JP3229033B2 - Molecular sieve carbon material for hydrogen purification - Google Patents

Molecular sieve carbon material for hydrogen purification

Info

Publication number
JP3229033B2
JP3229033B2 JP24141492A JP24141492A JP3229033B2 JP 3229033 B2 JP3229033 B2 JP 3229033B2 JP 24141492 A JP24141492 A JP 24141492A JP 24141492 A JP24141492 A JP 24141492A JP 3229033 B2 JP3229033 B2 JP 3229033B2
Authority
JP
Japan
Prior art keywords
hydrogen
msc
gas
adsorption
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24141492A
Other languages
Japanese (ja)
Other versions
JPH0663397A (en
Inventor
勝彦 梅野
正洋 松岡
孝平 村山
Original Assignee
三井鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井鉱山株式会社 filed Critical 三井鉱山株式会社
Priority to JP24141492A priority Critical patent/JP3229033B2/en
Publication of JPH0663397A publication Critical patent/JPH0663397A/en
Application granted granted Critical
Publication of JP3229033B2 publication Critical patent/JP3229033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高純度水素の製造に適
した水素精製用分子篩炭素材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molecular sieve carbon material for hydrogen purification suitable for producing high-purity hydrogen.

【0002】[0002]

【従来の技術】水素は、最近のエネルギー変換の問題を
始め、直接発電や石油化学工業、あるいは半導体、光フ
ァイバー、ニューセラミックスなどハイテク商品の製造
時に必要な雰囲気ガスとして大幅な需要の増加が期待さ
れている。水素は、ナフサなどを使用して水蒸気改質法
で製造される原料ガスなどの粗水素から、深冷法、膜分
離法などの方法で分離精製されているが、最近ではPS
A法(圧力スイングサイクル吸着)により不純物を除去
して高純度の水素を製造する方法が注目されている。P
SA法は、石油化学プラントからのオフガス、天然ガス
やナフサの水蒸気改質ガス、コークス炉ガスあるいはメ
タノールと水蒸気の反応による改質ガスなどの水素含有
ガスから、ゼオライトや分子篩炭素材(以下MSCと称
する)などを吸着材として、水素以外の CO 、CO2 、CH
4 、N2などの不純物を吸着除去するものである。MSC
は疎水性、非極性吸着材で、ゼオライト系の分子篩に比
べて安価で、耐薬品性、耐熱性にすぐれているなどの特
性を有しているが、水素精製用のMSCとして研究され
た例は少ない。FUEL,1981,vol.60, p817〜822 には石炭
を原料とする水素精製用MSCが記載されているが、そ
の細孔分布や嵩密度等の詳細については述べられていな
い。
2. Description of the Related Art Hydrogen is expected to have a large increase in demand as an atmospheric gas necessary for direct power generation, the petrochemical industry, or the production of high-tech products such as semiconductors, optical fibers, and new ceramics, including the recent problem of energy conversion. ing. Hydrogen is separated and refined from crude hydrogen such as a raw material gas produced by a steam reforming method using naphtha or the like by a cryogenic method, a membrane separation method or the like.
A method of producing high-purity hydrogen by removing impurities by the method A (pressure swing cycle adsorption) has been attracting attention. P
The SA method is based on hydrogen-containing gas such as off-gas from petrochemical plants, steam reformed gas of natural gas or naphtha, coke oven gas or reformed gas by reaction of methanol and steam, and converts zeolite or molecular sieve carbon material (hereinafter referred to as MSC). CO), CO 2 , CH other than hydrogen
4, an impurity such as N 2 is to adsorb and remove. MSC
Is a hydrophobic, non-polar adsorbent, which is cheaper than zeolite-based molecular sieves and has excellent properties such as chemical resistance and heat resistance, but it has been studied as an MSC for hydrogen purification. Is less. FUEL, 1981, vol. 60, p817-822, describes an MSC for hydrogen purification using coal as a raw material, but does not describe details such as pore distribution and bulk density.

