JP2003104720A - Molecular sieve carbon and pressure swing adsorption apparatus using it - Google Patents

Molecular sieve carbon and pressure swing adsorption apparatus using it

Info

Publication number
JP2003104720A
JP2003104720A JP2001299699A JP2001299699A JP2003104720A JP 2003104720 A JP2003104720 A JP 2003104720A JP 2001299699 A JP2001299699 A JP 2001299699A JP 2001299699 A JP2001299699 A JP 2001299699A JP 2003104720 A JP2003104720 A JP 2003104720A
Authority
JP
Japan
Prior art keywords
molecular sieving
carbon
sieving carbon
weight
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001299699A
Other languages
Japanese (ja)
Other versions
JP3768134B2 (en
Inventor
Yoshinobu Kotani
善信 小谷
Tatsuo Kinoshita
龍生 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2001299699A priority Critical patent/JP3768134B2/en
Publication of JP2003104720A publication Critical patent/JP2003104720A/en
Application granted granted Critical
Publication of JP3768134B2 publication Critical patent/JP3768134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PROBLEM TO BE SOLVED: To provide high performance molecular sieve carbon as performance of a pressure swing adsorption apparatus is improved and its usable field is expanded. SOLUTION: The pellet length of cylindrical molecular sieve carbon for the pressure swing adsorption apparatus is 0.5-1.5 mm, preferably outside diameter of the pellet is 0.5-1.8 mm, and has an inside structure united three- dimensionally and irregularly with a lot of primary carbon particles whose particle diameter is 0.1-50 μm. The whole micropore volume is 0.1-0.7 ml/g, a rate of micropore volume whose pore diameter is 2.8-5.0 Å to the whole micropore volume is 60 vol.% or more, particle bulk density is 0.7-1.2 g/cm<3> and carbon content is 80 wt.% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、外径0.5〜1.8
mm、高さが0.5〜1.5mmの円柱状分子ふるい炭素およ
びその炭素を用いた圧力スイング吸着装置(以下PSA装置
と略す)に関する。
TECHNICAL FIELD The present invention has an outer diameter of 0.5 to 1.8.
The present invention relates to a cylindrical molecular sieving carbon having a size of 0.5 mm and a height of 0.5 to 1.5 mm, and a pressure swing adsorption device (hereinafter abbreviated as PSA device) using the carbon.

【0002】[0002]

【従来の技術】近年、空気中の窒素と酸素を分離する技
術として圧力スイング吸着法(以下PSA法と約す)が開発
され、実用化されている。
2. Description of the Related Art In recent years, a pressure swing adsorption method (hereinafter referred to as PSA method) has been developed and put into practical use as a technology for separating nitrogen and oxygen in air.

【0003】PSA法とは、通常2塔以上の吸着塔に吸着
材を充填し、3〜10kgf/cm2程度の加圧下での選択的
吸着と、減圧または常圧での吸着材の再生を周期的に繰
り返すことにより混合ガス中の特定成分を分離する方法
である。
The PSA method is usually a method in which two or more adsorption towers are filled with an adsorbent to selectively adsorb the adsorbent under a pressure of about 3 to 10 kgf / cm 2 and regenerate the adsorbent under a reduced pressure or atmospheric pressure. This is a method of separating a specific component in the mixed gas by repeating the cycle periodically.

【0004】1948年、Emmett(P.H.Emmett:chem.Re
v.43,69)が塩化ビニリデンを炭化することにより
分子ふるい炭素を得て以来今日に至るまで、多くの分子
ふるい炭素の製造法が提案され、近年に至って、石炭、
椰子殻などの天然物や、合成高分子を主原料とする分子
ふるい炭素の工業的製法が可能となってきた。
In 1948, Emmett (PHEmmett: chem.Re
(v.43, 69) has obtained many molecular sieving carbons by carbonizing vinylidene chloride, and many manufacturing methods of molecular sieving carbons have been proposed up to the present day. In recent years, coal,
It has become possible to industrially manufacture natural products such as coconut shells, and molecular sieving carbon mainly composed of synthetic polymers.

【0005】例えば、特公昭52-18675号公報に
は、5%までの揮発成分含量を有するコークスに、熱分
解性炭化水素を添加して600〜900℃の温度で処理
することによって放出されたカーボンをそのコークスの
細孔中に沈着させる分子ふるい炭素の製造法が開示され
ている。
For example, Japanese Examined Patent Publication (Kokoku) No. 52-18675 discloses that coke having a volatile content of up to 5% is added with pyrolytic hydrocarbon and treated at a temperature of 600 to 900 ° C. A method of making molecular sieving carbon by depositing carbon in the pores of the coke is disclosed.

【0006】また、特公昭62-17690号公報に
は、椰子殻炭粉末をコールタール、またはコールタール
ピッチをバインダーとして造粒し、600〜900℃で
乾留し、乾留炭を鉱酸で洗浄、水洗、乾燥したものにコ
ールタールを含浸させ、600〜900℃で10〜60
分間熱処理した後、不活性ガス中で冷却することを特徴
とする分子ふるい炭素の製造法が開示されている。
In Japanese Patent Publication No. 62-17690, coconut shell charcoal powder is granulated using coal tar or coal tar pitch as a binder and carbonized at 600 to 900 ° C., and carbonized carbon is washed with mineral acid. After washing with water and drying, impregnate coal tar with 10-60 at 600-900 ° C.
A method for producing molecular sieving carbon is disclosed, which comprises performing heat treatment for minutes and then cooling in an inert gas.

【0007】この様に分子ふるい炭素の製造技術開発が
進み、工業的生産も行われているが、現在工業的に利用
されているのは、全体の80vol%が外径1〜4mm、ペ
レット長2〜10mmの円柱状ペレットである。
[0007] As described above, technological development of molecular sieving carbon has progressed and industrial production is being carried out. Currently, 80 vol% of the whole is used in an industrial production of 1 to 4 mm in outer diameter and pellet length. It is a cylindrical pellet of 2 to 10 mm.

