JP2003105459A - Cemented carbide, and production method therefor - Google Patents

Cemented carbide, and production method therefor

Info

Publication number
JP2003105459A
JP2003105459A JP2001298672A JP2001298672A JP2003105459A JP 2003105459 A JP2003105459 A JP 2003105459A JP 2001298672 A JP2001298672 A JP 2001298672A JP 2001298672 A JP2001298672 A JP 2001298672A JP 2003105459 A JP2003105459 A JP 2003105459A
Authority
JP
Japan
Prior art keywords
cemented carbide
carbide
iron
chromium
suf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001298672A
Other languages
Japanese (ja)
Other versions
JP3762278B2 (en
Inventor
Hiroshi Ohata
浩志 大畑
Keiji Usami
恵司 宇佐美
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001298672A priority Critical patent/JP3762278B2/en
Priority to US10/256,275 priority patent/US6797369B2/en
Priority to DE10244955.4A priority patent/DE10244955C5/en
Publication of JP2003105459A publication Critical patent/JP2003105459A/en
Priority to US10/916,671 priority patent/US7018726B2/en
Application granted granted Critical
Publication of JP3762278B2 publication Critical patent/JP3762278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Abstract

PROBLEM TO BE SOLVED: To obtain cemented carbide in which deposition and coagulation with a material to be machined on machining can be suppressed, and a satisfactory hard film can be formed. SOLUTION: In the cemented carbide having a composition containing 2 to 10 wt.% of bonding metals of cobalt (Co) and/or nickel (Ni), and 0 to 30 wt.% of the carbide, nitride and/or carbonitride of at least one kind selected from the groups consisting of the groups 4a, 5a and 6a metals in the Periodic Table, and containing 10 to 300 ppm iron (Fe), and 100 to 1,000 ppm chromium (Cr), and the balance tungsten carbide with inevitable impurities, the vicinity of the surface is provided with a surface region satisfying the condition of psuf <pin provided that the total content of the bonding metals at the inside of the cemented carbide is defined as w1in , the total content of iron (Fe) and chromium (Cr) at the inside of the cemented carbide is defined as w2in , the total content of the bonding metals in the surface region of the cemented carbide is defined as w1suf , and the total content of iron (Fe) and chromium (Cr) in the surface region of the cemented carbide is defined as w2suf , and pin =w2in /w1in , and psuf =w2suf /w1suf .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超硬合金およびその
製造方法に関し、特に炭素鋼、合金鋼、ステンレス鋼等
の一般鋼の切削加工に適する切削工具や摺動部材、耐摩
耗部材等に使用される高強度かつ高靭性な表面を有する
超硬合金とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide and a method for producing the same, and particularly to a cutting tool suitable for cutting general steel such as carbon steel, alloy steel and stainless steel, a sliding member, and a wear resistant member. Cemented carbide having a high strength and high toughness surface and a method for producing the same.

【0002】[0002]

【従来の技術】金属の切削加工や摺動部材、耐摩耗部材
等に広く用いられている超硬合金は、炭化タングステン
(WC)を主体とする硬質相をコバルト(Co)やニッ
ケル(Ni)の結合相中で結合させたWC−Co(N
i)合金、もしくはこのWC−Co(Ni)合金に周期
律表第4a、5a、6a族金属の炭化物、窒化物、炭窒
化物の硬質相を分散せしめた系が知られている。これら
の超硬合金は、特に、炭素鋼や合金鋼、ステンレス鋼等
の一般鋼の切削工具として利用されている。
Cemented carbide, which is widely used for metal cutting, sliding members, wear resistant members, etc., has a hard phase mainly composed of tungsten carbide (WC) as cobalt (Co) or nickel (Ni). In the bonding phase of WC-Co (N
i) An alloy or a system in which a hard phase of a carbide, nitride or carbonitride of a metal of Groups 4a, 5a and 6a of the Periodic Table is dispersed in the WC-Co (Ni) alloy is known. These cemented carbides are particularly used as cutting tools for general steel such as carbon steel, alloy steel, and stainless steel.

【0003】一般的に、かかる超硬合金を製造する方法
としては、上記のような超硬合金を構成する原料粉末を
粉砕して混合して成形した後、1350〜1600℃で
1〜3時間程度焼成する方法が知られている。
Generally, as a method for producing such a cemented carbide, the raw material powders constituting the cemented carbide as described above are crushed, mixed and shaped, and then at 1350 to 1600 ° C. for 1 to 3 hours. A method of firing to some extent is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の超硬合金においては、これを切削工具等として用い
た場合、超硬合金中に不純物として含まれる鉄(Fe)
およびクロム(Cr)が切削加工中に高温となった被削
材に多量に含まれる鉄(Fe)やクロム(Cr)と結合
し、被削材が切削工具表面に溶着や凝着して切れ刃等の
作用部が異常に摩耗したり、切削抵抗が増大して切削工
具表面に損傷が発生しやすくなったり、溶着物や凝着物
の凹凸によって被削物表面の仕上面粗さが劣化する等の
問題があった。
However, in the above conventional cemented carbide, when it is used as a cutting tool or the like, iron (Fe) contained as an impurity in the cemented carbide.
And chromium (Cr) combine with iron (Fe) and chromium (Cr), which are contained in large amounts in the work material that has become hot during cutting, and the work material is welded or adhered to the surface of the cutting tool and cut. Abnormal wear of action parts such as blades, cutting resistance increases and damage to the cutting tool surface is likely to occur, and roughness of the surface of the work piece deteriorates due to unevenness of weld deposits and adhesion There was a problem such as.

【0005】なお、超硬合金中の鉄(Fe)とクロム
(Cr)は、一次原料に不可避不純物として含有してい
たり、製造工程において混入したりするものであるが、
工業上完全に取り除くことはできず、また、製造工程で
混入する鉄(Fe)およびクロム(Cr)の含有量は工
程の変更や、粉砕機等の表面状態に伴って変動するため
に制御できないものであった。
Iron (Fe) and chromium (Cr) in the cemented carbide are contained as unavoidable impurities in the primary raw material or are mixed in the manufacturing process.
It cannot be completely removed industrially, and the contents of iron (Fe) and chromium (Cr) mixed in the manufacturing process cannot be controlled because they change due to changes in the process and the surface condition of the crusher. It was a thing.

【0006】また、鉄(Fe)は炭素との親和性が高い
ために、超硬合金の表面における鉄(Fe)の含有量が
多いと、CVD法やPVD法等の気相合成法で硬質被膜
をコーティングする場合には炭素と鉄(Fe)とが優先
的に結合し、超硬合金と硬質被膜との界面にη相等の脆
化相が生成しやすく、硬質被膜の密着強度が低下する結
果、硬質被膜が剥離して破壊したり、これを切削工具や
摺動部材として使用した場合には寿命が低下するという
問題があった。
Further, since iron (Fe) has a high affinity for carbon, when the content of iron (Fe) on the surface of the cemented carbide is large, it is hard by a vapor phase synthesis method such as a CVD method or a PVD method. When coating a film, carbon and iron (Fe) are preferentially bonded, and an embrittlement phase such as η phase is easily generated at the interface between the cemented carbide and the hard film, and the adhesion strength of the hard film decreases. As a result, there has been a problem that the hard coating peels and breaks, and when it is used as a cutting tool or a sliding member, the life is shortened.