【0003】[0003]

【発明が解決しようとする課題】PSA法が開発されて
以来、PSA装置に関し数多くの技術改良がなされ、P
SA装置の性能は大きく向上しており、吸着材について
も装置の性能向上に対応できるよう、吸脱着性能、選択
性などの向上が研究されている。PSAにおける水素の
高純度化、回収率の向上のためには、吸着材として充填
されるMSCのガス吸着性能が重要である。通常、MS
Cのガス吸着能力は、MSCの重量当たりで表示される
ことが多いが、実際の使用に際しては、容積当たりの吸
着量が大きい方が同一容積のPSA装置で処理できるガ
ス量が多くなるので有利であり、容積当たりの吸着能力
の大きいもの、すなわち同じ細孔分布、細孔容積を有す
るものであればできるだけ嵩密度が大きいMSCが望ま
しい。
Since the PSA method was developed, a number of technical improvements have been made to the PSA apparatus.
The performance of SA devices has been greatly improved, and improvements in adsorption / desorption performance, selectivity, etc. have been studied for adsorbents so as to be able to cope with the improved performance of the devices. In order to increase the purity and recovery of hydrogen in PSA, the gas adsorption performance of MSC filled as an adsorbent is important. Usually MS
The gas adsorption capacity of C is often indicated by the weight of MSC, but in actual use, the larger the adsorption amount per volume, the greater the amount of gas that can be processed by a PSA device of the same volume, which is advantageous. The MSC having as large a bulk density as possible is desirable if it has a large adsorption capacity per volume, that is, if it has the same pore distribution and pore volume.

【0004】前記のとおり、水素精製用MSCとして公
表されているデータは少ないが、川井利長編「圧力スイ
ング吸着技術集成」工業技術会; 1986年発行、p 198 に
は、水素精製用MSCとして比表面積 850±50 m2/g 、
充填密度 550±30 kg/m3 のMSCが記載されている
が、その製造方法の詳細については明らかではない。ま
た、従来知られているMSCの製造方法に従って比表面
積が 850±50 m2/g程度のMSCを製造すると、嵩密度
が 0.6 g/ml程度以下になってしまい、容積当たりのガ
ス吸着量は 20 ℃、1 気圧において CO が 5〜6 ml/m
l、CO2 が約25ml/ml、CH4 が約13ml/ml程度であり、
高純度の水素を得ようとする場合には回収率が低下して
しまうので、水素精製用PSA装置のMSCの性能とし
ては不十分なものしか得られない。本発明は、このよう
な従来技術の問題点が解消された、嵩密度が大きく、単
位容積当たりの不純物ガスの吸着能力の大きい水素精製
用MSCを提供することを目的とする。
As described above, although there are few data published as MSCs for hydrogen purification, it is published in 1986 by Toshinaga Kawai, "The Combination of Pressure Swing Adsorption Techniques," Technical Association, p. Surface area 850 ± 50 m 2 / g,
Although an MSC with a packing density of 550 ± 30 kg / m 3 is described, details of the production method are not clear. In addition, when an MSC having a specific surface area of about 850 ± 50 m 2 / g is manufactured according to a conventionally known MSC manufacturing method, the bulk density becomes about 0.6 g / ml or less, and the gas adsorption amount per volume is reduced. 5 to 6 ml / m of CO at 20 ° C and 1 atm
l, CO 2 of about 25ml / ml, CH 4 is approximately 13 ml / ml,
If high-purity hydrogen is to be obtained, the recovery rate will decrease, so that the MSC of the PSA device for hydrogen purification will only have an insufficient performance. An object of the present invention is to provide an MSC for hydrogen purification in which the problems of the prior art are solved, the bulk density is large, and the impurity gas adsorption capacity per unit volume is large.