【0008】また、特開平06-154595号公報に
より外径を小径化することによる高性能圧力スイング吸
着用分子ふるい炭素が示されている。
Further, Japanese Unexamined Patent Publication No. 06-154595 discloses a high-performance pressure swing adsorption molecular sieving carbon by reducing the outer diameter.

【0009】しかし、ペレット長が圧力スイング吸着用
分子ふるい炭素の分離性能に与える影響についての検討
はなされていない。
However, the effect of pellet length on the separation performance of molecular sieve carbon for pressure swing adsorption has not been examined.

【0010】[0010]

【発明が解決しようとする課題】近年、圧力スイング吸
着装置の高性能化、使用分野の広がりに伴い、分子ふる
い炭素の高性能化が望まれている。
In recent years, as the performance of pressure swing adsorption devices has become higher and the fields of use have expanded, there has been a demand for higher performance of molecular sieving carbon.

【0011】[0011]

【課題を解決するための手段】本願発明は、高さが0.
5〜1.5mmの範囲である柱状の分子ふるい炭素で達成
しうる。さらには、全体の内80vol%以上が、高さが
0.5〜1.5mmの範囲である柱状の分子ふるい炭素、あ
るいは径が0.5〜1.8mmである前記記載の分子ふるい
炭素で達成しうる。
The present invention has a height of 0.
It can be achieved with columnar molecular sieving carbons ranging from 5 to 1.5 mm. Further, 80 vol% or more of the whole is columnar molecular sieving carbon having a height in the range of 0.5 to 1.5 mm or the molecular sieving carbon described above having a diameter of 0.5 to 1.8 mm. Can be achieved.

【0012】また、粒径0.8〜120μmの多数の炭素
一次粒子が三次元的に不規則に合体されてなる内部構造
を有し、ミクロ孔全容積が0.1〜0.7ml/g、細孔直径
2.8〜5.0Åの範囲となるミクロ孔容積がミクロ孔全
容積の60vol%以上であり、少なくとも炭素含有率8
0重量%以上で粒子嵩密度0.7〜1.2g/cm3であるこ
とを特徴とする請求項1〜3記載の分子ふるい炭素によ
っても達成可能である。また、主原料が熱硬化性フェノ
ール樹脂粉末であってもよい。
Further, it has an internal structure in which a large number of primary carbon particles having a particle size of 0.8 to 120 μm are randomly and three-dimensionally integrated, and the total volume of micropores is 0.1 to 0.7 ml / g. , The micropore volume in the range of 2.8 to 5.0Å in the pore diameter is 60 vol% or more of the total volume of the micropores, and the carbon content is at least 8
It can also be achieved by the molecular sieving carbon according to claims 1 to 3 , which has a particle bulk density of 0.7 to 1.2 g / cm 3 at 0% by weight or more. Further, the main raw material may be thermosetting phenol resin powder.

【0013】そして、これら分子ふるい炭素を備えた圧
力スイング吸脱着装置によって、高性能化が達成しう
る。
High performance can be achieved by the pressure swing adsorption / desorption device equipped with these molecular sieving carbons.

【0014】ここで全体の80vol%とは、所定量の成
形された炭素中で、指定の成形状態のものの割合が体積
換算で全体の80%であることを指す。
Here, "80 vol% of the whole" means that the ratio of the specified carbon in the specified amount of molded carbon is 80% of the total in terms of volume.

【0015】本発明の分子ふるい炭素は成形された柱状
の炭素であり、高さとは柱状の炭素の高さ方向の長さの
ことであり、ペレット長とはペレット状態とした円柱の
高さ方向の長さを指す。
The molecular sieving carbon of the present invention is formed columnar carbon, and the height is the length of the columnar carbon in the height direction, and the pellet length is the height direction of the pelletized cylinder. Refers to the length of.

【0016】分子ふるい炭素の原料は、コークス、フェ
ノール樹脂等があるが、本発明の分子ふるい炭素は、好
ましくは熱硬化性フェノール樹脂粉末であり、更に好ま
しくは粒径1〜150μmのフェノール樹脂の球状一次
粒子またはそれとその二次凝集物からなり、少なくとも
全体の50重量%は100タイラーメッシュ篩を通過し
得る大きさであり、KBr錠剤法による赤外線吸収スペク
トルにおいて1600cm-1のピーク吸収強度をD1600
900〜1015cm-1の範囲の最も大きなピーク吸収強
度をD9001015、890cm-1のピーク強度をD890であら
わした場合に下記式 D9001015/D1600=0.2〜9.0 D890/D1600=0.09〜1.0 を満足し、且つ還流下であるメタノールの対する溶解度
が50重量%以下であることによって特定される熱硬化
性フェノール樹脂粉末である。
The raw material of the molecular sieving carbon includes coke, phenol resin and the like. The molecular sieving carbon of the present invention is preferably a thermosetting phenol resin powder, more preferably a phenol resin having a particle size of 1 to 150 μm. It is composed of spherical primary particles or their secondary agglomerates, and at least 50% by weight of the whole particles have a size capable of passing through a 100 Tyler mesh sieve, and have a peak absorption intensity of 1600 cm -1 in the infrared absorption spectrum by the KBr tablet method. 1600 ,
900~1015cm formula D 900 the greatest peak absorption intensity in the range of -1 to the peak intensity of D 900 ~ 1015, 890cm -1 when expressed by D 890 ~ 1015 / D 1600 = 0.2~9.0 It is a thermosetting phenolic resin powder specified by satisfying D 890 / D 1600 = 0.09 to 1.0 and having a solubility in methanol under reflux of 50% by weight or less.

【0017】[0017]

【発明の実施の形態】分子ふるい炭素は通常、原料粉末
を、バインダー等を用いてペレット状に成形後炭化焼成
するので、炭素粒子が集合、合体してペレットを形成し
ている。ただし、ペレット状に限られるものではなく、
例えば打錠による圧縮によっても成形できる。
BEST MODE FOR CARRYING OUT THE INVENTION Since molecular sieving carbon is usually formed by forming raw material powder into pellets using a binder or the like and then carbonizing and firing, carbon particles are aggregated and coalesced to form pellets. However, it is not limited to pellets,
For example, it can be formed by compression by tableting.