【0007】したがって、本発明は上記課題を解決する
ためになされたもので、その目的は、切削時や摺動時等
の被削材との溶着や凝着を抑制でき、また、良好な硬質
被膜を形成することも可能な超硬合金を提供することを
目的とする。
Therefore, the present invention has been made to solve the above problems, and its purpose is to prevent welding and adhesion to a work material during cutting, sliding, etc., and to obtain good hardness. It is an object to provide a cemented carbide capable of forming a coating.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題、
特に超硬合金中の鉄(Fe)およびクロム(Cr)が被
削材に与える影響を抑制できる構成について検討した結
果、超硬合金中の鉄(Fe)およびクロム(Cr)の含
有量を制御し、かつ超硬合金表面におけるコバルト(C
o)および/またはニッケル(Ni)に対する鉄(F
e)およびクロム(Cr)の含有比率を超硬合金内部よ
りも低減させることにより、被削材との溶着や凝着が抑
制でき、硬質被膜を被着形成する際にも良好な硬質被膜
を被着形成できる超硬合金が得られることを知見して本
発明に至った。
Means for Solving the Problems The present inventor has
In particular, as a result of studying a structure capable of suppressing the influence of iron (Fe) and chromium (Cr) in the cemented carbide on the work material, the content of iron (Fe) and chromium (Cr) in the cemented carbide is controlled. Cobalt (C
o) and / or nickel (Ni) to iron (F
By reducing the content ratio of e) and chromium (Cr) from the inside of the cemented carbide, it is possible to suppress welding and adhesion with the work material, and to form a good hard coating even when forming a hard coating. The present invention has been accomplished by finding that a cemented carbide that can be formed by deposition can be obtained.

【0009】すなわち、請求項1に係る超硬合金は、コ
バルト(Co)および/またはニッケル(Ni)の結合
金属を2〜20重量%、周期律表第4a、5a、6a族
金属の群から選ばれる少なくとも1種の炭化物、窒化物
および/または炭窒化物を0〜30重量%含有するとも
に、鉄(Fe)を10〜300ppm、クロム(Cr)
を100〜1000ppm含有し、残部が炭化タングス
テンと不可避不純物から成る超硬合金において、この超
硬合金の表面近傍に、この超硬合金内部の前記結合金属
の総含有量をw1in、この超硬合金内部の鉄(Fe)お
よびクロム(Cr)の総含有量をw2in、この超硬合金
表面領域の前記結合金属の総含有量をw1 suf、この超硬
合金表面領域の鉄(Fe)およびクロム(Cr)の総含
有量をw2 sufとし、pin=w2in/w1in、psuf=w
2suf/w1sufとしたとき、psuf<pi nの条件を満足す
る表面領域を有することを特徴とするものである。
That is, the cemented carbide according to claim 1 contains 2 to 20% by weight of a binding metal of cobalt (Co) and / or nickel (Ni), from the group of metals of Groups 4a, 5a and 6a of the periodic table. It contains 0 to 30% by weight of at least one kind of carbide, nitride and / or carbonitride selected, 10 to 300 ppm of iron (Fe), and chromium (Cr).
In a cemented carbide containing 100 to 1000 ppm of Al , with the balance being tungsten carbide and unavoidable impurities, the total content of the binding metal inside the cemented carbide is w 1 in , near the surface of the cemented carbide. The total content of iron (Fe) and chromium (Cr) in the alloy is w 2in , the total content of the binding metal in this cemented carbide surface region is w 1 suf , and the iron (Fe) in this cemented carbide surface region is and the total content of chromium (Cr) and w 2 suf, p in = w 2in / w 1in, p suf = w
When the 2suf / w 1suf, is characterized in that it has a surface area that satisfies the conditions of the p suf <p i n.

【0010】上記超硬合金では、前記表面領域における
前記psufとpinとの比(psuf/p in)の最大値が0.
5〜0.95であることが望ましく、前記表面領域の厚
みが1〜20μmであることが望ましい。
In the above cemented carbide, in the surface region
The psufAnd pinRatio with (psuf/ P in) Has a maximum value of 0.
The thickness of the surface region is preferably 5 to 0.95.
It is desirable that the thickness is 1 to 20 μm.

【0011】また、上記超硬合金では、超硬合金の表面
に、周期律表第4a、5a、6a族金属の炭化物、窒化
物、炭窒化物、TiAlN、TiZrN、TiCrN、
DLC(ダイヤモンドライクカーボン)、ダイヤモンド
およびAl23の群から選ばれる少なくとも1種からな
る硬質被膜を少なくとも1層を総厚み1〜30μmで被
着形成してなることが望ましい。
Further, in the above-mentioned cemented carbide, the carbide, nitride, carbonitride, TiAlN, TiZrN, TiCrN of Group 4a, 5a, and 6a metals of the periodic table are formed on the surface of the cemented carbide.
It is desirable that at least one hard coating film made of at least one selected from the group consisting of DLC (diamond-like carbon), diamond and Al 2 O 3 is formed by deposition with a total thickness of 1 to 30 μm.

【0012】請求項5に係る超硬合金の製造方法は、炭
化タングステン粉末と、周期律表第4a、5a、6a族
金属の群から選ばれる少なくとも1種の炭化物、窒化物
および/または炭窒化物粉末と、コバルト(Co)およ
び/またはニッケル(Ni)粉末とからなる原料粉末を
粉砕混合して成形した後、非酸化性雰囲気中の1350
〜1600℃の第1の焼成温度で0.3〜2時間保持
し、この第1の焼成温度よりも20〜200℃低い第2
の焼成温度に冷却し、続いて真空中の前記第2の焼成温
度で1〜3時間保持することを特徴とするものである。
A method for producing a cemented carbide according to a fifth aspect of the present invention is a method of manufacturing a tungsten carbide powder and at least one kind of carbide, nitride and / or carbonitride selected from the group of metals of groups 4a, 5a and 6a of the periodic table. Powder and raw material powder consisting of cobalt (Co) and / or nickel (Ni) powder are pulverized and mixed, and then molded, and then 1350 in a non-oxidizing atmosphere.
The first baking temperature of ~ 1600 ° C is maintained for 0.3 to 2 hours, and the second baking temperature is 20 ~ 200 ° C lower than the first baking temperature.
It is characterized in that it is cooled to the firing temperature of, and then held at the second firing temperature in vacuum for 1 to 3 hours.

【0013】上記超硬合金の製造方法では、前記原料粉
末を粉砕混合する際に用いる容器および粉砕部材の前記
原料粉末と接触する部分が鉄(Fe)およびクロム(C
r)を含有しないことが望ましい。
In the above method for producing a cemented carbide, the parts used in the crushing and mixing of the raw material powder and the parts of the crushing member that come into contact with the raw material powder are iron (Fe) and chromium (C).
It is desirable not to contain r).