【0005】[0005]

【課題を解決するための手段】本発明者らは、水素精製
用MSCの具備すべき性状について鋭意検討の結果、ミ
クロ孔とマクロ孔の大きさ、分布を制御することによ
り、嵩密度が大きく、水素ガス中に含まれる CO 、CO
2 、CH4 などの不純物ガスの単位容積当たりの吸着量が
大きい、水素精製用MSCとして極めてすぐれた特性を
有するMSCが得られることを見出し、本発明を完成す
るに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the properties to be possessed by MSC for hydrogen purification, and have found that the bulk density is increased by controlling the size and distribution of micropores and macropores. , CO, CO contained in hydrogen gas
2. It has been found that an MSC having an extremely large amount of impurity gas such as CH 4 per unit volume and having excellent characteristics as an MSC for hydrogen purification can be obtained, thereby completing the present invention.

【0006】本発明はヤシ殻炭とソフトピッチとから製
造される比表面積350〜700m2/gの活性炭素材であっ
て、平均径が0.6〜0.7nmで最大径が1nm以下のミク
ロ孔の容積が0.20〜0.40ml/g、孔径が100nm以上
のマクロ孔の容積が0.10〜0.20ml/gであり、かつ嵩
密度が0.60〜0.80g/mlである水素精製用MSCであ
る。
The present invention is an activated carbon material having a specific surface area of 350 to 700 m 2 / g produced from coconut shell charcoal and soft pitch, having a mean pore diameter of 0.6 to 0.7 nm and a maximum pore volume of 1 nm or less. Is an MSC for hydrogen purification having a pore volume of 0.20 to 0.40 ml / g, a macropore having a pore diameter of 100 nm or more having a volume of 0.10 to 0.20 ml / g, and a bulk density of 0.60 to 0.80 g / ml.

【0007】水素製造用原料ガスの一例としてメタノー
ルと水蒸気とを反応させた改質ガスの組成を示すと H2
73〜76 vol%、CO 1〜1.5vol%、CO2 23〜25 vol%であ
る。また、同じく水素製造用原料ガスとして使用される
コークス炉ガスや石油系オフガスなどはこの他に CH4
の不純物を含んでいる。従って水素精製用MSCとして
はこれらの CO 、CO2 、CH4 などの吸着能力が大きいこ
とが必要である。MSCのガス吸着性能を左右する最大
の因子として、炭素材中に存在し、内部に不純物ガス
を吸着する最大径が 10 nm以下のミクロ孔の孔径分布と
容積、それ自体はガスの吸着に関与しないが、吸着ガ
スがミクロ孔に吸着されるまでの通路として重要な役割
を果たす、孔径が 100 nm 以上のマクロ孔の容積及び
炭素材の嵩密度がある。すなわち、水素精製用MSCを
製造するためには、前記不純物ガスの吸着除去に最適の
細孔分布を選ぶことが必要である。
[0007] As an example of a raw material gas for hydrogen production, the composition of a reformed gas obtained by reacting methanol and steam is shown as H 2
73~76 vol%, CO 1~1.5vol%, a CO 2 23~25 vol%. Coke oven gas and petroleum off-gas, which are also used as raw material gases for hydrogen production, also contain impurities such as CH 4 . Therefore, the MSC for hydrogen purification needs to have a large adsorption capacity for these CO 2 , CO 2 , CH 4 and the like. The largest factor that influences the gas adsorption performance of MSC is the pore size distribution and volume of micropores that exist in carbon material and have a maximum diameter of 10 nm or less for adsorbing impurity gas inside, and are themselves involved in gas adsorption. However, there is a volume of macropores having a pore diameter of 100 nm or more and a bulk density of the carbon material, which play an important role as a passage before the adsorbed gas is adsorbed in the micropores. That is, in order to manufacture the MSC for hydrogen purification, it is necessary to select an optimum pore distribution for the adsorption and removal of the impurity gas.