【0018】本発明における炭素一次粒子とは、原料微
粉末であるフェノール樹脂などの熱硬化性樹脂や、無煙
炭、褐炭、泥炭、椰子殻炭等から誘導されるコークスな
どを炭化した、上記ペレットを形成する微小炭素粒子を
指すものである。その炭素一次粒子の粒径は、好ましく
は0.1〜50μm、更に好ましくは0.1〜30μm、最
も好ましくは2〜20μmである。
The carbon primary particles in the present invention are the above-mentioned pellets obtained by carbonizing a thermosetting resin such as phenol resin which is a fine powder of raw material, coke derived from anthracite, brown coal, peat, coconut shell charcoal and the like. It refers to the fine carbon particles that are formed. The particle size of the carbon primary particles is preferably 0.1 to 50 μm, more preferably 0.1 to 30 μm, and most preferably 2 to 20 μm.

【0019】本発明者らは、本発明の分子ふるい炭素の
製造にあたり、原料微粉末の粒度の他に、バインダーの
配合量、界面活性剤の使用量、および造粒設備の仕様、
例えば、造粒品の切断方法について種々の検討を行うこ
とにより、従来困難であった円柱状ペレットのペレット
長の制御に成功し、0.5mm〜1.5mmのペレット長の高
強度分子ふるい炭素の製造を可能にしたものである。
In producing the molecular sieving carbon of the present invention, the inventors of the present invention, in addition to the particle size of the raw material fine powder, the amount of the binder compounded, the amount of the surfactant used, and the specifications of the granulation equipment,
For example, by conducting various studies on the cutting method of the granulated product, it was possible to successfully control the pellet length of the cylindrical pellet, which was difficult in the past, and to obtain a high-strength molecular sieve carbon with a pellet length of 0.5 mm to 1.5 mm. This enables the manufacture of

【0020】この製造技術は、例えば特開昭63-20
1008号公報で開示されている球状フェノール樹脂を
その40重量%以下の固形分含有量のフェノール樹脂と
共に造粒して粒状成形体をつくり非酸化性雰囲気中で焼
成する方法、あるいは特開昭62-59510号、US特
許505957号、特開平1-61306号、特開平3-
40912号、特開平3-141111号、特開平4-2
605号公報で公示されている方法、あるいはその他の
公知の方法にも応用することができる。
This manufacturing technique is disclosed in, for example, Japanese Patent Laid-Open No. 63-20.
A method of granulating a spherical phenol resin disclosed in Japanese Patent Laid-Open No. 1008 together with a phenol resin having a solid content of 40% by weight or less to form a granular molded product and firing the molded product in a non-oxidizing atmosphere, or JP-A-62-62. -59510, US Pat. No. 505957, JP-A-1-61306, JP-A-3-
40912, JP-A-3-141111, and JP-A-4-2.
It can be applied to the method disclosed in Japanese Patent No. 605 or other known methods.

【0021】ペレット長0.5〜1.5mmの円柱状である
分子ふるい炭素の割合は全体の80vol%以上であれば
好ましく、好ましくは外径0.5〜1.8mmであり、粒径
0.1〜50μmの多数の炭素一次粒子が三次元的に不規
則に合体されてなる内部構造を有するものがよい。
The ratio of cylindrical molecular sieving carbon having a pellet length of 0.5 to 1.5 mm is preferably 80 vol% or more of the whole, and preferably has an outer diameter of 0.5 to 1.8 mm and a particle diameter of 0. It is preferable that it has an internal structure in which a large number of carbon primary particles of 0.1 to 50 μm are three-dimensionally irregularly united.

【0022】全体に占めるペレット長0.5〜1.5mmの
分子ふるい炭素の割合は、通常80vol%以上であり、
好ましくは90vol%以上である。
The ratio of the molecular sieving carbon having a pellet length of 0.5 to 1.5 mm to the whole is usually 80 vol% or more,
It is preferably 90 vol% or more.

【0023】活性炭や分子ふるい炭素の細孔の分類は文
献により必ずしも一定ではないが、本発明においては、
細孔径500Åを超える、主に炭素一次粒子の隙間から
構成される細孔をマクロ孔、一次粒子内に縦横無尽に存
在している20Å〜500Åの細孔をメソ孔、メソ孔よ
り枝分かれしている20Å未満の細孔をミクロ孔と定義
することにする。
Although the classification of pores of activated carbon and molecular sieving carbon is not always constant according to the literature, in the present invention,
Macropores are pores with a pore size of more than 500Å, which are mainly composed of interstices of carbon primary particles, and pores of 20Å to 500Å which exist in the primary particles inexhaustibly in all directions are branched from mesopores and mesopores. The pores of less than 20Å are defined as micropores.

【0024】後述する測定法により測定した吸着等温線
を、Dubinin-Astakhov式を用いて処理することにより本
発明の分子ふるい炭素におけるミクロ孔容積を求めた。
The adsorption isotherm measured by the measuring method described later was processed using the Dubinin-Astakhov equation to determine the micropore volume in the molecular sieving carbon of the present invention.

【0025】本発明の分子ふるい炭素は、好ましくは、
ミクロ孔全容積が0.1〜0.7ml/gで、かつ細孔直径
2.8〜5.0Åの範囲となるミクロ孔容積がミクロ孔全
容積の60vol%以上であり、更に好ましくはミクロ孔
全容積が0.12〜0.5ml/g、細孔直径2.8〜5.0Å
の範囲となるミクロ孔容積がミクロ孔全容積の70vol
%以上、最も好ましくは、ミクロ孔全容積が0.15〜
0.3ml/g、細孔直径2.8〜5.0Åの範囲となるミク
ロ孔容積がミクロ孔全容積の80vol%以上である。
The molecular sieving carbon of the present invention is preferably
The total volume of micropores is 0.1 to 0.7 ml / g, and the volume of micropores having a pore diameter of 2.8 to 5.0Å is 60 vol% or more of the total volume of micropores, and more preferably micropores. Total volume of pores is 0.12-0.5ml / g, pore diameter is 2.8-5.0Å
The volume of the micropores is 70vol of the total volume of the micropores.
% Or more, and most preferably, the total volume of micropores is from 0.15 to
The micropore volume in the range of 0.3 ml / g and the pore diameter of 2.8 to 5.0Å is 80 vol% or more of the total volume of the micropores.

