm 2 with a purity 99.96% of the copper plate on the microcrystalline - amorphous mixed gold alloy plated film ( A film thickness of 1 μm) was formed. A platinum-coated titanium electrode (network) was used as the anode, and the plating bath during plating was vigorously stirred.
 得られた微細結晶-アモルファス混在金合金めっき皮膜をXRD、TEMおよびTHEEDにより分析した。XRDパターンを図1に、TEM像及びTHEEDパターンを図14~16に示す。XRDパターンの2θ=40度付近には微細結晶またはアモルファス特有のピーク半値幅1度以上のブロードピークが確認できる。また、TEM像には結晶特有の結晶縞とアモルファス特有の不規則構造の混在した様子が観察できる。そして、THEEDパターンには結晶特有の回折スポットとアモルファス特有のハローリングの混在した様子が観察できる。この結果から、得られためっき皮膜は、微細結晶-アモルファス混在構造をとっていることがわかる。また、TEM像を観察した結果、微細結晶の平均粒径は5nmであり、微細結晶相の体積分率は15%であった。一方、得られた微細結晶-アモルファス混在金合金めっき皮膜の組成分析、ヌープ硬さを測定した。金属元素として金が36.4原子%、コバルトが40.6原子%、非金属元素として炭素が23.0原子%の含有率で検出された。ヌープ硬さはHk180であった。 The obtained fine crystal-amorphous mixed gold alloy plating film was analyzed by XRD, TEM and THEED. An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS. A broad peak having a peak half-value width of 1 degree or more peculiar to fine crystals or amorphous can be confirmed in the vicinity of 2θ = 40 degrees of the XRD pattern. Further, in the TEM image, it is possible to observe a mixture of crystal stripes peculiar to crystals and irregular structures peculiar to amorphous. In the THEED pattern, it can be observed that a diffraction spot peculiar to crystal and a halo ring peculiar to amorphous are mixed. This result shows that the obtained plating film has a fine crystal-amorphous mixed structure. As a result of observing the TEM image, the average grain size of the fine crystals was 5 nm, and the volume fraction of the fine crystal phase was 15%. On the other hand, composition analysis and Knoop hardness of the obtained fine crystal-amorphous mixed gold alloy plating film were measured. Gold was detected at a content of 36.4 atomic% as a metallic element, 40.6 atomic% of cobalt, and 23.0 atomic% of carbon as a nonmetallic element. Knoop hardness was Hk180.
[比較例1]
 くえん酸濃度を0.143mol/dm、アンモニア濃度を0.46mol/dmとした以外は、実施例1と同様にめっきを行い、得られためっき皮膜についてXRD、TEM及びTHEED分析を行った。XRDパターンを図1に、TEM像及びTHEEDパターンを図17~18に示す。XRDパターンの2θ=40度付近にはアモルファス特有のピーク半値幅1度以上のブロードピークが確認できる。また、TEM像にはアモルファス特有の不規則構造が確認でき、結晶粒界や結晶縞のような規則的構造は確認できなかった。そして、THEEDパターンにはアモルファス特有のハローリングが確認できる。この結果から、得られためっき皮膜は、微細結晶を有さない均質なアモルファス構造をとっていることがわかる。また、得られためっき皮膜の組成分析、ヌープ硬さ及び比抵抗を測定した。金属元素として金が15.2原子%、ニッケルが67.5原子%、非金属元素として炭素が17.3原子%の含有率で検出された。ヌープ硬さはHk435、比抵抗は251μΩ・cmであった。
[Comparative Example 1]
0.143 mol / dm 3 the acid concentration citric, except that the ammonia concentration and 0.46 mol / dm 3 performs the plating in the same manner as in Example 1, the obtained plated film XRD, was TEM and THEED Analysis . An XRD pattern is shown in FIG. 1, and a TEM image and a THEED pattern are shown in FIGS. In the vicinity of 2θ = 40 degrees of the XRD pattern, a broad peak having a peak half-value width of 1 degree or more peculiar to amorphous can be confirmed. Moreover, the irregular structure peculiar to amorphous | non-crystalline substance was confirmed in the TEM image, and the regular structure like a crystal grain boundary or a crystal stripe was not able to be confirmed. Then, halo ring peculiar to amorphous can be confirmed in the