【0008】本発明の水素精製用MSCにおいては、平
均径が 0.6〜0.7 nmで最大径が 1 nm 以下のミクロ孔の
容積が 0.20 〜0.40ml/g であり、孔径が 100 nm 以上
のマクロ孔の容積が 0.10 〜0.20ml/g 、かつ嵩密度が
0.60 〜0.80 g/mlとなるように調整する。ミクロ孔の
平均径が 0.6 nm 未満では不純物ガスが細孔内に入り難
くなるため、ガスの吸着速度が遅くなり、吸着量も減少
する。また、0.7 nmを超えると吸着速度は早く細孔容積
も増大するものの、常温における吸着量は減少する傾向
にあるので好ましくない。ミクロ孔の容積が 0.20 〜0.
40ml/g の範囲を外れるとミクロ孔の平均径を前記範囲
内に調整するのが難しくなるので好ましくない。また、
マクロ孔はガスの吸着に直接は関与しないが 0.10 ml/
g 未満ではガスの吸着性能が低下し、また、0.20ml/g
を超えるとMSCの嵩密度が小さくなりすぎるので好ま
しくない。
In the MSC for hydrogen purification of the present invention, the volume of micropores having an average diameter of 0.6 to 0.7 nm and a maximum diameter of 1 nm or less is 0.20 to 0.40 ml / g, and macropores having a pore diameter of 100 nm or more. Has a volume of 0.10 to 0.20 ml / g and a bulk density of
Adjust to 0.60 to 0.80 g / ml. If the average diameter of the micropores is less than 0.6 nm, the impurity gas does not easily enter the pores, so that the gas adsorption speed is reduced and the adsorption amount is also reduced. On the other hand, if it exceeds 0.7 nm, the adsorption rate is high and the pore volume increases, but the amount of adsorption at room temperature tends to decrease, which is not preferable. The volume of the micropore is 0.20 to 0.
Outside the range of 40 ml / g, it is difficult to adjust the average diameter of the micropores within the above range, which is not preferable. Also,
Macropores do not directly affect gas adsorption, but 0.10 ml /
If it is less than 0.2 g, the gas adsorption performance will be reduced, and 0.20 ml / g
Exceeding this is not preferable because the bulk density of MSC becomes too small.

【0009】本発明の水素精製用MSCは、例えば次の
ような方法により製造することができる。平均粒子径 7
4 μm 以下に粉砕した比表面積(CO2-BET )50〜350 m2
/gのヤシガラ炭 60〜95重量部に、ソフトピッチ 5〜
40重量部を加えて混練し、好ましくは 1〜15mmΦ程度の
ペレット状に成形し、400 〜800 ℃の比較的低温で 10
分〜6 時間乾留し、次いで 700〜1000℃で 30 分〜10時
間賦活する。乾留条件が弱すぎると揮発分の残存が多く
なり、強すぎると焼締まりにより細孔の発達が抑えられ
るので好ましくない。また、賦活条件が弱すぎると吸着
に関与する細孔が少なく、強すぎるとミクロ孔の径が大
きくなりすぎてガス吸着能が低下するとともに、マクロ
孔の増大により嵩密度が低下するので好ましくない。こ
のように特定比表面積を有するヤシガラ炭とソフトピッ
チの混合比率を適切な範囲内に調整し、適切な乾留及び
賦活条件で処理することにより、水素精製用MSCとし
て好適な細孔分布を有し、従来公知のMSCに比較して
嵩密度の大きいMSCを得ることができる。
The hydrogen purifying MSC of the present invention can be produced, for example, by the following method. Average particle size 7
Specific surface area (CO 2 -BET) crushed to 4 μm or less 50 to 350 m 2
/ G coconut charcoal 60 ~ 95 parts by weight, soft pitch 5 ~
40 parts by weight are added and kneaded, preferably formed into a pellet having a size of about 1 to 15 mmφ, and then formed at a relatively low temperature of 400 to 800 ° C.
Distill for minutes to 6 hours, then activate at 700 to 1000 ° C for 30 minutes to 10 hours. If the dry distillation conditions are too weak, the residual volatile matter will increase, and if it is too strong, the development of pores will be suppressed by compaction, which is not preferable. In addition, when the activation condition is too weak, the number of pores involved in adsorption is small, and when too strong, the diameter of the micropores becomes too large and the gas adsorption capacity decreases, and the bulk density decreases due to an increase in macropores, which is not preferable. . By adjusting the mixing ratio of coconut shell charcoal having a specific specific surface area and soft pitch in an appropriate range and treating it under appropriate dry distillation and activation conditions, it has a pore distribution suitable for MSC for hydrogen purification. Thus, MSCs having a higher bulk density than conventionally known MSCs can be obtained.