【0026】分子ふるい炭素は、窒素と酸素もしくは窒
素と二酸化炭素など、非常に分子径差の小さい分子を分
離するものであり、この場合細孔直径2.8〜5.0Åの
範囲となるミクロ孔容積が非常に重要とされている。
The molecular sieving carbon is for separating molecules such as nitrogen and oxygen or nitrogen and carbon dioxide, which have a very small difference in molecular diameter, and in this case, a micropore having a pore diameter in the range of 2.8 to 5.0Å. Pore volume is very important.

【0027】本発明の分子ふるい炭素は、組成上の特徴
として、好ましくは80重量%の炭素含有率を有し、更
に好ましくは85重量%の炭素含有率を有し、最も好ま
しくは90重量%の炭素含有率を有する。
The molecular sieving carbon of the present invention has, as a compositional characteristic, preferably a carbon content of 80% by weight, more preferably 85% by weight, and most preferably 90% by weight. Has a carbon content of.

【0028】また、本発明の分子ふるい炭素は、好まし
くは粒子嵩密度0.7〜1.2g/cm3であり、更に好まし
くは0.8〜1.15g/cm3、最も好ましくは0.9〜1.
1g/cm3である。
[0028] The molecular sieving carbon of the present invention is preferably a particle bulk density 0.7 to 1.2 g / cm 3, more preferably 0.8~1.15g / cm 3, and most preferably 0. 9-1.
It is 1 g / cm 3 .

【0029】[0029]

【発明の効果】本発明者等の検討によれば、ペレット長
0.5〜1.5mmの円柱状ペレットの分子ふるい炭素が得
られ、その炭素によって、装置性能の顕著な改善が得ら
れる。
According to the studies made by the present inventors, molecular sieving carbon of a cylindrical pellet having a pellet length of 0.5 to 1.5 mm can be obtained, and the carbon can significantly improve the device performance.

【0030】本発明の分子ふるい炭素は優れた吸着容量
と選択的吸着特性を有するために、窒素と酸素の気体混
合物のほか、種々の混合ガスの分離に使用することがで
きる。例えば、ブタン異性体、ブテン異性体等の炭化水
素異性体混合物、エチレンとプロピレンの混合物等から
特定ガス成分を分離することができる。
Since the molecular sieving carbon of the present invention has excellent adsorption capacity and selective adsorption characteristics, it can be used not only for gas mixture of nitrogen and oxygen but also for separation of various mixed gases. For example, the specific gas component can be separated from a mixture of hydrocarbon isomers such as butane isomers and butene isomers, a mixture of ethylene and propylene, and the like.

【0031】また、上述の混合ガスの分離の他、スチー
ムリフォーミングガス、エチレンプラントのオフガス、
メタノール分解ガス、アンモニア分解ガス、コークス炉
排ガス等よりの水素回収、あるいは、火力発電所のボイ
ラー排ガスよりの二酸化炭素の分離回収等にも使用する
ことができる。
In addition to the above-mentioned separation of mixed gas, steam reforming gas, off gas of ethylene plant,
It can also be used for hydrogen recovery from methanol decomposition gas, ammonia decomposition gas, coke oven exhaust gas, etc., or separation and recovery of carbon dioxide from boiler exhaust gas of a thermal power plant.

【0032】[0032]

【実施例】本発明に用いた測定法について以下に示す。 (1)ミクロ孔容積測定法 本発明の分子ふるい炭素のミクロ孔容積の測定は、全自
動ガス吸着測定装置(BELSORP-28、日本ベル株式会社
製)を用いて、酸素(分子径2.8Å)、エタン(分子径4.
0Å)、イソブタン(分子径5.0Å)の0〜760mmHg、
298Kにおける吸着等温線を測定し、式(1)、(2)のD
ubinin-Astakhov式を用いて整理することによって行っ
た。
EXAMPLES The measuring methods used in the present invention are shown below. (1) Micropore volume measurement method The micropore volume of the molecular sieving carbon of the present invention is measured using a fully automatic gas adsorption measuring device (BELSORP-28, manufactured by Nippon Bell Co., Ltd.) with oxygen (molecular diameter 2.8Å). ), Ethane (molecular size 4.
0 Å), isobutane (molecular diameter 5.0 Å) 0-760 mmHg,
The adsorption isotherm at 298K was measured, and D in equations (1) and (2)
It was done by organizing using the ubinin-Astakhov formula.

【0033】W/W0=exp{−(A/E)n} (1) A=RTln(P0/P) (2) ここで W;平衡圧Pにおける吸着量 W0;極限吸着量 A;吸着ポテンシャル E;吸着特性エネルギー R;気体定数 T;測定温度 P0;飽和蒸気圧 P;平衡圧 n;定数(酸素の場合n=2、エタン、イソブタンの場合n=
3) (2)吸着量測定法 本発明の分子ふるい炭素の酸素及び窒素の吸着量測定
は、図1に示す吸着特性測定装置を用いて行った。
W / W 0 = exp {-(A / E) n } (1) A = RTln (P 0 / P) (2) where W; adsorption amount at equilibrium pressure P W 0 ; ultimate adsorption amount A Adsorption potential E; Adsorption characteristic energy R; Gas constant T; Measurement temperature P 0 ; Saturated vapor pressure P; Equilibrium pressure n; Constant (n = 2 for oxygen, n = for ethane and isobutane)
3) (2) Method of measuring adsorption amount The adsorption amount of oxygen and nitrogen of the molecular sieving carbon of the present invention was measured using the adsorption characteristic measuring device shown in FIG.