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。本発明の超硬合金は、炭化タングステン相
と、コバルト(Co)および/またはニッケル(Ni)
の結合金属を2〜20重量%、特に6〜15重量%と、
周期律表第4a、5a、6a族金属の群から選ばれる少
なくとも1種の炭化物、窒化物および/または炭窒化物
からなる結晶相を0〜30重量%、特に2〜20重量
%、さらに5〜15重量%と、不可避不純物とからなる
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The cemented carbide of the present invention has a tungsten carbide phase and cobalt (Co) and / or nickel (Ni).
2 to 20% by weight, especially 6 to 15% by weight of the binding metal of
0 to 30% by weight, particularly 2 to 20% by weight, and further 5% by weight of a crystal phase comprising at least one kind of carbide, nitride and / or carbonitride selected from the group of metals of groups 4a, 5a and 6a of the periodic table. ˜15% by weight and inevitable impurities.

【0015】ここで、コバルト(Co)およびニッケル
(Ni)の結合金属の総含有量が2重量%より少ない
と、焼結時に発生する液相量が不足して焼結不良となる
結果、超硬合金の強度が低下し、逆に、結合金属の総含
有量が30重量%より多いと、超硬合金に占める結合金
属相量が過剰となり、硬度が低下するとともに、切削加
工として金属加工に使用した場合に大きく塑性変形す
る。
If the total content of the binding metals of cobalt (Co) and nickel (Ni) is less than 2% by weight, the amount of liquid phase generated during sintering becomes insufficient, resulting in poor sintering. If the strength of the hard metal is reduced and conversely the total content of the binder metal is more than 30% by weight, the amount of the binder metal phase occupying the cemented carbide is excessive, the hardness is lowered, and the metal working for cutting is performed. Large plastic deformation occurs when used.

【0016】また、本発明によれば、超硬合金の硬度を
向上させるとともに、鉄(Fe)、クロム(Cr)、コ
バルト(Co)およびニッケル(Ni)の各金属濃度を
所定の範囲内に制御する点で、周期律表第4a、5a、
6a族金属の群から選ばれる少なくとも1種の炭化物、
窒化物および/または炭窒化物を30重量%以下の割合
で含有せしめることが望ましい。
Further, according to the present invention, the hardness of the cemented carbide is improved, and the metal concentrations of iron (Fe), chromium (Cr), cobalt (Co) and nickel (Ni) are set within a predetermined range. In terms of control, the periodic table 4a, 5a,
At least one carbide selected from the group of 6a group metals,
It is desirable to contain the nitride and / or carbonitride in a proportion of 30% by weight or less.

【0017】本発明によれば、超硬合金中の鉄(Fe)
の含有量が10〜300ppm、クロム(Cr)の含有
量が100〜1000ppmに制御され、かつ、超硬合
金内部の結合金属の総含有量をw1in、超硬合金内部の
鉄(Fe)およびクロム(Cr)の総含有量をw2in
超硬合金表面領域の結合金属の総含有量をw1suf、超硬
合金表面領域の鉄(Fe)およびクロム(Cr)の総含
有量をw2sufとし、p in=w2in/w1in、psuf=w
2suf/w1sufとしたとき、psuf<pinの条件を満足す
る表面領域を具備する。すなわち、超硬合金の表面にお
ける結合金属に対する鉄(Fe)およびクロム(Cr)
の含有比率を超硬合金の内部のそれよりも小さくするこ
とが大きな特徴である。これによって、被削材との溶着
や凝着が抑制でき、硬質被膜を被着形成する際にも良好
な硬質被膜を被着形成できる超硬合金が得られる。
According to the present invention, iron (Fe) in cemented carbide
Content of 10 to 300ppm, chromium (Cr) content
Amount is controlled to 100-1000ppm, and super hard cement
The total content of bond metal in gold is w1 in, Inside cemented carbide
The total content of iron (Fe) and chromium (Cr) is w2 in,
The total content of binding metals in the surface area of the cemented carbide is w1 suf, Carbide
Total content of iron (Fe) and chromium (Cr) in the alloy surface area
The amount w2 sufAnd p in= W2 in/ W1 in, Psuf= W
2 suf/ W1 sufAnd psuf<PinSatisfy the condition of
Surface area. That is, on the surface of the cemented carbide
Iron (Fe) and chromium (Cr) for the binding metals
The content ratio of Al should be smaller than that inside the cemented carbide.
Is a major feature. This enables welding with the work material
And adhesion can be suppressed, and it is good even when forming a hard coating
It is possible to obtain a cemented carbide capable of forming a hard coating.

【0018】ここで、超硬合金中の鉄(Fe)の含有量
は、工業的に10ppmより低くすることができず、ま
た、超硬合金中の鉄(Fe)の含有量が300ppmを
越えると、被削材との溶着や凝着が顕著となり、切削性
が低下する。一方、クロム(Cr)の含有量が100p
pmより低いと、炭化タングステン相の粒成長が顕著と
なり、超硬合金の強度と靭性が低下する。逆に、クロム
(Cr)の含有量が1000ppmを越えると、被削材
との溶着や凝着が顕著となり、切削性が低下する。
Here, the content of iron (Fe) in the cemented carbide cannot be industrially made lower than 10 ppm, and the content of iron (Fe) in the cemented carbide exceeds 300 ppm. As a result, welding or cohesion with the work material becomes remarkable, and the machinability deteriorates. On the other hand, the content of chromium (Cr) is 100p
If it is lower than pm, the grain growth of the tungsten carbide phase becomes remarkable, and the strength and toughness of the cemented carbide deteriorate. On the other hand, when the content of chromium (Cr) exceeds 1000 ppm, welding or adhesion with the work material becomes remarkable, and the machinability deteriorates.

【0019】なお、本発明において、超硬合金中の鉄
(Fe)およびクロム(Cr)の含有量を測定するに
は、焼結後の超硬合金を超硬合金製乳鉢などを使って粉
砕した粉末を公知の方法で溶解した溶液を作製し、IC
P発光分光分析法で測定する方法によって定量すること
ができる。また、これら鉄(Fe)、クロム(Cr)、
コバルト(Co)およびニッケル(Ni)の表面と内部
の局所的な含有量の比を測定するには、レーザーICP
質量分析法を用いることができる。さらに、本発明にお
ける超硬合金の内部とは、超硬合金の表面から1mm以
上深い領域をいう。
In the present invention, in order to measure the contents of iron (Fe) and chromium (Cr) in the cemented carbide, the cemented carbide after sintering is ground using a cemented carbide mortar or the like. The prepared powder was dissolved by a known method to prepare an IC
It can be quantified by the method of measuring by P emission spectroscopy. In addition, these iron (Fe), chromium (Cr),
Laser ICP is used to measure the ratio of the local content of cobalt (Co) and nickel (Ni) on the surface and inside.
Mass spectrometry can be used. Further, the inside of the cemented carbide in the present invention means a region deeper than 1 mm from the surface of the cemented carbide.

【0020】また、表面領域におけるpsufとpinとの
比(psuf/pin)の最大値は、超硬合金表面の耐溶着
性と耐凝着性を改善するために、0.5〜0.95、特
に0.6〜0.8であることが望ましい。
Further, the maximum value of the ratio of the p suf and p in the surface region (p suf / p in), in order to improve the adhesion resistance and adhesion resistance of the cemented carbide surface, 0.5 ˜0.95, particularly 0.6 to 0.8 is desirable.

【0021】また、表面領域の厚みは、被削材等の溶着
や凝着を抑制し、かつ表面領域の硬度を維持して、塑性
変形を防止する点で、1〜20μmであることが望まし
い。
Further, the thickness of the surface region is preferably 1 to 20 μm from the viewpoints of suppressing welding and cohesion of the work material, maintaining the hardness of the surface region and preventing plastic deformation. .

【0022】なお、超硬合金中の炭化タングステン相は
六方晶であって、その平均粒径が0.5〜3.0μmで
あることが望ましい。ここで、本発明における炭化タン
グステン相等の結晶相の平均粒径とは、超硬合金断面の
SEM写真からインターセプト法によって求められる値
をいう。
The tungsten carbide phase in the cemented carbide is preferably hexagonal and has an average grain size of 0.5 to 3.0 μm. Here, the average grain size of the crystal phase such as the tungsten carbide phase in the present invention means a value obtained by the intercept method from the SEM photograph of the cemented carbide cross section.

【0023】また、本発明によれば、超硬合金の表面
に、周期律表第4a、5a、6a族金属の炭化物、窒化
物、炭窒化物、TiAlN、TiZrN、TiCrN、
DLC(ダイヤモンドライクカーボン)、ダイヤモンド
およびAl23の群から選ばれる少なくとも1種からな
る硬質被膜を少なくとも1層を被着形成してなるもので
あってもよく、これによって、超硬合金表面の硬度およ
び耐摩耗性を著しく向上させることができる。
Further, according to the present invention, carbides, nitrides, carbonitrides, TiAlN, TiZrN, TiCrN of metals of Groups 4a, 5a and 6a of the Periodic Table are formed on the surface of the cemented carbide.
It may be formed by depositing at least one hard coating film of at least one selected from the group consisting of DLC (diamond-like carbon), diamond and Al 2 O 3 , whereby a cemented carbide surface is formed. The hardness and wear resistance of can be remarkably improved.

【0024】さらに、本発明によれば、超硬合金の表面
に硬質被膜を被着形成する際においても、超硬合金表面
における鉄(Fe)やクロム(Cr)の含有比率が低い
ために、フェライトや炭化クロム等の生成による炭素の
減少が起きないために、界面付近にコバルトの低級炭化
物であるη相(W3Co3C、W6Co6Cなど)等の脆化
層が生成することなく、良好な硬質被膜を形成すること
ができる。
Furthermore, according to the present invention, even when a hard coating is formed on the surface of the cemented carbide, the content ratio of iron (Fe) or chromium (Cr) on the surface of the cemented carbide is low, Since carbon does not decrease due to the formation of ferrite or chromium carbide, an embrittlement layer such as the η phase (W 3 Co 3 C, W 6 Co 6 C), which is a lower carbide of cobalt, is formed near the interface. A good hard coating can be formed without

【0025】なお、硬質被膜の膜厚は、耐摩耗性と靭性
をともに維持する点で総厚み1〜30μmであることが
望ましく、また、硬質被膜は従来公知のPVD法やCV
D法等の薄膜形成法によって被着形成される。
The hard coating preferably has a total thickness of 1 to 30 μm in order to maintain both wear resistance and toughness, and the hard coating has a conventionally known PVD method or CV method.
It is deposited by a thin film forming method such as D method.

【0026】(製造方法)次に、上述した超硬合金の製
造方法を説明する。まず、例えば鉄(Fe)およびクロ
ム(Cr)の含有量がそれぞれ0.005〜0.1重量
%で平均粒径が0.5〜10μmの炭化タングステン粉
末を70〜90重量%と、鉄(Fe)とクロム(Cr)
の含有量がそれぞれ15〜500ppmで平均粒径が
0.5〜10μmの周期律表第4a、5a、6a族金属
の群から選ばれる炭化物、窒化物および/または炭窒化
物粉末またはその固溶体粉末を0.1〜30重量%と、
鉄(Fe)の含有量が1〜15ppmでクロム(Cr)
の含有量が1〜20ppmで平均粒径が0.5〜10μ
mのコバルト(Co)および/またはニッケル(Ni)
を5〜15重量%と、さらには所望により金属タングス
テン(W)粉末あるいはカーボンブラック(C)とを秤
量して混合する。
(Manufacturing Method) Next, a method for manufacturing the above-mentioned cemented carbide will be described. First, for example, 70 to 90% by weight of tungsten carbide powder having a content of iron (Fe) and chromium (Cr) of 0.005 to 0.1% by weight and an average particle size of 0.5 to 10 μm, and iron ( Fe) and chromium (Cr)
, Nitride and / or carbonitride powder or its solid solution powder selected from the group of metals of groups 4a, 5a and 6a of the Periodic Table, each having a content of 15 to 500 ppm and an average particle size of 0.5 to 10 μm. 0.1 to 30% by weight,
Chromium (Cr) with iron (Fe) content of 1 to 15 ppm
Content of 1 to 20 ppm and average particle size of 0.5 to 10 μ
m cobalt (Co) and / or nickel (Ni)
5 to 15% by weight, and if desired, metal tungsten (W) powder or carbon black (C) is weighed and mixed.

【0027】これらの混合粉末を鉄(Fe)およびクロ
ム(Cr)を含まない材料、例えば純度99.9%以上
の超硬合金からなる内張りやメディアや攪拌アーム等を
有する粉砕機内に投入し、アルコール、アセトン、炭化
水素等の分散媒を加えて5〜30時間湿式粉砕した後、
噴霧乾燥等の公知の造粒方法によって所望の粒径に造粒
する。ここで、粉砕時間が5時間より短いと原料粉末を
十分に粉砕して混合することができず、所望の均一な表
面領域を形成することができない。逆に、粉砕時間が3
0時間より長いと粉砕機から炭化タングステン成分およ
び他の不純物が多量に混入して混合粉末の組成ずれを引
き起こす。
These mixed powders are put into a crusher having a liner made of a material not containing iron (Fe) and chromium (Cr), for example, a cemented carbide having a purity of 99.9% or more, a medium, a stirring arm, etc., After adding a dispersion medium such as alcohol, acetone or hydrocarbon and wet pulverizing for 5 to 30 hours,
Granulate to a desired particle size by a known granulation method such as spray drying. If the crushing time is shorter than 5 hours, the raw material powder cannot be sufficiently crushed and mixed, and a desired uniform surface area cannot be formed. Conversely, the grinding time is 3
If the time is longer than 0 hours, a large amount of tungsten carbide component and other impurities are mixed from the crusher to cause compositional deviation of the mixed powder.

【0028】次に、得られた混合粉末を用いて、プレス
成形、鋳込成形、押出成形、冷間静水圧プレス成形等の
公知の成形方法によって所定形状に成形した後、20P
a以上の非酸化性雰囲気中、1〜20℃/分で1350
〜1600℃の第1の焼成温度に昇温し、次いで第1の
焼成温度で0.3〜2時間、特に0.5〜1時間保持す
る。なお、非酸化性雰囲気とは、特に、窒素ガス
(N2)、ヘリウムガス(He)、アルゴンガス(A
r)、キセノンガス(Xe)等の不活性ガスを封入また
はフローさせる状態をいう。
Next, the obtained mixed powder is molded into a predetermined shape by a known molding method such as press molding, cast molding, extrusion molding, cold isostatic press molding, and then 20P.
1350 at 1 to 20 ° C / min in a non-oxidizing atmosphere of a or above
The temperature is raised to a first firing temperature of ˜1600 ° C., and then kept at the first firing temperature for 0.3 to 2 hours, especially 0.5 to 1 hour. The non-oxidizing atmosphere is, in particular, nitrogen gas (N 2 ), helium gas (He), argon gas (A
r), a state in which an inert gas such as xenon gas (Xe) is filled or flowed.

【0029】かかる非酸化性雰囲気中、第1の焼成温度
で短時間保持することによって、コバルト(Co)およ
び/またはニッケル(Ni)からなる結合金属の一部が
金属液相となる。このとき、鉄(Fe)とクロム(C
r)は、コバルト(Co)とニッケル(Ni)に伴って
溶融して拡散する。
By holding the first firing temperature for a short time in such a non-oxidizing atmosphere, a part of the binding metal composed of cobalt (Co) and / or nickel (Ni) becomes a metal liquid phase. At this time, iron (Fe) and chromium (C
r) is melted and diffused along with cobalt (Co) and nickel (Ni).

【0030】続いて上記第1の焼成温度から20〜20
0℃低い第2の焼成温度に、望ましくは、超硬合金中に
おける各々の金属の分布状態を最適化するために降温速
度5〜50℃/時間で降温し、10Paより低い第2の
焼成温度の真空中、特に1200〜1380℃で1〜3
時間保持し、表面からCo(コバルト)および/または
ニッケル(Ni)が選択的に真空雰囲気中に蒸発すると
ともに、内部に存在するCo(コバルト)および/また
はニッケル(Ni)が選択的に表面へと拡散する結果、
焼結体中に所定の金属の濃度勾配をつけることができ
る。その後、室温まで冷却することにより本発明の超硬
合金を作製することができる。
Then, 20 to 20 from the first firing temperature.
A second firing temperature lower than 0 Pa, preferably a second firing temperature lower than 10 Pa, preferably at a temperature lowering rate of 5 to 50 ° C./hour in order to optimize the distribution state of each metal in the cemented carbide. In vacuum, especially at 1200-1380 ° C for 1-3
Hold for a period of time, Co (cobalt) and / or nickel (Ni) selectively evaporates from the surface in a vacuum atmosphere, and Co (cobalt) and / or nickel (Ni) present inside selectively moves to the surface. As a result of spreading
A predetermined metal concentration gradient can be provided in the sintered body. After that, the cemented carbide of the present invention can be manufactured by cooling to room temperature.

【0031】ここで、第1の焼成温度が1350℃より
低いと、温度が低くて適量の液相を生成させることがで
きず、焼結体を十分に緻密化させることができなくな
り、逆に第1の焼成温度が1600℃より高いと、焼結
が過度に進行して炭化タングステン粒子等の硬質粒子が
粒成長して靭性や強度が低下するとともに、金属液相中
のコバルト(Co)および/またはニッケル(Ni)が
選択的に表面から多量に蒸発して表面における金属の濃
度分布を所定の範囲とすることができず、かつ表面が脆
化する。
Here, if the first firing temperature is lower than 1350 ° C., the temperature is low and an appropriate amount of liquid phase cannot be generated, and the sintered body cannot be sufficiently densified. When the first firing temperature is higher than 1600 ° C., the sintering proceeds excessively and hard particles such as tungsten carbide particles grow to reduce the toughness and strength, and at the same time cobalt (Co) in the metal liquid phase and / Or nickel (Ni) selectively evaporates from the surface in a large amount, and the metal concentration distribution on the surface cannot be within a predetermined range, and the surface becomes brittle.

【0032】また、第1の焼成温度での保持時間が0.
1時間よりも短いと、適量の液相を生成させることがで
きず、焼結体を十分に緻密化させることができず、逆に
第1の焼成温度での保持時間が2時間よりも長いと、焼
結が過剰に進んで靭性や強度が低下するとともに、鉄
(Fe)とクロム(Cr)が所定量を超えて表面に析出
したり、表面が脆化する。
The holding time at the first firing temperature is 0.
If it is shorter than 1 hour, an appropriate amount of liquid phase cannot be generated, the sintered body cannot be sufficiently densified, and conversely, the holding time at the first firing temperature is longer than 2 hours. As a result, sintering proceeds excessively to lower toughness and strength, and iron (Fe) and chromium (Cr) exceed a predetermined amount to precipitate on the surface or the surface becomes brittle.

【0033】さらに、第2の焼成温度と第1の焼成温度
との差が20℃よりも小さいと、コバルト(Co)およ
びニッケル(Ni)と鉄(Fe)およびクロム(Cr)
との移動速度(拡散速度)に差が生じないため、超硬合
金中に所望の濃度分布をつけることができず、逆に第2
の焼成温度と第1の焼成温度との差が200℃よりも大
きいと、各金属の拡散速度が全体的に低下して所定の金
属濃度勾配をつけることができなくなる。
Further, when the difference between the second firing temperature and the first firing temperature is less than 20 ° C., cobalt (Co) and nickel (Ni) with iron (Fe) and chromium (Cr).
Since there is no difference in the moving speed (diffusion speed) between and, the desired concentration distribution cannot be provided in the cemented carbide, and conversely the second
If the difference between the calcination temperature and the first calcination temperature is larger than 200 ° C., the diffusion rate of each metal is lowered as a whole, and a predetermined metal concentration gradient cannot be provided.

【0034】[0034]

【実施例】表1に示す量で鉄(Fe)およびクロム(C
r)を含有する平均粒径が9μmの炭化タングステン
(WC)粉末、金属コバルト(Co)粉末および化合物
粉末を表1に示す比率で秤量し、純度99.99%以上
の超硬合金からなる内壁、メディア、および攪拌アーム
を有するアトライタミル内に導入し、これに2−プロパ
ノールを添加して18時間湿式粉砕し、スプレードライ
によって造粒した後、プレス成形によって切削工具形状
(SDK1203)に成形した。
EXAMPLES Iron (Fe) and chromium (C) in the amounts shown in Table 1
An inner wall made of a cemented carbide having a purity of 99.99% or more by weighing tungsten carbide (WC) powder having an average particle diameter of 9 μm, metal cobalt (Co) powder, and compound powder containing r) at a ratio shown in Table 1. , Media and an attritor mill having a stirring arm, 2-propanol was added thereto, wet pulverized for 18 hours, granulated by spray drying, and then formed into a cutting tool shape (SDK1203) by press molding.

【0035】次に、得られた成形体を真空焼結炉にセッ
トし、12℃/分の速度で昇温して表1に示す第1の焼
成温度で所定時間保持し、続いて表1に示す降温速度で
第2の焼成温度に降温した後、この第2の焼成温度で所
定時間保持し、その後室温まで冷却した。なお、表中の
真空雰囲気とは真空度8Pa以下の状態に制御し、かつ
表中の各種ガス(Ar、N2、He)雰囲気とは25P
aの状態に制御した。
Next, the obtained molded body was set in a vacuum sintering furnace, heated at a rate of 12 ° C./min, and held at the first firing temperature shown in Table 1 for a predetermined time, and subsequently, Table 1 After the temperature was decreased to the second baking temperature at the temperature decrease rate shown in, the temperature was maintained at the second baking temperature for a predetermined time and then cooled to room temperature. The vacuum atmosphere in the table is controlled to a degree of vacuum of 8 Pa or less, and the atmosphere of various gases (Ar, N 2 , He) in the table is 25 P.
Controlled to state a.

【0036】得られた超硬合金に対して、超硬合金から
なる乳鉢で粉砕し、この粉末を溶解した溶液に対してI
CP発光分光分析を行ない、鉄(Fe)およびクロム
(Cr)の含有量を測定した。また、超硬合金の表面
と、1mm以上研削した面の鉄含有量をレーザーICP
−MSで測定した。なお、レーザーICP−MSの測定
面積は10μmφとした。
The obtained cemented carbide was crushed in a mortar made of cemented carbide, and I was added to a solution prepared by dissolving this powder.
CP emission spectroscopic analysis was performed to measure the contents of iron (Fe) and chromium (Cr). In addition, the iron content of the surface of the cemented carbide and the surface ground by 1 mm or more is measured by laser ICP.
-Measured by MS. The measurement area of the laser ICP-MS was set to 10 μmφ.

【0037】[0037]

【表1】 [Table 1]

【0038】そして、得られた超硬合金を用いて下記
(テスト1)の条件によりステンレス鋼の切削を15分
間行ない、切削工具のフランク摩耗量および境界損傷量
を測定した。なお、切削試験中にフランク摩耗量が0.
2mmあるいは境界損傷量が0.5mmに達した場合に
はその切削時間を測定した。さらに、切削試験後の工具
の刃先を観察し、変形や損傷の有無を確認した。その結
果を表2に示す。
Then, using the obtained cemented carbide, stainless steel was cut for 15 minutes under the following conditions (Test 1), and the flank wear amount and boundary damage amount of the cutting tool were measured. During the cutting test, the flank wear amount was 0.
When 2 mm or the boundary damage amount reached 0.5 mm, the cutting time was measured. Furthermore, the cutting edge of the tool after the cutting test was observed to confirm the presence or absence of deformation or damage. The results are shown in Table 2.

【0039】テスト1 被削材 :ステンレス鋼(SUS304) 工具形状:SDKN1203AUTN 切削速度:200m/分 送り速度:0.2mm/刃 切り込み:2mm その他 :乾式切削Test 1 Work Material: Stainless Steel (SUS304) Tool shape: SDKN1203AUTN Cutting speed: 200m / min Feed rate: 0.2 mm / blade Notch: 2 mm Other: Dry cutting

【0040】[0040]

【表2】 [Table 2]

【0041】表1、表2の結果より、原料中の鉄(F
e)の含有量が多い試料No.1および粉砕メディアお
よび撹拌アームとしてステンレスを用いた試料No.2
では、超硬合金全体中の鉄(Fe)の含有量が300p
pmを越えてしまい、切削加工中に硬質被膜が摩滅して
超硬合金が露出した後に、急激に摩耗が進行して工具寿
命に達してしまった。また、第1の焼成温度のみで保持
する(一段焼成)パターンの焼成を行った試料No.3
および第1の焼成温度と第2の焼成温度との差が200
℃を越える試料No.4では、いずれも表面におけるコ
バルト(Co)および/またはニッケル(Ni)に対す
る鉄(Fe)およびクロム(Cr)の含有比率が同等以
上となり、被削材の溶着や凝着が顕著で切削性能が低下
した。さらに、第1の焼成温度での保持と第2の焼成温
度での保持をともに真空中で行った試料No.5ではP
suf/Pinがほぼ1.0となり、表面と内部における
(鉄+クロム)と(コバルト+ニッケル)の存在比に差
がない。つまり発明品に比べて表面における脆化相の生
成量が多いため、硬質被膜の付着力が低下し、切削加工
中に被膜の剥離が発生した。この結果、摩耗量は増大
し、切削工具切れ刃に溶着物が多量に付着する結果とな
った。
From the results of Table 1 and Table 2, iron (F
e) with a high content of sample No. 1 and sample No. 1 using grinding media and stainless steel as a stirring arm. Two
Then, the content of iron (Fe) in the whole cemented carbide is 300p
After exceeding pm, the hard coating was abraded during the cutting process to expose the cemented carbide, and then the wear rapidly progressed to reach the tool life. In addition, the sample No. which was baked only in the first baking temperature (single-step baking) was baked. Three
And the difference between the first firing temperature and the second firing temperature is 200
Sample No. In No. 4, the content ratio of iron (Fe) and chromium (Cr) relative to cobalt (Co) and / or nickel (Ni) on the surface was equal to or higher than the above values, and welding and adhesion of the work material were remarkable and cutting performance was improved. Fell. Further, the sample No. 1 was held in vacuum at the first firing temperature and the second firing temperature. 5 in P
The suf / P in was approximately 1.0, and there was no difference in the abundance ratio of (iron + chromium) and (cobalt + nickel) on the surface and inside. That is, since the amount of the embrittlement phase generated on the surface was larger than that of the invention product, the adhesion of the hard coating was reduced, and the coating peeled off during cutting. As a result, the amount of wear increased and a large amount of deposits adhered to the cutting edge of the cutting tool.

【0042】これに対して、本発明に従う試料No.6
〜13では、いずれもフランク摩耗量0.2mm(加工
時間/15min)以下の優れた耐摩耗性を有するもの
であった。
On the other hand, the sample No. 6
In all of Nos. 13 to 13, the flank wear amount was 0.2 mm (processing time / 15 min) or less and had excellent wear resistance.

【0043】(実施例2)また、試料No.2、12、
13については、表面にPVD法により表3に示す材質
と厚みの硬質被膜を成膜し、上記と同様の条件で切削試
験を行った。
(Example 2) Further, the sample No. 2, 12,
For No. 13, a hard coating having the material and thickness shown in Table 3 was formed on the surface by the PVD method, and a cutting test was performed under the same conditions as above.

【0044】[0044]

【表3】 [Table 3]

【0045】表3から明らかなように、鉄の含有量が多
い試料2を母材とした試料No.2−1では硬質被膜が
剥離して被削物が工具表面に多量に溶着したのに対し
て、本発明に従う試料No.12を母材にした試料12
−1、2、3、および試料No.13を母材にした試料
13−1では硬質被膜が剥離することはなく、かつ被削
材の溶着も少ないものであった。
As is apparent from Table 3, sample No. 2 having the base material of sample 2 having a high iron content was used. In No. 2-1, the hard coating peeled off and a large amount of the work piece was welded to the surface of the tool, whereas in the sample No. 2 according to the present invention. Sample 12 with 12 as the base material
-1, 2, 3, and sample No. In the sample 13-1 using 13 as the base material, the hard coating was not peeled off, and the work material was less welded.

【0046】本発明品については、旋盤で使用する旋削
加工用工具、フライス盤やマシニングセンターで使用す
る正面フライス、エンドミル、ボールエンドミル、ドリ
ル用の工具材種等、汎用的に使用することができる。
The product of the present invention can be generally used as a turning tool used in a lathe, a face milling machine used in a milling machine or a machining center, an end mill, a ball end mill, a tool material for a drill and the like.

【0047】[0047]

【発明の効果】以上詳述したとおり、請求項1に係る超
硬合金によれば、超硬合金中の鉄(Fe)およびクロム
(Cr)の含有量を制御し、かつ超硬合金表面における
コバルト(Co)およびまたはニッケル(Ni)に対す
る鉄(Fe)およびクロム(Cr)の含有比率を超硬合
金内部よりも低減させることにより、被削材との溶着や
凝着が抑制でき、硬質被膜を被着形成する際にも良好な
硬質被膜を被着形成できる超硬合金が得られる。
As described in detail above, according to the cemented carbide according to claim 1, the contents of iron (Fe) and chromium (Cr) in the cemented carbide are controlled, and at the surface of the cemented carbide. By reducing the content ratio of iron (Fe) and chromium (Cr) with respect to cobalt (Co) and / or nickel (Ni) as compared with the inside of the cemented carbide, it is possible to suppress welding and adhesion with the work material, and hard coating It is possible to obtain a cemented carbide capable of depositing a good hard coating even when depositing.

【0048】また、請求項5に係る超硬合金の製造方法
によれば、炭化タングステン粉末と、周期律表第4a、
5a、6a族金属の群から選ばれる少なくとも1種の炭
化物、窒化物および/または炭窒化物粉末と、コバルト
(Co)および/またはニッケル(Ni)粉末とからな
る原料粉末を粉砕混合して成形した後、非酸化性雰囲気
中、1350〜1600℃の第1の焼成温度で0.3〜
2時間保持し、続いて前記第1の焼成温度よりも20〜
200℃低い第2の焼成温度に冷却し、この第2の焼成
温度の真空中で1〜3時間保持することから、超硬合金
中の鉄(Fe)およびクロム(Cr)の含有量を制御
し、かつ超硬合金表面におけるコバルト(Co)および
またはニッケル(Ni)に対する鉄(Fe)およびクロ
ム(Cr)の含有比率を、超硬合金内部よりも低減させ
た超硬合金となり、被削材との溶着や凝着が抑制でき、
硬質被膜を被着形成する際にも良好な硬質被膜を被着形
成できる。
According to the method for producing a cemented carbide according to claim 5, the tungsten carbide powder and the periodic table 4a,
At least one kind of carbide, nitride and / or carbonitride powder selected from the group of 5a and 6a metals and raw material powder consisting of cobalt (Co) and / or nickel (Ni) powder are pulverized and mixed to be molded. Then, in a non-oxidizing atmosphere, at a first firing temperature of 1350 to 1600 ° C., 0.3 to
Hold for 2 hours, then 20 ~
The content of iron (Fe) and chromium (Cr) in the cemented carbide is controlled because the material is cooled to a second baking temperature lower by 200 ° C. and held in a vacuum of the second baking temperature for 1 to 3 hours. In addition, the content ratio of iron (Fe) and chromium (Cr) to cobalt (Co) and / or nickel (Ni) on the surface of the cemented carbide becomes smaller than that inside the cemented carbide, resulting in a work material. Can suppress welding and adhesion with
A good hard coating can be deposited even when the hard coating is deposited.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 30/00 C23C 30/00 C // B23B 27/14 B23B 27/14 B Fターム(参考) 3C046 FF03 FF10 FF12 FF13 FF25 FF32 FF39 FF53 FF55 4K018 AB02 AB03 AC01 AD01 BA04 DA21 DA33 KA02 KA05 KA15 4K044 AA09 AB10 BA13 BA18 BB01 BB02 BC01 CA13 CA14 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C23C 30/00 C23C 30/00 C // B23B 27/14 B23B 27/14 BF term (reference) 3C046 FF03 FF10 FF12 FF13 FF25 FF32 FF39 FF53 FF55 4K018 AB02 AB03 AC01 AD01 BA04 DA21 DA33 KA02 KA05 KA15 4K044 AA09 AB10 BA13 BA18 BB01 BB02 BC01 CA13 CA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 コバルト(Co)および/またはニッケ
ル(Ni)の結合金属を2〜20重量%、周期律表第4
a、5a、6a族金属の群から選ばれる少なくとも1種
の炭化物、窒化物および/または炭窒化物を0〜30重
量%含有するともに、鉄(Fe)を10〜300pp
m、クロム(Cr)を100〜1000ppm含有し、
残部が炭化タングステンと不可避不純物から成る超硬合
金において、この超硬合金の表面近傍に、この超硬合金
内部の前記結合金属の総含有量をw 1in、この超硬合金
内部の鉄(Fe)およびクロム(Cr)の総含有量をw
2in、この超硬合金表面領域の前記結合金属の総含有量
をw1suf、この超硬合金表面領域の鉄(Fe)およびク
ロム(Cr)の総含有量をw2sufとし、pin=w2in
1in、psuf=w2suf/w1sufとしたとき、psuf<p
inの条件を満足する表面領域を有することを特徴とする
超硬合金。
1. Cobalt (Co) and / or nickel
2 to 20% by weight of the binding metal of Ni (Ni), the 4th periodic table
at least one selected from the group of a, 5a, and 6a metals
Carbide, nitride and / or carbonitride of
10% to 300 pp of iron (Fe) in addition to the content of
m, containing 100 to 1000 ppm of chromium (Cr),
Carbide bond with the balance consisting of tungsten carbide and unavoidable impurities
In gold, near the surface of this cemented carbide,
The total content of the above-mentioned binding metals inside is w 1 in, This cemented carbide
The total content of iron (Fe) and chromium (Cr) inside is w
2 in, The total content of said binding metal in this cemented carbide surface region
W1 suf, Iron (Fe) and chromium in the surface area of this cemented carbide
The total content of ROM (Cr) is w2 sufAnd pin= W2 in/
w1 in, Psuf= W2 suf/ W1 sufAnd psuf<P
inCharacterized by having a surface region that satisfies the condition of
Cemented carbide.
【請求項2】 前記表面領域における前記psufとpin
との比(psuf/pin)の最大値が0.5〜0.95で
あることを特徴とする請求項1記載の超硬合金。
2. The p suf and p in in the surface region
The cemented carbide according to claim 1, wherein the maximum value of the ratio (p suf / p in ) is 0.5 to 0.95 .
【請求項3】 前記表面領域の厚みが1〜20μmであ
ることを特徴とする請求項1または2記載の超硬合金。
3. The cemented carbide according to claim 1, wherein the surface region has a thickness of 1 to 20 μm.
【請求項4】 前記超硬合金の表面に、周期律表第4
a、5a、6a族金属の炭化物、窒化物、炭窒化物、T
iAlN、TiZrN、TiCrN、DLC(ダイヤモ
ンドライクカーボン)、ダイヤモンドおよびAl23
群から選ばれる少なくとも1種からなる硬質被膜の少な
くとも1層を総厚み1〜30μmで被着形成してなるこ
とを特徴とする請求項1乃至3のいずれか記載の超硬合
金。
4. The fourth periodic table on the surface of the cemented carbide.
Carbides, nitrides, carbonitrides, and Ts of a, 5a, and 6a group metals
iAlN, TiZrN, TiCrN, DLC (diamond-like carbon), at least one layer of a hard coating composed of at least one selected from the group consisting of diamond and Al 2 O 3 is formed to a total thickness of 1 to 30 μm. The cemented carbide according to any one of claims 1 to 3, which is characterized.
【請求項5】 炭化タングステン粉末と、周期律表第4
a、5a、6a族金属の群から選ばれる少なくとも1種
の炭化物、窒化物および/または炭窒化物粉末と、コバ
ルト(Co)および/またはニッケル(Ni)粉末とか
らなる原料粉末を粉砕混合して成形した後、非酸化性雰
囲気中の1350〜1600℃の第1の焼成温度で0.
3〜2時間保持し、この第1の焼成温度よりも20〜2
00℃低い第2の焼成温度に冷却し、続いて真空中の前
記第2の焼成温度で1〜3時間保持することを特徴とす
る超硬合金の製造方法。
5. Tungsten carbide powder and Periodic Table No. 4
a raw material powder consisting of at least one kind of carbide, nitride and / or carbonitride powder selected from the group of a, 5a and 6a metal and cobalt (Co) and / or nickel (Ni) powder is pulverized and mixed. And then molded at a first firing temperature of 1350 to 1600 ° C. in a non-oxidizing atmosphere at 0.
Hold for 3 to 2 hours, 20 to 2 above this first firing temperature
A method for producing a cemented carbide, which comprises cooling to a second firing temperature lower by 00 ° C., and then maintaining the second firing temperature in vacuum for 1 to 3 hours.
【請求項6】 前記原料粉末を粉砕混合する際に用いる
容器および粉砕部材の前記原料粉末と接触する部分が鉄
(Fe)およびクロム(Cr)を実質的に含有しないこ
とを特徴とする請求項5記載の超硬合金の製造方法。
6. A container used for pulverizing and mixing the raw material powder and a portion of the pulverizing member that comes into contact with the raw material powder are substantially free of iron (Fe) and chromium (Cr). 5. The method for producing a cemented carbide according to 5.
JP2001298672A 2001-09-26 2001-09-27 Cemented carbide and method for producing the same Expired - Lifetime JP3762278B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001298672A JP3762278B2 (en) 2001-09-27 2001-09-27 Cemented carbide and method for producing the same
US10/256,275 US6797369B2 (en) 2001-09-26 2002-09-26 Cemented carbide and cutting tool
DE10244955.4A DE10244955C5 (en) 2001-09-26 2002-09-26 Cemented carbide, use of a cemented carbide and method for making a cemented carbide
US10/916,671 US7018726B2 (en) 2001-09-26 2004-08-12 Cemented carbide and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298672A JP3762278B2 (en) 2001-09-27 2001-09-27 Cemented carbide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003105459A true JP2003105459A (en) 2003-04-09
JP3762278B2 JP3762278B2 (en) 2006-04-05

Family

ID=19119536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298672A Expired - Lifetime JP3762278B2 (en) 2001-09-26 2001-09-27 Cemented carbide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3762278B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
WO2022202136A1 (en) * 2021-03-25 2022-09-29 京セラ株式会社 Cemented carbide and cutting tool
CN116103561A (en) * 2023-01-17 2023-05-12 株洲硬质合金集团有限公司 Preparation method of manganese steel-based steel bonded hard alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
JP2011202278A (en) * 2003-12-03 2011-10-13 Kennametal Inc Cemented carbide body containing zirconium and niobium and method of making the same
JP4796969B2 (en) * 2003-12-03 2011-10-19 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
WO2022202136A1 (en) * 2021-03-25 2022-09-29 京セラ株式会社 Cemented carbide and cutting tool
CN116103561A (en) * 2023-01-17 2023-05-12 株洲硬质合金集团有限公司 Preparation method of manganese steel-based steel bonded hard alloy

Also Published As

Publication number Publication date
JP3762278B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
JP5308427B2 (en) Cemented carbide and cutting tools
CN105154744B (en) Cemented carbide and cutting tool using the same
US7018726B2 (en) Cemented carbide and cutting tool
US20070235908A1 (en) Method of making a ceramic body of densified tungsten carbide
WO2011002008A1 (en) Cermet and coated cermet
KR102441723B1 (en) Cermet, cutting tool, and method for manufacturing cermet
JP5559575B2 (en) Cermet and coated cermet
KR102619781B1 (en) Cemented carbide alloy, cutting tool containing same and method for manufacturing cemented carbide alloy
CN113166862B (en) Cemented carbide and cutting tool comprising same as base material
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP4069749B2 (en) Cutting tool for roughing
JP2003105459A (en) Cemented carbide, and production method therefor
JP7392423B2 (en) Cemented carbide and cutting tools containing it as a base material
JP7388431B2 (en) Cemented carbide and cutting tools containing it as a base material
JPH10237650A (en) Wc base cemented carbide and its production
JPH05171335A (en) Differential layer surface refined sintered alloy and its manufacture
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JP2801484B2 (en) Cemented carbide for cutting tools
JP2001040446A (en) Diamond-containing hard member and its production
JP2815533B2 (en) Cutting equipment for milling
JP2514088B2 (en) High hardness and high toughness sintered alloy
JP7394300B2 (en) coated cutting tools
JP3368367B2 (en) Tungsten carbide based cemented carbide and cutting tools
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JPH09207008A (en) Wc group cemented carbide alloy tip for cutting ultra heat resistant alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3762278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8