【0010】本発明の水素精製用MSCは、20℃、760
mmHgにおける単位容積当たりのガス吸着量(ml/ml)
が、CO 8〜9 、CO2 38〜40、CH4 19〜20 と従来のMS
Cに比較して著しく大きくなっており、水素精製用MS
Cとして極めて優れた性能を有している。すなわち、前
記のように細孔分布を調節することによりガスの吸着、
脱着の速度を従来同様に維持したままで容積当たりのガ
ス吸着量を著しく増大させることができた。このため、
不純物ガスの除去効率がよくなり、より高純度の水素が
得られるようになり、さらに吸着塔が小さくて済み、M
SC自身のマクロ孔も小さいので塔全体の死容積が少な
くなり、再生用脱着水素あるいはパージ水素として消費
される水素の量が減り、製品水素の回収率を向上させる
ことができた。
The hydrogen purifying MSC of the present invention has a temperature of 20.degree.
Gas adsorption amount per unit volume in mmHg (ml / ml)
However, CO 8-9, CO 2 38-40, CH 4 19-20 and conventional MS
MS for hydrogen purification
C has extremely excellent performance. That is, by adjusting the pore distribution as described above, gas adsorption,
It was possible to significantly increase the amount of gas adsorbed per volume while maintaining the desorption speed as before. For this reason,
The removal efficiency of impurity gas is improved, and higher-purity hydrogen can be obtained, and the adsorption tower can be made smaller.
Since the macropores of the SC itself were also small, the dead volume of the entire column was reduced, the amount of hydrogen consumed as desorbed hydrogen for regeneration or purged hydrogen was reduced, and the recovery rate of product hydrogen could be improved.

【0011】[0011]

【実施例】以下実施例により本発明についてさらに具体
的に説明する。なお、各実施例において、ガス吸着量等
は、次の方法により測定した。 (ガス吸着量)ガス吸着測定装置(日本ベル社製、ベル
ソープ28)を用いて、予め 300℃で真空脱気したMSC
につき 20 ℃における各測定点での平衡吸着圧力とガス
吸着量を測定する。得られた吸着等温線より 760mmHgに
おけるガス吸着量を求めた。 (ミクロ孔の径と容積)ガス吸着量測定で使用した装置
において、−196 ℃で窒素を吸着させ、その吸着等温線
を t- プロット法で解析することにより求めた。 (マクロ孔の容積)水銀ポロシメーター(島津製作所
製、ポアサイザ9305)を用いて予め 130℃で乾燥させた
MSCにつき、水銀圧入法により測定した。
The present invention will be described more specifically with reference to the following examples. In each example, the gas adsorption amount and the like were measured by the following method. (Gas adsorption amount) Using a gas adsorption measuring device (Nippon Bell Co., Bell Soap 28), MSC previously vacuum degassed at 300 ° C
Measure the equilibrium adsorption pressure and gas adsorption amount at each measurement point at 20 ° C. From the obtained adsorption isotherm, the gas adsorption amount at 760 mmHg was determined. (Diameter and volume of micropore) Nitrogen was adsorbed at -196 ° C in the apparatus used for gas adsorption measurement, and the adsorption isotherm was analyzed by t-plot method. (Volume of macropore) The MSC previously dried at 130 ° C. was measured by a mercury porosimetry using a mercury porosimeter (Poresizer 9305, manufactured by Shimadzu Corporation).