【0034】同図において、試料室(4)(200ml)に3
gの試料を入れ、バルブ(18)、(11)、(8)を閉じバ
ルブ(2)、(3)を開けて30分間脱気した後、バルブ
(2)、(3)を閉じバルブ(11)を開け、所定時間におけ
る内部圧力の変化を測定して酸素濃度及び窒素のそれぞ
れの吸着速度を求めた。
In the figure, the sample chamber (4) (200 ml) has 3
Insert the sample of g, close valves (18), (11) and (8), open valves (2) and (3) and degas for 30 minutes, then
(2) and (3) were closed and the valve (11) was opened, and the change in internal pressure during a predetermined time was measured to determine the oxygen concentration and the nitrogen adsorption rate.

【0035】なお、(1)は真空ポンプ、(6)、(7)は圧
力センサー、(9)は記録計、(14)、(15)はガスレギ
ュレーター、(16)は窒素ボンベ、(17)は酸素ボンベ
である。
Incidentally, (1) is a vacuum pump, (6) and (7) are pressure sensors, (9) is a recorder, (14) and (15) are gas regulators, (16) is a nitrogen cylinder, and (17) ) Is an oxygen cylinder.

【0036】窒素と酸素の分離性能をあらわす指標とし
て、吸着開始1分後の吸着量を窒素分はQ1、酸素分はQ2
とし、吸着量差ΔQを下記の式(3) ΔQ=Q2-Q1 (3) により求めた。 (3)炭素含有率測定 本発明の分子ふるい炭素の炭素含有率は、柳本製作所CH
Nコーダー、MT-3により分析した。
As an index showing the separation performance of nitrogen and oxygen, the adsorption amount one minute after the start of adsorption was Q 1 for nitrogen and Q 2 for oxygen.
Then, the adsorption amount difference ΔQ was determined by the following formula (3) ΔQ = Q 2 −Q 1 (3). (3) Carbon content measurement The carbon content of the molecular sieving carbon of the present invention is Yanagimoto CH
It was analyzed by N coder, MT-3.

【0037】(実施例1)平均粒子径18μmのフェノー
ル樹脂粉末10重量部に対し、メラミン樹脂水溶液(住
友化学工業株式会社製、スミテックスレジンM-3、固形
分濃度80重量%)を固形分で8重量部、重合度170
0、けん化度99%のポリビニルアルコールを温水で2
0重量%の水溶液となるように溶解したポリビニルアル
コール水溶液20重量部、馬鈴薯澱粉2重量部、界面活
性剤(花王株式会社製、ペレックスNB-L)0.7重量部計
量した。
Example 1 10 parts by weight of a phenol resin powder having an average particle diameter of 18 μm was mixed with an aqueous solution of melamine resin (Sumitex Resin M-3, manufactured by Sumitomo Chemical Co., Ltd., solid content concentration 80% by weight) as a solid content. 8 parts by weight, degree of polymerization 170
0, polyvinyl alcohol with a saponification degree of 99% is warmed to 2
20 parts by weight of an aqueous polyvinyl alcohol solution dissolved so as to be a 0% by weight aqueous solution, 2 parts by weight of potato starch, and 0.7 parts by weight of a surfactant (Perex NB-L manufactured by Kao Corporation) were weighed.

【0038】上記原料の内メラミン樹脂水溶液、ポリビ
ニルアルコール水溶液、馬鈴薯澱粉、界面活性剤を5分
間混合し、その混合物にフェノール樹脂粉末を加え更に
10分間混合した。
Of the above raw materials, an aqueous melamine resin solution, an aqueous polyvinyl alcohol solution, potato starch and a surfactant were mixed for 5 minutes, and the phenol resin powder was added to the mixture and further mixed for 10 minutes.

【0039】この混合組成物を2軸押出し造粒機(不二
パウダル株式会社製、ペレッタダブルEXDF-100型)で
押出し、焼成後の外径が、1.0mmφ、ペレット長が0.
2mm(試料1)、0.5mm(試料2)、1.0mm(試料3)、
1.5mm(試料4)となる様に切断し4種類の分子ふるい
炭素の造粒を試みた。ここで、ペレット長が本発明の範
囲より短い0.2mmのものは、円柱状を保ったまま切断
できず、ペレット状に造粒不可能であった。
This mixed composition was extruded by a twin-screw extrusion granulator (Peretta Double EXDF-100 type manufactured by Fuji Paudal Co., Ltd.), and after firing, the outer diameter was 1.0 mmφ and the pellet length was 0.
2mm (Sample 1), 0.5mm (Sample 2), 1.0mm (Sample 3),
An attempt was made to granulate four kinds of molecular sieving carbon by cutting so as to have a size of 1.5 mm (Sample 4). Here, a pellet having a length of 0.2 mm, which is shorter than the range of the present invention, could not be cut while maintaining a cylindrical shape, and could not be pelletized into a pellet.

【0040】これらのペレットをそれぞれ290℃で3
時間乾燥させた後、有効径750mmφ×4250mmLの
ロータリーキルンに入れ、窒素気流下において、30℃
/Hで800℃まで昇温し、該温度で1時間保持した後、
窒素雰囲気下で炉冷した。
Each of these pellets was heated at 290 ° C. for 3 hours.
After drying for an hour, put it in a rotary kiln with an effective diameter of 750 mmφ x 4250 mmL and under a nitrogen stream at 30 ° C.
/ H to 800 ℃, hold at the temperature for 1 hour,
The furnace was cooled under a nitrogen atmosphere.

【0041】こうして得られた試料2〜4の分子ふるい
特性を評価するため、図1に示す吸着特性装置により酸
素及び窒素の吸着量を測定した。測定結果を表1に示
す。
In order to evaluate the molecular sieving characteristics of the samples 2 to 4 thus obtained, the adsorption amounts of oxygen and nitrogen were measured by the adsorption characteristic device shown in FIG. The measurement results are shown in Table 1.

【0042】また、試料2〜4を用い、PSA法により空
気中の窒素と酸素の分離実験を行った。本実験に用いた
PSAの概略図を図2に示す。吸着塔サイズは内径30mm
φ×800mmLであり、2本の吸着塔内に分子ふるい炭
素を充填した。
Further, samples 2 to 4 were used to carry out an experiment for separating nitrogen and oxygen in the air by the PSA method. Used in this experiment
A schematic diagram of PSA is shown in FIG. Adsorption tower size is 30mm inside diameter
φ × 800 mmL, and two adsorption towers were filled with molecular sieving carbon.

【0043】まずコンプレッサーで圧縮した空気を吸着
塔に送り、吸着塔の圧力をゲージ圧で9.5kgf/cm2Gと
し、供給量を16NL/min、取出量を4NL/minに固定し
た。PSA操作は上下均圧−吸着−上下均圧−再生(パー
ジ)の4工程で実施し、各工程の切り替えは、電磁弁を
シーケンサーで制御して行った。また、得られた製品窒
素は酸素濃度計により酸素濃度を測定することで評価し
た。PSA操作条件を表2に示す。また測定結果を表1に
示す。
First, the air compressed by the compressor was sent to the adsorption tower, the pressure of the adsorption tower was set to 9.5 kgf / cm 2 G by gauge pressure, the supply rate was fixed at 16 NL / min, and the extraction rate was fixed at 4 NL / min. The PSA operation was carried out in four steps of vertical pressure equalization-adsorption-vertical pressure equalization-regeneration (purge), and the switching of each step was performed by controlling the solenoid valve with a sequencer. The obtained product nitrogen was evaluated by measuring the oxygen concentration with an oximeter. The PSA operating conditions are shown in Table 2. The measurement results are shown in Table 1.

【0044】何れの試料においても、窒素の酸素濃度は
低く、高い空気分離能を示している。
In all the samples, the oxygen concentration of nitrogen was low and the air separation ability was high.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】(比較例)実施例1と同様の製造方法で、外
径1mm、ペレット長2mm、2.5mm、3mmの試料5、
6、7を作成した。また、得られた試料は実施例1と同
様の方法で、PSA法により空気中の窒素と酸素の分離実
験を行った。
Comparative Example A sample 5 having an outer diameter of 1 mm, a pellet length of 2 mm, 2.5 mm and 3 mm was prepared by the same manufacturing method as in Example 1.
6 and 7 were created. Further, the obtained sample was subjected to an experiment for separating nitrogen and oxygen in the air by the PSA method in the same manner as in Example 1.

【0048】試料2〜7のPSA評価結果よりペレット長
をx軸、酸素濃度をy軸としたグラフを図3に示す。図3
より試料5、6、7で予想される酸素濃度の範囲より、
意外にも試料2〜4の酸素濃度は遥かに低い。ペレット
長を本発明の請求の範囲内に制御することで、PSA性能
は飛躍的に向上するということが分る。
From the PSA evaluation results of Samples 2 to 7, a graph in which the pellet length is the x-axis and the oxygen concentration is the y-axis is shown in FIG. Figure 3
From the range of oxygen concentration expected in Samples 5, 6 and 7,
Surprisingly, the oxygen concentration of Samples 2 to 4 is much lower. It can be seen that controlling the pellet length within the scope of the claims of the present invention dramatically improves PSA performance.

【0049】(実施例2)実施例1で得られた試料3につ
いて、ミクロ孔容積測定、嵩密度測定、炭素含有率測定
を行った。
Example 2 The sample 3 obtained in Example 1 was subjected to micropore volume measurement, bulk density measurement, and carbon content measurement.

【0050】結果を表3に示す。ミクロ孔容積は0.1
〜0.7ml/g、粒子嵩密度は0.7〜1.2g/cm3、炭素含
有率は80重量%以上である。
The results are shown in Table 3. Micropore volume is 0.1
˜0.7 ml / g, particle bulk density is 0.7 to 1.2 g / cm 3 , and carbon content is 80% by weight or more.

【0051】[0051]

【表3】 [Table 3]

【0052】(実施例3)実施例1と同様の製造方法で、
ペレット長1mm、外径0.5mm、1mm、1.5mmの試料
8、9、10を作成した。また、得られた試料は実施例
1と同様の方法で、PSA法により空気中の窒素と酸素の
分離実験を行った。
(Embodiment 3) By the same manufacturing method as in Embodiment 1,
Samples 8, 9 and 10 having a pellet length of 1 mm and an outer diameter of 0.5 mm, 1 mm and 1.5 mm were prepared. Further, the obtained sample was subjected to an experiment for separating nitrogen and oxygen in the air by the PSA method in the same manner as in Example 1.

【0053】結果を表4に示す。何れの試料も取り出し
窒素の酸素濃度は低く、高い空気分離能を示している。
The results are shown in Table 4. All the samples had a low oxygen concentration of nitrogen and showed high air separation ability.

【0054】[0054]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に用いた吸着特性測定装置を示す図であ
る。
FIG. 1 is a diagram showing an adsorption characteristic measuring apparatus used in Examples.

【図2】実施例に用いた圧力スイング吸着(PSA)装置を
示す図である。
FIG. 2 is a diagram showing a pressure swing adsorption (PSA) device used in Examples.

【図3】PSA評価結果よりペレット長をx軸、酸素濃度を
y軸としたグラフ図である。
[Figure 3] From the PSA evaluation results, the pellet length is x-axis and the oxygen concentration is
It is a graph figure made into the y-axis.

【符号の説明】[Explanation of symbols]

1 真空ポンプ 2、3、11、18 電磁弁 4 資料室 5 調整室 6,7 圧力センサー 8、12、13 バルブ 9 記録計 10 圧力計 14,15 ガスレギュレーター 16 窒素ボンベ 17 酸素ボンベ 21 空気圧縮機 22 エアードライヤー 23、23a 吸着塔 24、24a、27、27a、30、30a、33、33
a、35 電磁弁 25、25a、26、28、29、29a、31、32
配管 34 製品タンク 36 圧力調整器
1 Vacuum pump 2, 3, 11, 18 Solenoid valve 4 Data chamber 5 Adjustment chamber 6, 7 Pressure sensor 8, 12, 13 Valve 9 Recorder 10 Pressure gauge 14,15 Gas regulator 16 Nitrogen cylinder 17 Oxygen cylinder 21 Air compressor 22 Air dryer 23, 23a Adsorption tower 24, 24a, 27, 27a, 30, 30a, 33, 33
a, 35 Solenoid valves 25, 25a, 26, 28, 29, 29a, 31, 32
Piping 34 Product tank 36 Pressure regulator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D012 BA04 CA03 CA05 CA06 CA12 CA20 CB16 CD07 CG05 CJ01 CJ02 4G046 CA04 CB02 CB05 CB08 CC01 4G066 AA04B AB30 AC01A AC12A AC25A BA01 BA20 BA24 BA25 CA27 CA37 DA03 EA09 GA14 4G073 BA62 BD18 CZ53 GA08 GA11 GA13 GA14 GB07 UA06    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D012 BA04 CA03 CA05 CA06 CA12                       CA20 CB16 CD07 CG05 CJ01                       CJ02                 4G046 CA04 CB02 CB05 CB08 CC01                 4G066 AA04B AB30 AC01A AC12A                       AC25A BA01 BA20 BA24                       BA25 CA27 CA37 DA03 EA09                       GA14                 4G073 BA62 BD18 CZ53 GA08 GA11                       GA13 GA14 GB07 UA06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】高さが0.5〜1.5mmの範囲である柱状の
分子ふるい炭素。
1. A columnar molecular sieving carbon having a height in the range of 0.5 to 1.5 mm.
【請求項2】全体の内80vol%以上が、高さが0.5〜
1.5mmの範囲である柱状の分子ふるい炭素。
2. The height is 0.5 to 50% of the whole.
Columnar molecular sieving carbon in the range of 1.5 mm.
【請求項3】径が0.5〜1.8mmである請求項1あるい
は2記載の分子ふるい炭素。
3. The molecular sieving carbon according to claim 1, which has a diameter of 0.5 to 1.8 mm.
【請求項4】粒径0.8〜120μmの多数の炭素一次粒
子が三次元的に不規則に合体されてなる内部構造を有
し、ミクロ孔全容積が0.1〜0.7ml/g、細孔直径2.
8〜5.0Åの範囲となるミクロ孔容積がミクロ孔全容
積の60vol%以上であり、少なくとも炭素含有率80
重量%以上で粒子嵩密度0.7〜1.2g/cm 3であること
を特徴とする請求項1〜3記載の分子ふるい炭素。
4. A large number of carbon primary particles having a particle size of 0.8 to 120 μm.
It has an internal structure in which the children are three-dimensionally and irregularly united.
However, the total volume of micropores is 0.1 to 0.7 ml / g, and the pore diameter is 2.
The micropore volume in the range of 8 to 5.0Å is the total micropore volume.
60 vol% or more of the product, carbon content of at least 80
Bulk density of particles is 0.7 to 1.2 g / cm at a weight% or more. 3To be
The molecular sieving carbon according to any one of claims 1 to 3, wherein
【請求項5】主原料が熱硬化性フェノール樹脂粉末であ
る請求項1〜4記載の分子ふるい炭素。
5. The molecular sieving carbon according to claim 1, wherein the main raw material is a thermosetting phenol resin powder.
【請求項6】熱硬化性フェノール樹脂粉末が (A)粒径1〜150μmのフェノール樹脂の球状一次粒子
またはそれとその二次凝集物からなり、 (B)少なくとも全体の50重量%は100タイラーメッ
シュ篩を通過し得る大きさであり、 (C)KBr錠剤法による赤外線吸収スペクトルにおいて16
00cm-1のピーク吸収強度をD1600、900〜1015c
m-1の範囲の最も大きなピーク吸収強度をD9001015
890cm-1のピーク強度をD890であらわした場合に下記
式 D9001015/D1600=0.2〜9.0 D890/D1600=0.09〜1.0 を満足し、且つ (D)還流下であるメタノールの対する溶解度が50重量
%以下、で特定される請求項4あるいは5記載の分子ふ
るい炭素。
6. A thermosetting phenolic resin powder comprising (A) spherical primary particles of phenolic resin having a particle size of 1 to 150 μm or a secondary agglomerate thereof, and (B) at least 50% by weight of 100 Tyler mesh. The size is such that it can pass through a sieve, and the infrared absorption spectrum by the (C) KBr tablet method is 16
The peak absorption intensity at 00 cm -1 is D 1600 , 900 to 1015c
The largest peak absorption intensity in the range of m -1 is D 900 ~ 1015 ,
When the peak intensity at 890 cm −1 is represented by D 890 , the following formulas D 900 to 1015 / D 1600 = 0.2 to 9.0 D 890 / D 1600 = 0.09 to 1.0 are satisfied, and ( D) The molecular sieving carbon according to claim 4 or 5, characterized by having a solubility in methanol under reflux of 50% by weight or less.
【請求項7】請求項1〜6記載の分子ふるい炭素を備え
た圧力スイング吸脱着装置。
7. A pressure swing adsorption / desorption device comprising the molecular sieving carbon according to claim 1.
JP2001299699A 2001-09-28 2001-09-28 Molecular sieve carbon and pressure swing adsorption device using it Expired - Lifetime JP3768134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001299699A JP3768134B2 (en) 2001-09-28 2001-09-28 Molecular sieve carbon and pressure swing adsorption device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001299699A JP3768134B2 (en) 2001-09-28 2001-09-28 Molecular sieve carbon and pressure swing adsorption device using it

Publications (2)

Publication Number Publication Date
JP2003104720A true JP2003104720A (en) 2003-04-09
JP3768134B2 JP3768134B2 (en) 2006-04-19

Family

ID=19120404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001299699A Expired - Lifetime JP3768134B2 (en) 2001-09-28 2001-09-28 Molecular sieve carbon and pressure swing adsorption device using it

Country Status (1)