THEED pattern. From this result, it can be seen that the obtained plating film has a homogeneous amorphous structure having no fine crystals. Further, composition analysis, Knoop hardness and specific resistance of the obtained plating film were measured. Gold was detected at a content of 15.2 atomic% as a metal element, 67.5 atomic% as a nickel element, and 17.3 atomic% as a nonmetallic element. The Knoop hardness was Hk435, and the specific resistance was 251 μΩ · cm.
[比較例2]
 KAu(CN)を0.04mol/dm、NiSO4・6HOを0.0085mol/dm、くえん酸・HOを0.5mol/dm、KOHを0.7mol/dm含有し、硫酸によりpHを3.5に調整した電気めっき液を用い、温度30℃、電流密度10mA/cmで純度99.96%の銅板上に硬質金めっき皮膜(膜厚1μm)を形成した。なお、アノードには白金被覆チタン電極(網状)を用い、めっき中のめっき浴は緩やかに撹拌した。
[Comparative Example 2]
KAu (CN) 2 contains 0.04 mol / dm 3 , NiSO 4 .6H 2 O contains 0.0085 mol / dm 3 , citric acid / H 2 O contains 0.5 mol / dm 3 , and KOH contains 0.7 mol / dm 3 Then, using an electroplating solution whose pH was adjusted to 3.5 with sulfuric acid, a hard gold plating film (film thickness 1 μm) was formed on a copper plate having a temperature of 30 ° C. and a current density of 10 mA / cm 2 and a purity of 99.96%. . A platinum-coated titanium electrode (network) was used for the anode, and the plating bath during plating was gently stirred.
 得られた硬質金めっき皮膜をXRD、TEMおよびTHEEDにより分析した。XRDパターンを図1に示す。XRDパターンの2θ=38度付近にはAu(111)由来の鋭いピークが確認できる。また、TEM像とTHEEDパターンからも結晶であることを確認した。この結果から、得られためっき皮膜は、アモルファス相を有さない多結晶構造をとっていることがわかる。また、XRDパターンから算出した結果、結晶の平均粒径は13nmであった。一方、得られためっき皮膜の組成分析、ヌープ硬さ及び比抵抗を測定した。金属元素として金が96.5原子%、ニッケルが0.77原子%、非金属元素として炭素が2.7原子%の含有率で検出された。ヌープ硬さはHk160、比抵抗は17μΩ・cmであった。 The obtained hard gold plating film was analyzed by XRD, TEM and THEED. The XRD pattern is shown in FIG. A sharp peak derived from Au (111) can be confirmed in the vicinity of 2θ = 38 degrees of the XRD pattern. Moreover, it was confirmed from the TEM image and the THEED pattern that it was a crystal. From this result, it can be seen that the obtained plating film has a polycrystalline structure having no amorphous phase. Moreover, as a result of calculating from an XRD pattern, the average particle diameter of the crystal was 13 nm. On the other hand, composition analysis, Knoop hardness and specific resistance of the obtained plating film were measured. Gold was detected as a metal element at a content of 96.5 atomic%, nickel as a 0.77 atomic%, and carbon as a nonmetallic element at a content of 2.7 atomic%. The Knoop hardness was Hk160, and the specific resistance was 17 μΩ · cm.
 なお、図1に示したXRDパターンにおいて、2θ=50°付近に見られる鋭いピークは基板の銅によるものである。 In the XRD pattern shown in FIG. 1, the sharp peak observed near 2θ = 50 ° is due to the copper of the substrate.
 また、実施例1の微細結晶-アモルファス混在金合金めっき皮膜のヌープ硬さは、金めっき皮膜の中では硬度が高いとされるアディティブフリーハードゴールド(AFHG)、ニッケルハードゴールド(NiHG)、CoHGのヌープ硬さがHk200に届かない程度であるのに対し、それらの2~3倍に相当する高い硬度を有していることがわかる。 The Knoop hardness of the fine crystal-amorphous mixed gold alloy plating film of Example 1 is that of additive-free hard gold (AFHG), nickel hard gold (NiHG), and CoHG, which are considered to have high hardness in the gold plating film. It can be seen that the Knoop hardness does not reach Hk200, but has a high hardness corresponding to 2 to 3 times.

Claims (13)

  1.  金合金のめっき皮膜であって、結晶相とアモルファス相とが混在して形成されてなる、前記めっき皮膜。 A plating film of a gold alloy, which is formed by mixing a crystalline phase and an amorphous phase.
  2.  結晶相の体積分率が10~90%である、請求項1に記載のめっき皮膜。 The plating film according to claim 1, wherein the volume fraction of the crystal phase is 10 to 90%.
  3.  結晶相の平均粒径が30nm以下である、請求項1に記載のめっき皮膜。 The plating film according to claim 1, wherein the average grain size of the crystal phase is 30 nm or less.
  4.  X線回折パターンにおける2θ=40度付近のピーク半値幅が1度以上である、請求項1記載のめっき皮膜。 2. The plating film according to claim 1, wherein the peak half-value width near 2θ = 40 degrees in the X-ray diffraction pattern is 1 degree or more.
  5.  ヌープ硬さがHk180以上である、請求項1~4のいずれかに記載のめっき皮膜。 The plating film according to any one of claims 1 to 4, wherein the Knoop hardness is Hk180 or more.
  6.  比抵抗が200μΩ・cm以下である、請求項1~5のいずれかに記載のめっき皮膜。 6. The plating film according to claim 1, wherein the specific resistance is 200 μΩ · cm or less.
  7.  組成式:Au100-x-yx (ここにおいてはAuまたはMが主成分であり、MはNiおよび/またはCoであり、Cは炭素であり、1原子%≦x≦80原子%、1原子%≦y≦30原子%である)で表される、請求項1~6のいずれかに記載のめっき皮膜。 Composition formula: Au 100-xy M x C y (where Au or M is the main component, M is Ni and / or Co, C is carbon, and 1 atomic% ≦ x ≦ 80 atoms %, 1 atom% ≦ y ≦ 30 atom%).
  8.  電気接点材料として用いる、請求項1~7のいずれかに記載のめっき皮膜。 The plating film according to any one of claims 1 to 7, which is used as an electrical contact material.
  9.  請求項1~8のいずれかに記載のめっき皮膜を形成するための電気めっき液であって、シアン化金塩、ニッケル塩および/またはコバルト塩、錯化剤およびpH調整剤を含む、前記電気めっき液。 9. An electroplating solution for forming a plating film according to claim 1, comprising a gold cyanide salt, a nickel salt and / or a cobalt salt, a complexing agent and a pH adjusting agent. Plating solution.
  10.  錯化剤がくえん酸、酒石酸、りんご酸、ピロりん酸、りん酸、スルファミン酸およびそれらのナトリウム塩、カリウム塩、アンモニウム塩からなる群から選択される1または2以上であり、また、pH調整剤がアンモニア水または水酸化カリウムである、請求項9に記載の電気めっき液。 The complexing agent is one or more selected from the group consisting of citric acid, tartaric acid, malic acid, pyrophosphoric acid, phosphoric acid, sulfamic acid and their sodium, potassium and ammonium salts, and pH adjustment The electroplating solution according to claim 9, wherein the agent is ammonia water or potassium hydroxide.
  11.  錯化剤がくえん酸であり、pH調整剤がアンモニア水である、請求項10に記載の電気めっき液。 The electroplating solution according to claim 10, wherein the complexing agent is citric acid and the pH adjuster is aqueous ammonia.
  12.  金合金めっき皮膜の形成方法であって、請求項9~11のいずれかに記載の電気めっき液を用いて被めっき物上に結晶相とアモルファス相とが混在してなる金合金めっき皮膜を形成してなる、前記形成方法。 A method for forming a gold alloy plating film, wherein a gold alloy plating film in which a crystal phase and an amorphous phase are mixed is formed on an object to be plated using the electroplating solution according to any one of claims 9 to 11. The forming method.
  13.  請求項1~8のいずれかに記載のめっき皮膜を用いた、電気・電子部品。 Electrical / electronic parts using the plating film according to any one of claims 1 to 8.
PCT/JP2010/052364 2009-02-17 2010-02-17 Microcrystalline-to-amorphous gold alloy and plated film, and plating solution for those, and plated film formation method WO2010095658A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010000791T DE112010000791T5 (en) 2009-02-17 2010-02-17 MIXED-MICROCRYSTALLINE-AMORPHIC GOLD ALLOYING OF ELECTROCHEMICALLY DISPOSED FILM AND BATHING SOLUTION, AND METHOD FOR PRODUCING AN ELECTROCHEMICALLY DISPOSED FILM THEREFOR
US13/202,050 US20120031764A1 (en) 2009-02-17 2010-02-17 Microcrystalline-to-amorphous gold alloy and plated film, and plating solution for those, and plated film formation method
CN2010800080735A CN102317508A (en) 2009-02-17 2010-02-17 Crystallite-amorphous mixing au-alloy and plated film, plating liquid and plated film formation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009033632A JP5424666B2 (en) 2009-02-17 2009-02-17 Fine crystal-amorphous mixed gold alloy and plating film, and plating solution and plating film forming method therefor
JP2009-033632 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095658A1 true WO2010095658A1 (en) 2010-08-26