【0012】(実施例1)74μm以下が 90 %となるよ
うに粉砕した比表面積 250m2/gのヤシガラ炭70重量部
に、ソフトピッチ 30 重量部を配合して混練し、2mmの
孔を有するダイスで長さ 5mm程度の円柱状に成形した。
この成形炭をロータリー式加熱炉により、600 ℃で 1時
間加熱乾留し、次いで 800℃の温度で 75 分間水蒸気賦
活し水素精製用MSCを得た。
(Example 1) 30 parts by weight of soft pitch were mixed and kneaded with 70 parts by weight of coconut husk charcoal having a specific surface area of 250 m 2 / g, which was pulverized so that the particle size of 74 μm or less became 90%, and kneaded to have 2 mm holes It was formed into a cylindrical shape with a length of about 5 mm using a die.
The formed coal was heat-distilled at 600 ° C. for 1 hour in a rotary heating furnace, and then steam activated at a temperature of 800 ° C. for 75 minutes to obtain MSC for hydrogen purification.

【0013】(実施例2)実施例1と同様にして得られ
た乾留成形炭を、900 ℃の温度で 45 分間水蒸気賦活し
て水素精製用MSCを得た。
Example 2 The dry-distilled coal obtained in the same manner as in Example 1 was activated with steam at a temperature of 900 ° C. for 45 minutes to obtain MSC for hydrogen purification.

【0014】(比較例1)実施例1と同様にして得られ
た乾留成形炭を使用し、従来知られている比表面積の大
きいMSCを製造した。実施例1、2及び比較例1で得
られたMSCの性状を表1に示す。
(Comparative Example 1) Using dry carbonized coal obtained in the same manner as in Example 1, a conventionally known MSC having a large specific surface area was produced. Table 1 shows the properties of the MSCs obtained in Examples 1 and 2 and Comparative Example 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1の結果から、ミクロ孔平均径を 0.63
〜0.64 nm とし、嵩密を 0.65 〜0.68 g/ml に調整した
実施例のMSCは、不純物ガスの吸着量が大きく、水素
精製用MSCとして極めて優れた性能を有することが分
かる。これに対し比表面積を従来水素精製用として知ら
れているMSCの比表面積に近い値に調整した比較例で
は、不純物ガスの吸着量が小さく、嵩密度も小さく、目
標とする性能を備えたMSCは得られなかった。
From the results shown in Table 1, the average micropore diameter was 0.63.
It can be seen that the MSC of the example in which the bulk density was adjusted to 0.65 to 0.68 g / ml had a large adsorption amount of impurity gas, and exhibited extremely excellent performance as an MSC for hydrogen purification. On the other hand, in the comparative example in which the specific surface area was adjusted to a value close to the specific surface area of the MSC conventionally known for hydrogen purification, the MSC having the small amount of the impurity gas adsorbed, the small bulk density and the target performance was obtained. Was not obtained.

【0017】(参考例1)実施例1の方法により製造し
たMSCを使用し、吸着材容量 2.55 lの4塔式水素P
SA装置(吸着圧 9kg/cm2、水素発生量 0.5 Nm3/h
r)で、メタノールと水を反応させた改質ガス(H2 75
%、CO 1%、CO2 24%)を処理し、純度 99.9999%の水
素を 80 〜83%の回収率で得ることができた。また、H2
55%、CO 6%、CO2 3%、CH4 27%を含むコークス炉ガ
スからは、純度 99.999 %の水素を約 70%の回収率
で、純度 99.99%の水素を約 85%の高い回収率で得る
ことができた。
REFERENCE EXAMPLE 1 A four-column hydrogen P having an adsorbent capacity of 2.55 l using MSC produced by the method of Example 1.
SA device (adsorption pressure 9 kg / cm 2 , hydrogen generation amount 0.5 Nm 3 / h
r), the reformed gas (H 2 75
%, 1% CO, 24% CO 2 ), and hydrogen with a purity of 99.9999% was obtained with a recovery of 80 to 83%. Also, H 2
55%, CO 6%, CO 2 3%, from the coke oven gas containing CH 4 27% at a recovery rate of about 70% hydrogen purity of 99.999% high purity of 99.99% hydrogen to about 85% recovery At a rate.