Country Link
JP (1) JP3768134B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025198A1 (en) * 2004-08-30 2006-03-09 Kuraray Chemical Co., Ltd Method of separating nitrogen gas and molecular sieve carbon
JP2009011904A (en) * 2007-07-02 2009-01-22 Sanyo Electric Industries Co Ltd Gas separator, and operation method for gas separator
JP2009061448A (en) * 2007-08-09 2009-03-26 Tokyo Gas Co Ltd Carbon molecular sieve and its producing method
EP2145906A1 (en) * 2006-10-20 2010-01-20 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
JP2010083754A (en) * 2008-09-29 2010-04-15 Ifp Process for producing hydrogen with complete capture of co2 and recycling unconverted methane
WO2010104102A1 (en) * 2009-03-10 2010-09-16 東洋炭素株式会社 Porous carbon and process for producing same
WO2010147087A1 (en) * 2009-06-19 2010-12-23 東洋炭素株式会社 Porous carbon and method for producing the same
JP2015057373A (en) * 2014-12-24 2015-03-26 東洋炭素株式会社 Porous carbon and method for producing the same
CN109540725A (en) * 2018-12-12 2019-03-29 江苏时代新能源科技有限公司 Graphite powder detection method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670408B2 (en) 2004-08-30 2010-03-02 Kuraray Chemical Co., Ltd. Method of separating nitrogen gas and molecular sieve carbon
KR100851798B1 (en) * 2004-08-30 2008-08-13 구라레 케미칼 가부시키가이샤 Method of separating nitrogen gas and molecular sieve carbon
WO2006025198A1 (en) * 2004-08-30 2006-03-09 Kuraray Chemical Co., Ltd Method of separating nitrogen gas and molecular sieve carbon
US8409756B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8658120B2 (en) 2006-10-20 2014-02-25 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2145906A1 (en) * 2006-10-20 2010-01-20 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8411415B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8293860B2 (en) 2006-10-20 2012-10-23 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8158095B2 (en) 2006-10-20 2012-04-17 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
JP2009011904A (en) * 2007-07-02 2009-01-22 Sanyo Electric Industries Co Ltd Gas separator, and operation method for gas separator
JP2009061448A (en) * 2007-08-09 2009-03-26 Tokyo Gas Co Ltd Carbon molecular sieve and its producing method
JP2010083754A (en) * 2008-09-29 2010-04-15 Ifp Process for producing hydrogen with complete capture of co2 and recycling unconverted methane
JP2010208887A (en) * 2009-03-10 2010-09-24 Toyo Tanso Kk Porous carbon and method of producing the same
WO2010104102A1 (en) * 2009-03-10 2010-09-16 東洋炭素株式会社 Porous carbon and process for producing same
CN102325721A (en) * 2009-03-10 2012-01-18 东洋炭素株式会社 Porous carbon and process for producing same
US9156694B2 (en) 2009-03-10 2015-10-13 Toyo Tanso Co., Ltd. Porous carbon and method of manufacturing same
WO2010147087A1 (en) * 2009-06-19 2010-12-23 東洋炭素株式会社 Porous carbon and method for producing the same
JP2011001224A (en) * 2009-06-19 2011-01-06 Toyo Tanso Kk Porous carbon and method for producing the same
US9248442B2 (en) 2009-06-19 2016-02-02 Toyo Tanso Co., Ltd. Porous carbon and method of manufacturing same
EP2444369A4 (en) * 2009-06-19 2016-07-13 Toyo Tanso Co Porous carbon and method for producing the same
JP2015057373A (en) * 2014-12-24 2015-03-26 東洋炭素株式会社 Porous carbon and method for producing the same
CN109540725A (en) * 2018-12-12 2019-03-29 江苏时代新能源科技有限公司 Graphite powder detection method
CN109540725B (en) * 2018-12-12 2022-05-13 江苏时代新能源科技有限公司 Graphite powder detection method

Also Published As

Publication number Publication date
JP3768134B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
KR950014208B1 (en) Air separation by pressure swing adsorption with ahigh capacity carbon molecular sieve
JP6085569B2 (en) Carbon pyrolysis product adsorbent used for CO2 recovery and method for producing and using the same
EP3356028B1 (en) Method of preparing carbon molecular sieve adsorbents from activated carbon and a polymer
KR950000880B1 (en) High capacity coconut shell char for carbon molecular sieves
EP0204700B1 (en) Activated carbon adsorbent with increased heat capacity and the production thereof
KR100236785B1 (en) Carbonaceous adsorbent, process for producing the same, and method and apparatus for gas separation
US11896954B2 (en) Microporous carbon materials to separate nitrogen in associated and non-associated natural gas streams
JP6400077B2 (en) Novel carbon molecular sieve and pellet composition useful for C2-C3 alkane / alkene separation
Dong et al. Ultramicroporous carbon granules with narrow pore size distribution for efficient CH4 separation from coal‐bed gases
Wang et al. Fabrication of hierarchical N-doped carbon nanotubes for CO2 adsorption
JP2003104720A (en) Molecular sieve carbon and pressure swing adsorption apparatus using it
KR101543962B1 (en) Process for preparing carbon dioxide adsorbent and carbon dioxide capture module containing the adsorbent
Puccini et al. Removal of CO2 from flue gas at high temperature using novel porous solids
US3594982A (en) Process for drying unsaturated organic gaseous compounds
JPH06154595A (en) Molecular sieve carbon for pressure swing type adsorption apparatus
JPH05285379A (en) Production of carbon as molecular sieve
JP3229033B2 (en) Molecular sieve carbon material for hydrogen purification
JP2995495B2 (en) Carbon adsorbent, its production method, gas separation method and its apparatus
JPH02153818A (en) Production of zeolite moldings
JP4780903B2 (en) Separation method of nitrogen gas using molecular sieve carbon
JP2000143224A (en) Production of porous carbon material, and porous carbon material obtained thereby
JPH07187635A (en) Production of molecular sieving carbon
JP3282238B2 (en) Method for producing chemical activated carbon
EP0394350A1 (en) Hydrophobic carbon molecular sieves.
JPH03141111A (en) Production of molecular sieve carbon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Ref document number: 3768134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250