Family

ID=42633938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052364 WO2010095658A1 (en) 2009-02-17 2010-02-17 Microcrystalline-to-amorphous gold alloy and plated film, and plating solution for those, and plated film formation method

Country Status (7)

Country Link
US (1) US20120031764A1 (en)
JP (1) JP5424666B2 (en)
KR (1) KR20110132356A (en)
CN (1) CN102317508A (en)
DE (1) DE112010000791T5 (en)
TW (1) TWI476301B (en)
WO (1) WO2010095658A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184468A (en) * 2011-03-04 2012-09-27 Waseda Univ Plating film, electronic part, plating liquid, and method for forming plating film
JP5896508B2 (en) * 2011-04-28 2016-03-30 学校法人早稲田大学 Electroplating solution for production of plating film having composition and nickel carbide Ni3C as main phase
DE102017002472A1 (en) * 2017-03-14 2018-09-20 Diehl Metal Applications Gmbh Connectors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026989A (en) * 1998-07-10 2000-01-25 Nau Chemical:Kk Production of gold-tin foil
JP2007169706A (en) * 2005-12-21 2007-07-05 Univ Waseda Electroplating solution and electroplating method for forming amorphous gold-nickel based alloy plated film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033382A (en) 1983-08-03 1985-02-20 Nippon Pureeteingu Kk Electrodeposition of amorphous alloy by pulse electrolysis
JPS62290893A (en) 1986-06-09 1987-12-17 Nippon Mining Co Ltd Gold-nickel alloy plating solution and plating method
JPH0711476A (en) 1993-06-23 1995-01-13 Kojima Kagaku Yakuhin Kk Palladium plating solution
JP3989795B2 (en) 2002-08-09 2007-10-10 エヌ・イーケムキャット株式会社 Electrolytic hard gold plating solution and plating method using the same
JP2004300483A (en) 2003-03-28 2004-10-28 Asahi Kasei Chemicals Corp Material having structure composed of crystalline substance and amorphous substance
JP4614052B2 (en) 2004-07-27 2011-01-19 石原薬品株式会社 Nickel barrel plating method
WO2006052866A1 (en) * 2004-11-05 2006-05-18 Tufts University Treatment of ceria-based catalysts with oxygen to improve stability thereof in the water-gas shift and selective co oxidation reactions
JP4868123B2 (en) 2005-02-04 2012-02-01 学校法人早稲田大学 Gold-nickel amorphous alloy plating film, electroplating solution and electroplating method
JP4868116B2 (en) * 2005-09-30 2012-02-01 学校法人早稲田大学 Gold-cobalt amorphous alloy plating film, electroplating solution and electroplating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026989A (en) * 1998-07-10 2000-01-25 Nau Chemical:Kk Production of gold-tin foil
JP2007169706A (en) * 2005-12-21 2007-07-05 Univ Waseda Electroplating solution and electroplating method for forming amorphous gold-nickel based alloy plated film

Also Published As

Publication number Publication date
DE112010000791T5 (en) 2012-07-26
KR20110132356A (en) 2011-12-07
JP2010189685A (en) 2010-09-02
TW201111560A (en) 2011-04-01
CN102317508A (en) 2012-01-11
US20120031764A1 (en) 2012-02-09
TWI476301B (en) 2015-03-11
JP5424666B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
EP2749673B1 (en) Silver plating and production method therefor
JP4868116B2 (en) Gold-cobalt amorphous alloy plating film, electroplating solution and electroplating method
WO2015068825A1 (en) Silver plating material and method for manufacturing same
Sakita et al. Influence of current density on crystalline structure and magnetic properties of electrodeposited Co-rich CoNiW alloys
Chaudhari et al. Structure and properties of electro Co-Deposited Ni-Fe/ZrO2 nanocomposites from ethylene glycol bath
JP4868123B2 (en) Gold-nickel amorphous alloy plating film, electroplating solution and electroplating method
Ibrahim et al. New cyanide-free ammonia bath for brass alloy coatings on steel substrate by electrodeposition
JP5424666B2 (en) Fine crystal-amorphous mixed gold alloy and plating film, and plating solution and plating film forming method therefor
TWI441959B (en) Method of obtaining a yellow gold alloy deposition by galvanoplasty without using toxic metals or metalloids
Vernickaite et al. Electrochemical co-deposition of tungsten with cobalt and copper: Peculiarities of binary and ternary alloys coatings formation
JP2007182623A (en) Method for producing thin metal product
Cesiulis et al. Electrodeposition of CoMo and CoMoP alloys from the weakly acidic solutions
WO2014050772A1 (en) Silver plating material and method for manufacturing same
JP4868121B2 (en) Electroplating solution and method for forming amorphous gold-nickel alloy plating film
TW202024401A (en) Thermally stable silver alloy layers
Castillo et al. Electrodeposition of Zn-rich CuxZn (1− x) films with controlled composition and morphology
Zhang et al. Effects of pH on the Nickel coating microstructure and internal stress from an additive-free watts-type bath with phytic acid
CN108149158A (en) A kind of Co-Ni-P amorphous powders preparation process
JP5896508B2 (en) Electroplating solution for production of plating film having composition and nickel carbide Ni3C as main phase
Tizgadam et al. Influence of Si3N4 nanoparticles on morphology, hardness and corrosion resistance of electrodeposited Ni-Co-Si3N4
JP6487813B2 (en) Nickel tungsten alloy and contact probe
JP2012184468A (en) Plating film, electronic part, plating liquid, and method for forming plating film
JP2015071820A (en) Film formation method for gold-iron-based amorphous alloy plating thin film, electroplating liquid, and gold-iron-based amorphous alloy plating thin film
Antonyraj et al. Electrodeposition of Transition Metal-influenced Magnetic Alloys and its Microstructural Properties
KR20220038196A (en) Electroless nickel-boron plating solution having tert-butyl amine borane for electrode terminal of lithium ion battery, method of electroless nickel-boron plating using the same, and electrode terminal of lithium ion battery having nickel-boron electroless plating layer using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008073.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743784

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120100007918

Country of ref document: DE

Ref document number: 112010000791

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20117020623

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13202050

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10743784

Country of ref document: EP

Kind code of ref document: A1