【0018】(参考例2)実施例1及び比較例1で製造
したMSCを用いて、参考例1で使用したのと同じPS
A装置により、吸着圧 9kg/cm2、脱着圧 0.03 kg/cm2
の条件でコークス炉ガスから水素を回収した場合の、水
素回収率と得られる製品水素純度との関係を、従来のM
SCを使用した場合の公表データの例と合わせて図1に
示す。図1から、本発明のMSCは、水素精製用MSC
として極めて優れた性能を有することが分かる。
REFERENCE EXAMPLE 2 Using the MSCs produced in Example 1 and Comparative Example 1, the same PS as used in Reference Example 1 was used.
A device, adsorption pressure 9kg / cm 2 , desorption pressure 0.03 kg / cm 2
The relationship between the hydrogen recovery rate and the product hydrogen purity obtained when hydrogen was recovered from coke oven gas under the conditions of
FIG. 1 shows an example of the published data when SC was used. From FIG. 1, the MSC of the present invention is an MSC for hydrogen purification.
It can be seen that this has extremely excellent performance.

【0019】[0019]

【発明の効果】本発明の水素精製用MSCは、単位容積
当たりの CO 、CO2 、CH4 等のガスの吸着量が大きく、
水素精製PSA装置の吸着材として使用した場合に、同
一容積の吸着塔で従来のMSCに比較して 1.5倍量以上
のガスを処理することができ、しかも高い回収率で高純
度の水素を得ることができる。
The MSC for hydrogen purification of the present invention has a large adsorption amount of gas such as CO, CO 2 and CH 4 per unit volume.
When used as an adsorbent for a hydrogen-purifying PSA device, 1.5 times or more of gas can be treated in an adsorption tower of the same volume as compared with conventional MSC, and high-purity hydrogen can be obtained at a high recovery rate. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 MSCを用いたPSA装置により、コークス
炉ガスから水素を回収した場合の水素回収率と製品水素
純度との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a hydrogen recovery rate and product hydrogen purity when hydrogen is recovered from coke oven gas by a PSA device using MSC.

【符号の説明】[Explanation of symbols]

1.実施例1のMSCを用いた場合の水素回収率 2.比較例1のMSCを用いた場合の水素回収率 3.公表データによる従来技術のMSCを用いた場合の
水素回収率
1. 1. Hydrogen recovery rate using MSC of Example 1 2. Hydrogen recovery rate using MSC of Comparative Example 1 Hydrogen recovery rate using prior art MSC based on published data

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−238018(JP,A) 特開 平2−248313(JP,A) 特開 平4−338207(JP,A) 特開 昭60−16801(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 20/00 - 20/34 C01B 31/00 - 31/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-238018 (JP, A) JP-A-2-248313 (JP, A) JP-A 4-338207 (JP, A) JP-A-60-1985 16801 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 20/00-20/34 C01B 31/00-31/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ヤシ殻炭とソフトピッチとから製造され
る比表面積350〜700m2/gの活性炭素材であって、平
均径が0.6〜0.7nmで最大径が1nm以下のミクロ孔の
容積が0.20〜0.40ml/g、孔径が100nm以上のマク
ロ孔の容積が0.10〜0.20ml/gであり、かつ嵩密度が
0.60〜0.80g/mlである水素精製用分子篩炭素材。
1. An activated carbon material having a specific surface area of 350 to 700 m 2 / g produced from coconut shell charcoal and soft pitch, wherein the volume of micropores having an average diameter of 0.6 to 0.7 nm and a maximum diameter of 1 nm or less is obtained. 0.20 to 0.40 ml / g, the volume of macropores having a pore diameter of 100 nm or more is 0.10 to 0.20 ml / g, and the bulk density is
A molecular sieve carbon material for hydrogen purification having 0.60 to 0.80 g / ml.
JP24141492A 1992-08-19 1992-08-19 Molecular sieve carbon material for hydrogen purification Expired - Fee Related JP3229033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24141492A JP3229033B2 (en) 1992-08-19 1992-08-19 Molecular sieve carbon material for hydrogen purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24141492A JP3229033B2 (en) 1992-08-19 1992-08-19 Molecular sieve carbon material for hydrogen purification

Publications (2)

Publication Number Publication Date
JPH0663397A JPH0663397A (en) 1994-03-08
JP3229033B2 true JP3229033B2 (en) 2001-11-12

Family

ID=17073941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24141492A Expired - Fee Related JP3229033B2 (en) 1992-08-19 1992-08-19 Molecular sieve carbon material for hydrogen purification

Country Status (1)

Country Link
JP (1) JP3229033B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2995495B2 (en) * 1995-04-27 1999-12-27 日本酸素株式会社 Carbon adsorbent, its production method, gas separation method and its apparatus
DE69621996T2 (en) * 1995-04-27 2003-06-18 Nippon Sanso Corp., Tokio/Tokyo CARBON-BASED ADSORBES, METHOD FOR THE PRODUCTION THEREOF AND METHOD AND DEVICE FOR GAS SEPARATION
US6027549A (en) * 1998-04-28 2000-02-22 Air Products And Chemicals, Inc. Adjusted density carbon for hydrogen PSA
JP2007331986A (en) * 2006-06-15 2007-12-27 Japan Enviro Chemicals Ltd Activated carbon
EP3548172B1 (en) * 2016-11-30 2020-12-09 Solvay SA Advanced porous carbonaceous materials and methods to prepare them
JP7423839B1 (en) * 2023-03-09 2024-01-29 大阪ガスケミカル株式会社 Porous material for hydrogen purification, its manufacturing method, and hydrogen purification equipment

Also Published As

Publication number Publication date
JPH0663397A (en) 1994-03-08

Similar Documents

Publication Publication Date Title
US6402813B2 (en) Process for purifying a gas by adsorption of the impurities on several active carbons
KR100851241B1 (en) Absorbent for Separating Nitrogen from Mixed Gas of Oxygen And Nitrogen
US5912422A (en) Method for purifying hydrogen based gas mixture using a lithium- exchanged X zeolite
US4477267A (en) Molecular sieve zeolite for producing hydrogen by pressure variation adsorption technique
KR100236785B1 (en) Carbonaceous adsorbent, process for producing the same, and method and apparatus for gas separation
JP3524527B2 (en) Adsorbent and method and apparatus for producing nitrogen using the same
TWI382956B (en) Gas purification process
US20110005392A1 (en) Process for separation of co2 by pressure-modulated adsorption on a porous carbon solid
JPS62500572A (en) Method for producing activated carbon adsorbent pellets with high heat capacity and pelletized activated carbon adsorbent with high heat capacity
JP2001240407A (en) Activated carbon and its manufacturing method
RU2436625C1 (en) Method to produce carbon adsorbent
JP3229033B2 (en) Molecular sieve carbon material for hydrogen purification
JP4864238B2 (en) Activated carbon and its manufacturing method
Nandi et al. Carbon molecular sieves for the concentration of oxygen from air
KR101337523B1 (en) Manufacturing of graphene nanosheet for carbon dioxide adsorbent
WO2011162121A1 (en) Method and device for purifying propane
KR20010090588A (en) Method for the separation of molecules in the gas phase by adsorption by means of agglomerated solid inorganic adsorbents with a narrow and calibrated mesopore distribution
JP4876307B2 (en) Method for producing activated carbon
JP2004506509A (en) Gas separation method
Lu Evolution of pore structure of high-ash char during activation
JP2001054733A (en) Adsorption medium having selectivity improved in gas separation
Sivadas et al. Effect of catalyst concentration and high-temperature activation on the CO2 adsorption of carbon nanospheres prepared by solvothermal carbonization of β-cyclodextrin
JP7423839B1 (en) Porous material for hydrogen purification, its manufacturing method, and hydrogen purification equipment
Gao et al. Preparation of molded biomass carbon from coffee grounds and its CH4/N2 separation performance
JPS635324B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees