JP4780903B2 - Separation method of nitrogen gas using molecular sieve carbon - Google Patents

Separation method of nitrogen gas using molecular sieve carbon Download PDF

Info

Publication number
JP4780903B2
JP4780903B2 JP2003164759A JP2003164759A JP4780903B2 JP 4780903 B2 JP4780903 B2 JP 4780903B2 JP 2003164759 A JP2003164759 A JP 2003164759A JP 2003164759 A JP2003164759 A JP 2003164759A JP 4780903 B2 JP4780903 B2 JP 4780903B2
Authority
JP
Japan
Prior art keywords
adsorption
nitrogen
pressure
molecular sieve
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003164759A
Other languages
Japanese (ja)
Other versions
JP2005000749A (en
Inventor
善信 小谷
靖雄 岸田
悟 赤瀬
正美 原
栄志 川端
章 竹谷
秀作 横須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Bellpearl Inc
Original Assignee
Air Water Bellpearl Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Bellpearl Inc filed Critical Air Water Bellpearl Inc
Priority to JP2003164759A priority Critical patent/JP4780903B2/en
Publication of JP2005000749A publication Critical patent/JP2005000749A/en
Application granted granted Critical
Publication of JP4780903B2 publication Critical patent/JP4780903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒素発生装置用吸着剤である分子ふるい炭素とそれを利用した窒素ガスの分離方法及び窒素発生装置に関する。
【0002】
【従来の技術】
近年、空気中の窒素と酸素を分離する技術として圧力スイング吸着法(Pressure Swing Adsorption法以下PSA法と略記する。)が開発され、実用化されている。
【0003】
PSA法とは、1塔以上の吸着塔に分子ふるい炭素を充填し、加圧下での選択的吸着と、減圧または常圧での分子ふるい炭素の再生を周期的に繰り返すことにより原料ガス中の特定成分を分離する方法である。分子ふるい炭素は非常に微細且つ分布のシャープな細孔を持ち、細孔径に近い分子径を持つ被吸着物質とそれより小さい分子径を持つ被吸着物質の特定の組み合わせにおいて各々の吸着速度に差が生じると考えられている。
【0004】
これまでに、多くの分子ふるい炭素の製造法が提案され、近年に至って、石炭、椰子殻などの天然物や、合成高分子を主原料とする分子ふるい炭素の工業的製法が可能となってきた。
【0005】
例えば、5%までの揮発成分含量を有するコークスに、熱分解性炭化水素を添加して600〜900℃の温度で処理することによって放出されたカーボンをそのコークスの細孔中に沈着させる分子ふるい炭素の製造法が開示されている(例えば、特許文献1)。
【0006】
また、椰子殻炭粉末をコールタール、またはコールタールピッチをバインダーとして造粒し、600〜900℃で乾留し、乾留炭を鉱酸で洗浄、水洗、乾燥したものにコールタールを含浸させ、600〜900℃で10〜60分間熱処理した後、不活性ガス中で冷却することを特徴とする分子ふるい炭素の製造法が開示されている(例えば、特許文献2)。
【0007】
この様に分子ふるい炭素の製造技術開発が進み、工業的生産も行われている。
【0008】
また、これらの分子ふるい炭素の高性能化の手法として、外径を小径化することによる高性能PSA用分子ふるい炭素が示されている(例えば、特許文献3)。
【0009】
分子ふるい炭素の中で、酸素と窒素の原料ガスから窒素を分離するPSA式窒素発生装置用の炭素の場合、窒素の吸着速度が酸素の吸着速度と比較して大幅に遅いことを利用し吸着剤として使用されている。そして、上述の如き分子ふるい炭素の製造法、またそれを用いた窒素の製造法については多くの先行技術があり、さまざまな方法が用いられている。
【0010】
例えば、分子ふるい炭素として加圧下で単成分吸着を行ったときの酸素と窒素との1分後の吸着容量比が3.5〜15の分子ふるい炭素を使用した窒素ガス分離の方法が開示されている(例えば、特許文献4)。
【0011】
また、酸素吸着量が酸素の供給開始からその飽和吸着量の50%に達する時間(以下、TOと略記する)が5秒から10秒であり、窒素吸着量が窒素の供給開始からその飽和吸着量の50%に達する時間(以下、TNと略記する)が前記時間TOの41倍以上である吸着特性を有する分子ふるい炭素を用いた窒素製造方法が開示されている。これは飽和吸着量の50%に達する時間で酸素と窒素の吸着速度差を表現したものである(例えば、特許文献5)。
【0012】
以上のように、酸素と窒素からなる原料ガスから窒素を分離する分子ふるい炭素の特性については、吸着速度を指標とした先行技術が多い。しかし、比較的大きな分子径の分子と小さな分子径の分子の分離に利用される他の分子ふるい炭素のように細孔径分布等の炭素の物性を指標としているものはほとんど無い。これは酸素の分子径2.8Åと窒素の分子径3.0Åによる吸着速度の差を利用するとされている為、吸着特性を明確に示すことが出来る非常に微細な細孔径範囲の分布を測定する手法が確立されていない事による。
【0013】
最近、PSA窒素発生装置は高性能化が進み、市場ではより小型化や99.99%以上の高純度化が求められている。例えば、吸着剤1トン当りの原料空気処理量が、製品窒素純度の指標として窒素中の酸素濃度100ppmにおいて500Nm3/h未満、1000ppmにおいて570Nm3/h未満、10000ppmにおいて690Nm3/h未満の処理量となるように運転することを特徴とする窒素製造方法が開示されている(例えば、特許文献5)。これは、原料ガスである空気からの窒素収率を向上させることで、吸着剤1t当たりの製品窒素発生量を向上させる方法である。しかし、原料ガス(空気)処理量は従来の分子ふるい炭素と同程度であり、窒素収率上昇分の装置の小型化でしかない。この為、大幅な装置の小型化には、分子ふるい炭素の空気などの原料ガス処理能力の向上が不可欠である。
【0014】
【特許文献1】
特公昭52−18675号公報
【特許文献2】
特公昭62−17690号公報
【特許文献3】
特開平06−154595号公報
【特許文献4】
特許第2619839号公報
【特許文献5】
特開2003−71232号公報
【0015】
【発明が解決しようとする課題】
PSA窒素発生装置の小型化には、吸着剤使用量の低減が最も効果的であり、その為、分子ふるい炭素単位重量或いは単位容積当りの製品窒素発生量を増加させることが不可欠となる。単位重量当りの製品窒素発生量とは、分子ふるい炭素1t当りの製品窒素発生量(Nm3/h・t)により表したものである。例えば、PSA窒素発生装置において使用する分子ふるい炭素の重量をM(t)、1時間当りの製品窒素発生量をQP(Nm3/min)とすると分子ふるい炭素1t当りの製品窒素発生量QP/M(Nm3/h・t)は下記の式で表される。 QP/M=QP/M
【0016】
分子ふるい炭素単位重量当たりの製品窒素発生量の増加には、原料ガスからの窒素収率の上昇、または分子ふるい炭素単位重量当たりの原料ガス処理量を増加させることなどが有効である。前者の方法については、上述の従来の技術でも記載の通り、多くの先行技術が存在するが、これらの方法では大幅な小型化は困難である。
【0017】
その為、後者の原料ガスの処理能力を増加させることが有効となるが、従来の分子ふるい炭素或いは窒素分離方法では単位重量当りの原料ガス処理量を増加させると窒素収率や窒素純度が低下するという問題があった。実際に従来の炭素を用いた場合、製品窒素純度99.9%で単位重量当りの製品窒素発生量は120 (Nm3/h・t)程度であった。
【0018】
窒素収率とは、供給する原料ガス中の窒素から分離回収できる窒素の割合を表したもので、例えば原料ガスが空気であれば、空気中の窒素濃度は約79%であるので、分離回収した窒素の濃度が99.9%である場合は、
窒素収率(%)=100×(単位時間当りの製品窒素発生量×0.999)/(単位時間当りの原料ガス処理量×0.79)
で表される。但し、空気の場合は約1%のAr(アルゴン)ガスを含んでいるが、窒素同様不活性ガスである為、一般的に区別しない。
【0019】
また、単位重量当りの原料ガス処理量とは分子ふるい炭素1t当りの原料ガス処理量(Nm3/h・t)により表したものである。例えば、PSA窒素発生装置において分子ふるい炭素の重量をM(t)、1時間当りの原料ガス処理量をQF(Nm3/h)とすると分子ふるい炭素1t当りの原料ガス処理量QF/M(Nm3/h・t)は下記の式で表される。
F/M=QF/M
【0020】
本発明は、上記の如き問題を解決する為に、鋭意研究を続けた結果、原料ガスの処理量を大幅に増加させても窒素収率や窒素純度が低下しない分子ふるい炭素並びにそれを用いた窒素ガスの分離方法及び分離装置を完成させたものである。
【0021】
本発明の目的は、従来の窒素発生装置用分子ふるい炭素には無い酸素と窒素の吸着特性を持つ分子ふるい炭素により、従来のPSA窒素発生装置と比較し大幅な小型化が可能となる分子ふるい炭素並びにそれを用いた窒素ガスの分離方法及び分離装置を提供することにある。
【0022】
【課題を解決するための手段】
本発明は、(1)一定の加圧下での単成分吸着を行ったときの酸素と窒素との1分後の吸着容量比が1.4以上3以下であって、且つ酸素の5秒後の吸着量が1分後の吸着量の0.85以上である分子ふるい炭素により達成できる。この吸着量測定温度は室温(25℃)であるのが望ましい。
【0023】
一定の加圧下とは、分子ふるい炭素の吸着容量比を求める時の圧力であり、例えば9.5kgf/cm2G(ゲージ圧)以下であり、7kgf/cm2G、5kgf/cm2G、2.5kgf/cm2G等であっても良い。
【0024】
単成分吸着とは、ある特定の1成分のみの分子ふるい炭素への吸着のことである。酸素で単成分吸着を行ったときの吸着量をQO、窒素で単成分吸着を行ったときの吸着量をQNとする。
【0025】
酸素と窒素との1分後の吸着容量比(QO1m/QN1m )とは、一定の加圧下での単成分吸着を行ったときの1分後の酸素の吸着量をQO1m、窒素の吸着量をQN1mとすると
O1m/QN1m =QO1m÷QN1m
で表される。
【0026】
酸素の5秒後の吸着量が1分後の吸着量の0.85以上とは、一定の加圧下での単成分吸着を行った時の5秒後の酸素の吸着量をQO5s、1分後の酸素の吸着量をQO1mとすると、5秒後の酸素の吸着量をQO5sと1分後の酸素の吸着量をQO1mの比(QO5s/QO1m)を用いて、
O5s/QO1m=QO5s÷QO1m
で表したQO5s/QO1mが0.85以上である事を示す。
【0027】
本発明で一定の加圧下での単成分吸着を行ったときの酸素と窒素との1分後の吸着容量比(QO1m/QN1m)が1.4以上3以下であって、且つ酸素の5秒後の吸着量が1分後の吸着量の0.85以上である分子ふるい炭素としたのは、特に酸素と窒素の原料ガスから窒素を分離するのに使用される分子ふるい炭素の性能差を内部構造、結晶構造等の分析値で明確に示すことが困難である為である。その為、窒素発生装置に用いられる分子ふるい炭素の特性は、酸素と窒素の吸着速度比と酸素の吸着速度によって表した。
【0028】
更に、本発明の分子ふるい炭素は、PSA式窒素発生装置の吸着剤として従来に無い性能を発現したものであるが、従来の酸素と窒素の分離用分子ふるい炭素と比較し、細孔径分布や内部構造、結晶構造等での分析値では表現できないものであることから、上記の如き吸着速度を表す指標を用いた。
【0029】
本発明における、一定の加圧下での単成分吸着を行ったときの酸素と窒素との1分後の吸着容量比が1.4以上3以下とは酸素と窒素の吸着速度比の範囲を規定したものである。また、酸素の5秒後の吸着量が1分後の吸着量の0.85以上とは酸素の吸着速度を表したものであるが、このように酸素と窒素の吸着速度比の範囲と酸素吸着速度を規定することで、本発明の分子ふるい炭素の特性を明確に示すことが出来る。本発明においては、後述の吸着量測定装置により、再生状態にある分子ふるい炭素に酸素ガス、または窒素ガスを送り込み、系内の圧力変化を測定することにより吸着量の変化を求め、吸着速度の指標とした。
【0030】
酸素と窒素との1分後の吸着容量比が1.4未満であると窒素と酸素の吸着速度の差が小さく、窒素収率が低下し、3以上であると多量の原料ガスを効率良く処理できない。また、酸素の5秒後の吸着量が1分後の吸着量の0.85以下である場合、多量の原料ガスを処理できても窒素収率が低下する為望ましくない。
【0031】
本発明は、さらに(2)好ましくは加圧下での単成分吸着を行ったときの酸素と窒素の1分後の吸着容量比が1.5〜2.5である分子ふるい炭素である。
【0032】
また本発明は、(3)好ましくは酸素の5秒後の吸着量が1分後の吸着量の0.9以上である分子ふるい炭素である。
【0033】
また、本発明の分子ふるい炭素は一定の加圧下での単成分吸着を行ったときの酸素と窒素の5秒後の吸着容量比が5以上であるのが望ましい。酸素と窒素の5秒後の吸着容量比は、5秒後の酸素の吸着量をQO5s窒素の吸着量をQN5sとすると、
O5s/QN5s =QO5s÷QN5s
で表される。
【0034】
更に本発明は、(4)吸着剤として(1)〜(3)の分子ふるい炭素を充填した吸着塔に主成分が酸素と窒素からなる原料ガスを供給し、高圧吸着工程と低圧再生工程とを吸着塔で繰り返すPSA法による窒素ガスの分離方法により達成できる。
【0035】
吸着塔とは、PSA法により、分離操作を行う際、分子ふるい炭素などの吸着剤を充填する容器のことである。主成分が窒素と酸素からなる原料ガスとは、ガス全体に対し窒素と酸素の総計が50%以上、好ましくは90%以上であり、更に好ましくは98%以上が窒素と酸素からなるガスをいう。高圧吸着工程とは、PSA法において、原料ガスを加圧して吸着塔に通す吸着工程で原料ガス中の昜吸着成分である酸素を優先的に吸着し、難吸着成分である窒素を製品として採取する工程を表す。低圧再生工程とは高圧吸着工程において原料ガスにより加圧された吸着塔の原料ガスの供給を停止して、吸着塔を大気開放し、吸着塔内圧を急速に大気圧近傍まで低下させて分子ふるい炭素中の吸着成分を脱着し分子ふるい炭素を再生する工程である。低圧再生工程には、高圧吸着工程において採取した窒素を一部吸着塔内に流通させるパージ工程を含んでも良い。また、大気開放において、真空ポンプ等で減圧しても良い。
【0036】
更に本発明は、(5)好ましくは供給する原料ガスが3〜10kgf/cm2Gの加圧ガスである(4)の窒素ガスの分離方法である。
【0037】
また本発明は、(6)高圧吸着工程での吸着時間が好ましくは50秒以下である窒素ガスの分離方法である。更に本発明は、(7)好ましくは高圧吸着工程での吸着時間が20秒〜40秒の範囲である窒素ガス分離方法である。吸着時間とは、高圧吸着工程において、原料ガスを吸着塔に供給する時間を指す。
【0038】
更に本発明は、(8)吸着剤として(1)〜(3)の分子ふるい炭素を充填した吸着塔を有する窒素ガス分離装置である。そして、本願発明の窒素ガス分離装置の分子ふるい炭素は、単位重量当りの製品窒素発生量が窒素純度99%のものが250(Nm3/h・t)以上であり更には300(Nm3/h・t)以上、99.9%のものが150(Nm3/h・t)以上であり更には200(Nm3/h・t)以上、99.99%のものが100(Nm3/h・t)以上の性能を有するのである。
【0039】
【発明の実施の形態】
本発明は、主成分が酸素と窒素からなる原料ガスから酸素を選択的に吸着する分子ふるい炭素とそれを吸着剤として利用し、窒素ガスを分離する方法と分離装置によるものである。
【0040】
この分子ふるい炭素は、例えば、粒状フェノール樹脂100重量部当りと熱硬化性樹脂5〜50重量部及び高分子バインダーを1〜30重量部である均一混合物を成形し、非酸化性雰囲気下で500℃〜1100℃の範囲の温度で、加熱処理することによって得られる。
【0041】
本発明においては、一定の加圧下での単成分吸着を行ったときの酸素と窒素との1分後の吸着容量比(QO1m/QN1m )が1.4以上3以下、さらには1.5〜2.5であって、且つ酸素の5秒後の吸着量が1分後の吸着量の0.85以上、さらには0.9以上である吸着特性を発生しうる細孔の制御を可能とする為に、加熱処理前の予備処理条件の検討、非酸化性雰囲気ガスの選定、加熱処理温度の詳細な設定、加熱処理後の再処理等を行い、その特性を可能とした。
【0042】
粒状フェノール樹脂としては、レゾール樹脂、ノボラック樹脂等が挙げられるが、その他の特殊なフェノール樹脂や変性樹脂であっても良い。熱硬化性樹脂としては、フェノール樹脂やメラミン樹脂等が挙げられる。高分子バインダーとしてはポリビニルアルコール及び水溶性又は水膨潤性セルロース誘導体等が挙げられる。
【0043】
加熱処理前の予備処理条件としては、非酸化性雰囲気下150〜400℃で1〜10時間加熱処理することが挙げられる。また、非酸化性雰囲気ガスの選定としては、窒素やアルゴンガス等が挙げられる。
【0044】
加熱処理温度の詳細な設定としては、500〜1000℃、さらには650〜800℃が好ましく、加熱時間としては1〜24時間、さらには1〜12時間が好ましく、加熱においてはロータリーキルン等が好適である。
【0045】
加熱処理後必要であれば再熱処理を行うが、再熱処理の設定としては、50〜800℃、さらには100〜600℃が好ましく、加熱時間としては1時間以上、さらには1〜10時間、が好ましい。
【0046】
但し、本発明は上記の如き製造方法に何ら限定されるものではなく、要は(1)〜(3)を満たす分子ふるい炭素であればよい。この時、本発明の分子ふるい炭素は、一定の加圧下での単成分吸着を行ったときの酸素と窒素との1分後の吸着容量比(QO1m/QN1m )が1.4以上3以下であるものであり、さらには1.5〜2.5であり、且つ酸素の5秒後の吸着量が1分後の吸着量の0.85以上、さらには0.9以上であるものが好適である。
【0047】
また、5秒の吸着容量比QO5s/QN5sは3以上が好適であり、さらには5以上が好適である。
【0048】
充填した吸着塔に主成分が酸素と窒素からなる原料ガスを供給し、高圧吸着工程と低圧再生工程とを吸着塔で繰り返す圧力スイング吸着法による窒素ガスの分離方法を用いた装置の実施形態の一例を図2に示す。
【0049】
装置は、上記記載の分子ふるい炭素を充填した吸着塔、コンプレッサーなどの原料ガス供給手段、窒素ガスを貯留する製品タンク、及びこれらの構成要素を連結するための配管及びガスの流れを制御する為の自動弁とその制御系、流量調節計およびガス濃度の分析計などから構成される。
【0050】
運転方法としては、例えば、吸着塔を2本用いた図2の装置の場合、吸着塔23の高圧吸着工程で、原料ガスは24、25を通り、吸着塔23に供給される。供給される原料ガスは、主成分が酸素と窒素からなるものであり、3〜10kgf/cm2Gの加圧ガスが好適である。
【0051】
供給する原料ガス処理量は、例えば、製品窒素純度が99.9%の場合、1500Nm3/h・t以下が好適であり、さらには1200Nm3/h・t以下が好適であり、さらには500Nm3/h・t〜1200Nm3/h・tが好適である。
【0052】
高圧吸着工程での圧力は、原則原料ガスの圧力であれば良いが、場合によってはコンプレッサーで更に加圧しても良い。高圧吸着工程での吸着時間は、50秒以下で充分であり、さらには20秒〜40秒で好適である。
【0053】
吸着塔内の分子ふるい炭素によって酸素が吸着され、濃縮された窒素ガスは29、30、31を通り、一旦製品タンク34に蓄えられた後、36、26を通って製品として供給される。そして、所定の吸着時間経過後、電磁弁24、30は閉じられる。吸着塔23の低圧再生工程では、電磁弁27を開いて加圧状態にある吸着塔23内に充満した原料ガスを大気中に放出し、吸着塔内圧を急速に大気圧近傍まで低下させて、吸着剤を再生する。更に必要であれば、電磁弁33、35を開き、製品タンク内の窒素ガスを吸着塔に向流方向(窒素ガス取り出し方向とは逆向き)に流通さすことにより、吸着塔23の再生を行う。この再生工程が終了すると27、33、35は閉じられ、必要なら均圧工程を施した後、吸着操作を施す。以上の吸着工程と再生工程を繰り返し行うことにより、吸着塔内の分子ふるい炭素の再生は円滑に行われ、高純度の窒素を取り出すことが可能となる。
【0054】
上記の方法の中で、必要に応じて、均圧工程、還流工程を取り入れ、例えば、吸着工程−均圧工程−再生工程−均圧工程−還流工程−吸着工程の如きサイクルで操作しても良い。
【0055】
均圧工程とは、2本以上の吸着塔を使用する場合に、高圧吸着工程を終了した吸着塔と低圧再生工程を終了した吸着塔を連結し、吸着塔内圧の均圧化を行う工程を意味する。例えば、2本の吸着塔を利用した装置の場合、2本の吸着塔の上部のみを連結する場合を上均圧、下部のみを連結する場合を下均圧、上部同士、下部同士両方を連結する場合を上下均圧と言う。還流工程とは、製品タンクより、窒素ガスの一部を吸着塔内に戻すが、系外へは排出せず窒素ガスを吸着塔内に留め吸着工程での高濃度の窒素ガスの取り出しを容易にする工程を意味する。但し、上記の運転方法はその一例を示したものであって、本発明を何ら限定するものではない。
【0056】
【実施例】
(1)吸着量測定法
本発明の分子ふるい炭素の酸素及び窒素の単成分吸着量測定は、図1に示す吸着特性測定装置を用いて行った。
【0057】
同図において、試料室4(200ml)に3gの試料を入れ、 電磁弁11、18、バルブ8を閉じ 電磁弁2、3を開けて30分間脱気した後、 電磁弁2、3を閉じ 電磁弁11を開け、調整室5に測定ガス(酸素或いは窒素)を充填し、設定圧になったところで 電磁弁11を閉じ、 電磁弁3を開け所定時間における内部圧力の変化を測定して酸素濃度及び窒素のそれぞれの時間における吸着量を求めた。このときの設定圧は吸着時の圧力が2.5kgf/cm2G(ゲージ圧)となるように調整した。なお、1は真空ポンプ、6、7は圧力センサー、9は記録計、14、15はガスレギュレーター、16は窒素ボンベ、17は酸素ボンベである。
【0058】
吸着量Q(mg/g)は気体の状態方程式PV=nRTを用いて計算した。初期状態の圧力P0と吸着後の圧力Ptの圧力差より、初期のモル数n0から吸着後のモル数ntの差Δnを下記の式を用いて計算した。
n=PV/RT
Δn=(n0−nt)=(P0−Pt)RT
Δnは吸着した気体のモル数であるので下記の式より、MSC1g当りの吸着量を求めた。
Q(mg/g)=1000×Δn(mol)×吸着分子の分子量(g/mol)/MSC重量(g)
P:測定圧力 V:測定系内の空間容積 n:測定系内の測定ガスモル数
R:気体定数 T:測定温度(25℃)
【0059】
(実施例1)
粒状フェノール樹脂(カネボウ株式会社製、ベルパールR800) 100重量部に対し、メラミン樹脂水溶液(住友化学工業株式会社製、スミテックスレジンM−3、固形分濃度80重量%)を固形分で8重量部、重合度1700、けん化度99%のポリビニルアルコールを温水で20重量%の水溶液となるように溶解したポリビニルアルコール水溶液20重量部、馬鈴薯澱粉2重量部、界面活性剤(花王株式会社製、ペレックスNB−L)0.7重量部計量した。
【0060】
上記原料の内メラミン樹脂水溶液、ポリビニルアルコール水溶液、馬鈴薯澱粉、界面活性剤を5分間混合し、その混合物にフェノール樹脂粉末を加え更に10分間混合した。
【0061】
この混合組成物を2軸押出し造粒機(不二パウダル株式会社製、ペレッタダブルEXDF−100型)で押出し、1.3φ×1〜3mmの円柱状ペレットを得た。
【0062】
得られたペレットは窒素気流下において290℃で4時間熱処理した後、有効径750mmφ×4250mmLのロータリーキルンに入れ、窒素気流下において、650〜750℃まで昇温し、各処理温度で3時間保持した後、窒素気流下で炉冷した。
【0063】
ロータリーキルンにて処理温度650℃で処理した分子ふるい炭素をAとした。ロータリーキルンにて処理温度700℃で処理した分子ふるい炭素を、更に窒素気流下において400℃で1、5、10時間再熱処理し、それぞれの再熱処理条件での炭素をB、C、Dとした。
【0064】
(比較例1)
実施例1と同様の原料と方法でロータリーキルンにて処理温度750℃でのみ処理した分子ふるい炭素をEとした。また、実施例1と同様の原料と方法でロータリーキルンに処理温度700℃で処理した分子ふるい炭素を、体積で5%の酸素を含んだ窒素気流下において600℃で1時間処理し得た分子ふるい炭素を、Fとした。
【0065】
これらの吸着量測定結果を表1に示す。ここで、5秒後の酸素吸着量をQO5S、1分後の酸素吸着量をQO1m、5秒後の窒素吸着量をQN5S、1分後の窒素吸着量をQN1mで表す。
【0066】
【表1】

Figure 0004780903
【0067】
得られた分子ふるい炭素A〜Fを、図2に示すPSA式窒素発生装置により評価した。
【0068】
まずコンプレッサーに圧縮した空気を吸着塔に送り、吸着塔の圧力をゲージ圧で9.5kgf/cm2G(ゲージ圧)とし、PSA操作は上下均圧−吸着−上下均圧−再生(パージ)の4工程で実施し、各工程の切り替えは、電磁弁をシーケンサーで制御して行った。また、得られた製品窒素は酸素濃度計により酸素濃度を測定することで評価した。
【0069】
PSA式窒素発生装置の吸着時間を10秒〜60秒変化させた時の99.9%純度の窒素収率を測定した結果を表2に示す。窒素収率は前記の式で求めた。この時、Fは本条件で純度99.9%の窒素を発生させる能力が得られず、窒素収率は求められない。分子ふるい炭素A、B、C、Dは吸着時間30秒の時に最も高い窒素収率となる。
【0070】
【表2】
Figure 0004780903
【0071】
(実施例2)
次に比較的収率の高いCの分子ふるい炭素を選んで上記PSA式窒素発生装置において供給する加圧原料ガス(空気)処理量を530Nm3/h・t〜940Nm3/h・tまで変化させて窒素純度99.9%の製品窒素発生量の測定を行った。吸着時間、均圧時間についてはそれぞれの測定で適当と思われる時間で行った。結果を表3に示す。
【0072】
(比較例2)
実施例2と同様の方法でEの分子ふるい炭素をPSA式窒素発生装置による測定を実施した。結果を表3に示す。
【0073】
【表3】
Figure 0004780903
【0074】
Cの分子ふるい炭素は940Nm3/h・t以上の空気を処理することができ、製品窒素発生量が原料ガス処理量940Nm3/h・tの時、260Nm3/h・tと多い。一方、Eの分子ふるい炭素は530Nm3/h・tまでの空気しか処理できず、製品窒素発生量も140Nm3/h・tで少ない。供給不可とは、窒素純度99.9%の窒素を得る為に必要な吸着時間で吸着した場合に吸着塔内の圧力が上昇して供給が出来なくなった状態を示す。
【0075】
(実施例3)
実施例2で使用したPSA式窒素発生装置を使用し、分子ふるい炭素Cの各製品窒素純度99.99%、99.9%、99%のときの分子ふるい炭素1t当りの製品窒素発生量(Nm3/h・t)とその時の分子ふるい炭素1t当りの原料ガス処理量(Nm3/h・t)を求めた。吸着時間、均圧時間はそれぞれ適当と思われる時間で行った。吸着圧力は9.5kg/cm2G(ゲージ圧)とした。結果を表4に示す。各製品窒素純度においても、Cは大きな単位重量当たりの製品窒素発生量と原料ガス処理量を持つ。
【0076】
(比較例3)
実施例3と同様、比較例2で使用したPSA式窒素発生装置を使用し、分子ふるい炭素Eの各製品窒素純度99.99%、99.9%、99%のときの分子ふるい炭素1t当りの製品窒素発生量(Nm3/h・t)とその時の分子ふるい炭素1t当りの原料ガス処理量(Nm3/h・t)を求めた。結果を表4に示す。各製品窒素純度においても、Eは単位重量当たりの充分な製品窒素発生量と充分な原料ガス処理量を持たない。
【0077】
【表4】
Figure 0004780903
【0078】
【発明の効果】
本発明の分子ふるい炭素を吸着剤として利用することによって、PSA式窒素発生装置の大幅な小型化が達成できる。
【0079】
装置の小型化は、分子ふるい炭素の1t当りの製品窒素発生量(Nm3/h・t)及び、分子ふるい炭素1t当りの原料ガス処理量(Nm3/h・t)が大幅に向上し、分子ふるい炭素使用量を低減することで成し得たものである。
【図面の簡単な説明】
【図1】吸着特性測定装置である。
【図2】実施例に用いた圧力スイング吸着(PSA)装置。
【符号の説明】
1真空ポンプ
2、3、11、18 電磁弁
4試料室
5調整室
6、7圧力センサー
8、12、13 バルブ
9記録計
10圧力計
14、15ガスレギュレーター
16 窒素ボンベ
17酸素ボンベ
21空気圧縮機
22エアードライヤー
23、23a 吸着塔
24、24a、27、27a、30、30a、33、33a、35、36 電磁弁
25、25a、26、28、29、29a、31、32 配管
34 製品タンク
36圧力調整器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molecular sieve carbon which is an adsorbent for a nitrogen generator, a method for separating nitrogen gas using the same, and a nitrogen generator.
[0002]
[Prior art]
In recent years, a pressure swing adsorption method (hereinafter referred to as PSA method) has been developed and put into practical use as a technique for separating nitrogen and oxygen in the air.
[0003]
In the PSA method, one or more adsorption towers are filled with molecular sieve carbon, and selective adsorption under pressure and regeneration of molecular sieve carbon under reduced pressure or normal pressure are repeated periodically to form a raw material gas. This is a method for separating a specific component. Molecular sieve carbon has very fine and sharply distributed pores, and there is a difference in the adsorption rate for each specific combination of an adsorbed substance with a molecular diameter close to the pore diameter and an adsorbed substance with a smaller molecular diameter. Is thought to occur.
[0004]
So far, many methods for producing molecular sieve carbon have been proposed, and until recently, industrial production of molecular sieve carbon using natural products such as coal and coconut shells and synthetic polymers as the main raw material has become possible. It was.
[0005]
For example, a molecular sieve that deposits carbon released in coke pores by adding pyrolytic hydrocarbons to coke having a volatile content of up to 5% and treating at a temperature of 600-900 ° C. A method for producing carbon is disclosed (for example, Patent Document 1).
[0006]
In addition, granulated coconut shell coal powder using coal tar or coal tar pitch as a binder, dry-distilled at 600 to 900 ° C., washed with mineral acid, washed with water, dried and impregnated with coal tar, 600 A method for producing molecular sieving carbon is disclosed in which heat treatment is performed at ˜900 ° C. for 10 to 60 minutes, followed by cooling in an inert gas (for example, Patent Document 2).
[0007]
In this way, the development of manufacturing technology for molecular sieve carbon is progressing, and industrial production is also being carried out.
[0008]
In addition, as a technique for enhancing the performance of these molecular sieve carbons, molecular sieve carbon for high performance PSA by reducing the outer diameter is disclosed (for example, Patent Document 3).
[0009]
In the case of carbon for PSA-type nitrogen generators that separate nitrogen from oxygen and nitrogen source gases in molecular sieve carbon, adsorption is performed using the fact that the adsorption rate of nitrogen is significantly slower than the adsorption rate of oxygen. It is used as an agent. There are many prior arts regarding the method for producing molecular sieve carbon as described above and the method for producing nitrogen using the same, and various methods are used.
[0010]
For example, a method of nitrogen gas separation using molecular sieve carbon having an adsorption capacity ratio of 3.5 to 15 after 1 minute of oxygen and nitrogen when performing single component adsorption under pressure as molecular sieve carbon is disclosed. (For example, Patent Document 4).
[0011]
The time for the oxygen adsorption amount to reach 50% of the saturated adsorption amount from the start of oxygen supply (hereinafter abbreviated as TO) is 5 seconds to 10 seconds, and the nitrogen adsorption amount is the saturated adsorption from the start of nitrogen supply. A nitrogen production method using molecular sieving carbon having an adsorption characteristic in which the time to reach 50% of the amount (hereinafter abbreviated as TN) is 41 times or more of the time TO is disclosed. This expresses the adsorption rate difference between oxygen and nitrogen in the time required to reach 50% of the saturated adsorption amount (for example, Patent Document 5).
[0012]
As described above, with respect to the characteristics of molecular sieve carbon that separates nitrogen from a source gas composed of oxygen and nitrogen, there are many prior arts using the adsorption rate as an index. However, unlike other molecular sieve carbons used for separating molecules having a relatively large molecular diameter and molecules having a small molecular diameter, there are few that use carbon physical properties such as pore size distribution as an index. This is based on the difference in adsorption rate between the oxygen molecular diameter of 2.8 and the nitrogen molecular diameter of 3.0. Therefore, a very fine pore size range distribution that can clearly show the adsorption characteristics is measured. This is due to the fact that no method has been established.
[0013]
Recently, the PSA nitrogen generator has been improved in performance, and the market is required to be smaller and have a purity of 99.99% or more. For example, the raw material air throughput per ton of adsorbent is 500 Nm at an oxygen concentration of 100 ppm in nitrogen as an indicator of product nitrogen purity.Three</ H, 570 Nm at 1000 ppmThree</ H, 690 Nm at 10,000 ppmThreeA nitrogen production method is disclosed that is operated so as to have a throughput of less than / h (for example, Patent Document 5). This is a method of improving the product nitrogen generation amount per 1 ton of adsorbent by improving the nitrogen yield from the air as the raw material gas. However, the amount of raw material gas (air) treatment is about the same as that of conventional molecular sieve carbon, and it is only the miniaturization of the apparatus for increasing the nitrogen yield. For this reason, in order to greatly reduce the size of the apparatus, it is indispensable to improve the processing capacity of raw material gas such as molecular sieve carbon air.
[0014]
[Patent Document 1]
Japanese Patent Publication No.52-18675
[Patent Document 2]
Japanese Examined Patent Publication No. 62-17690
[Patent Document 3]
Japanese Patent Laid-Open No. 06-154595
[Patent Document 4]
Japanese Patent No. 2619839
[Patent Document 5]
JP 2003-71232 A
[0015]
[Problems to be solved by the invention]
The reduction in the amount of adsorbent used is most effective for downsizing the PSA nitrogen generator. For this reason, it is essential to increase the molecular sieve carbon unit weight or the product nitrogen generation amount per unit volume. The amount of product nitrogen generated per unit weight is the amount of product nitrogen generated per ton of molecular sieve carbon (NmThree/ H · t). For example, the weight of molecular sieve carbon used in a PSA nitrogen generator is M (t), and the amount of product nitrogen generated per hour is Q.P(NmThree/ Min) product nitrogen generation amount Q per ton of molecular sieve carbonP / M(NmThree/ H · t) is expressed by the following equation. QP / M= QP/ M
[0016]
To increase the amount of product nitrogen generated per molecular sieve carbon unit weight, it is effective to increase the nitrogen yield from the raw material gas or increase the raw material gas throughput per molecular sieve carbon unit weight. As for the former method, there are many prior arts as described in the above-mentioned prior art, but it is difficult to reduce the size significantly by these methods.
[0017]
For this reason, it is effective to increase the throughput of the latter source gas, but with conventional molecular sieving carbon or nitrogen separation methods, increasing the throughput of source gas per unit weight decreases the nitrogen yield and purity. There was a problem to do. When using conventional carbon, the product nitrogen purity is 99.9% and the product nitrogen generation amount per unit weight is 120 (NmThree/ h · t).
[0018]
The nitrogen yield is the ratio of nitrogen that can be separated and recovered from the nitrogen in the supplied raw material gas. For example, if the raw material gas is air, the nitrogen concentration in the air is about 79%. If the nitrogen concentration is 99.9%,
Nitrogen yield (%) = 100 × (product nitrogen generation amount per unit time × 0.999) / (raw material gas throughput per unit time × 0.79)
It is represented by However, in the case of air, although it contains about 1% Ar (argon) gas, it is generally not distinguished because it is an inert gas like nitrogen.
[0019]
The amount of raw material gas treated per unit weight is the amount of raw material gas treated per ton of molecular sieve carbon (NmThree/ H · t). For example, in the PSA nitrogen generator, the molecular sieve carbon weight is M (t), and the raw material gas throughput per hour is Q.F(NmThree/ H), the raw material gas throughput per ton of molecular sieve carbon QF / M(NmThree/ H · t) is expressed by the following equation.
QF / M= QF/ M
[0020]
In the present invention, in order to solve the above problems, as a result of intensive research, molecular sieve carbon that does not decrease the nitrogen yield or nitrogen purity even when the throughput of the raw material gas is significantly increased, and the same are used. A nitrogen gas separation method and a separation apparatus have been completed.
[0021]
It is an object of the present invention to use a molecular sieve carbon having oxygen and nitrogen adsorption characteristics that is not found in conventional molecular sieve carbon for nitrogen generators, which can be greatly reduced in size compared to conventional PSA nitrogen generators. An object is to provide a separation method and separation apparatus for carbon and nitrogen gas using the same.
[0022]
[Means for Solving the Problems]
In the present invention, (1) the adsorption capacity ratio after 1 minute of oxygen and nitrogen when performing single component adsorption under constant pressure is 1.4 or more and 3 or less, and 5 seconds after oxygen. Can be achieved by molecular sieve carbon having an adsorption amount of 0.85 or more after 1 minute. The adsorption amount measurement temperature is desirably room temperature (25 ° C.).
[0023]
The constant pressure is a pressure for determining the adsorption capacity ratio of molecular sieve carbon, for example, 9.5 kgf / cm.2G (gauge pressure) or less, 7 kgf / cm2G, 5kgf / cm2G, 2.5 kgf / cm2G or the like may be used.
[0024]
Single component adsorption refers to adsorption of only one specific component on molecular sieve carbon. Q is the amount of adsorption when single component adsorption is performed with oxygen.O, Q is the amount of adsorption when single component adsorption is performed with nitrogenNAnd
[0025]
Adsorption capacity ratio of oxygen and nitrogen after 1 minute (QO1m/ QN1m  ) Is the amount of oxygen adsorbed after 1 minute when single component adsorption is performed under constant pressure.O1m, Q adsorption amount of nitrogenN1mIf
QO1m/ QN1m  = QO1m÷ QN1m
It is represented by
[0026]
The amount of oxygen adsorbed after 5 seconds is 0.85 or more of the amount adsorbed after 1 minute. The amount of oxygen adsorbed after 5 seconds when performing single component adsorption under a constant pressure is Q.O5sQ is the amount of oxygen adsorbed after 1 minute.O1mThen, the amount of oxygen adsorbed after 5 seconds is QO5sAnd the amount of oxygen adsorbed after 1 minuteO1mRatio (QO5s/ QO1m)Using,
QO5s/ QO1m= QO5s÷ QO1m
Q expressed inO5s/ QO1mIs 0.85 or more.
[0027]
The adsorption capacity ratio (Q after 1 minute) of oxygen and nitrogen when performing single component adsorption under constant pressure in the present invention.O1m/ QN1m) Is 1.4 or more and 3 or less, and the molecular sieving carbon in which the adsorption amount of oxygen after 5 seconds is 0.85 or more of the adsorption amount after 1 minute is particularly a source gas of oxygen and nitrogen This is because it is difficult to clearly show the difference in the performance of molecular sieving carbon used to separate nitrogen from the carbon, based on analytical values such as internal structure and crystal structure. Therefore, the characteristics of molecular sieving carbon used in nitrogen generators are expressed by the adsorption rate ratio of oxygen and nitrogen and the adsorption rate of oxygen.
[0028]
Furthermore, the molecular sieve carbon of the present invention has developed an unprecedented performance as an adsorbent for a PSA nitrogen generator, but compared with conventional molecular sieve carbon for separation of oxygen and nitrogen, the pore size distribution and Since it cannot be expressed by analysis values of the internal structure, crystal structure, etc., the above-described index representing the adsorption rate was used.
[0029]
In the present invention, the adsorption capacity ratio after 1 minute of oxygen and nitrogen when performing single component adsorption under constant pressure is 1.4 or more and 3 or less, which defines the range of the adsorption rate ratio of oxygen and nitrogen. It is a thing. The adsorption amount after 5 seconds of oxygen of 0.85 or more after 1 minute represents the adsorption rate of oxygen. Thus, the range of the adsorption rate ratio of oxygen and nitrogen and oxygen By defining the adsorption rate, the characteristics of the molecular sieve carbon of the present invention can be clearly shown. In the present invention, the adsorption amount measuring device described later sends oxygen gas or nitrogen gas to the molecular sieve carbon in the regenerated state and measures the pressure change in the system to determine the change in adsorption amount. It was used as an index.
[0030]
If the adsorption capacity ratio of oxygen and nitrogen after 1 minute is less than 1.4, the difference in adsorption rate between nitrogen and oxygen is small, the nitrogen yield decreases, and if it is 3 or more, a large amount of raw material gas is efficiently produced. It cannot be processed. Further, when the adsorption amount of oxygen after 5 seconds is 0.85 or less of the adsorption amount after 1 minute, even if a large amount of raw material gas can be processed, the nitrogen yield is undesirably lowered.
[0031]
The present invention further relates to (2) molecular sieve carbon in which the adsorption capacity ratio after one minute of oxygen and nitrogen is preferably 1.5 to 2.5 when single component adsorption is preferably performed under pressure.
[0032]
The present invention also relates to (3) molecular sieving carbon, preferably having an adsorption amount of oxygen after 5 seconds of 0.9 or more of the adsorption amount after 1 minute.
[0033]
The molecular sieve carbon of the present invention desirably has an adsorption capacity ratio of 5 or more after 5 seconds of oxygen and nitrogen when single component adsorption is performed under a constant pressure. The adsorption capacity ratio of oxygen and nitrogen after 5 seconds is the amount of oxygen absorbed after 5 seconds.O5sQ is the amount of nitrogen adsorbedN5sThen,
QO5s/ QN5s  = QO5s÷ QN5s
It is represented by
[0034]
Furthermore, the present invention provides (4) a raw material gas consisting mainly of oxygen and nitrogen to an adsorption tower packed with molecular sieve carbon (1) to (3) as an adsorbent. Can be achieved by a method of separating nitrogen gas by the PSA method, which is repeated in an adsorption tower.
[0035]
An adsorption tower is a container filled with an adsorbent such as molecular sieve carbon when performing a separation operation by the PSA method. The raw material gas composed mainly of nitrogen and oxygen is a gas in which the total amount of nitrogen and oxygen is 50% or more, preferably 90% or more, more preferably 98% or more with respect to the entire gas. . The high-pressure adsorption process is a PSA process in which the source gas is pressurized and passed through an adsorption tower, preferentially adsorbs oxygen, which is a soot-adsorbing component, and collects nitrogen, which is a difficult-to-adsorb component, as a product. Represents the process of The low pressure regeneration process is a molecular sieve that stops supplying the raw material gas from the adsorption tower pressurized by the raw material gas in the high pressure adsorption process, opens the adsorption tower to the atmosphere, and rapidly lowers the internal pressure of the adsorption tower to near atmospheric pressure. This is a step of regenerating molecular sieve carbon by desorbing adsorbed components in carbon. The low-pressure regeneration step may include a purge step in which nitrogen collected in the high-pressure adsorption step is partially circulated in the adsorption tower. In addition, the pressure may be reduced with a vacuum pump or the like when the atmosphere is released.
[0036]
Further, in the present invention, (5) preferably, the supplied raw material gas is 3 to 10 kgf / cm.2(4) The method for separating nitrogen gas, which is a pressurized gas of G.
[0037]
The present invention also relates to (6) a method for separating nitrogen gas, wherein the adsorption time in the high pressure adsorption step is preferably 50 seconds or less. Furthermore, the present invention is (7) a nitrogen gas separation method wherein the adsorption time in the high pressure adsorption step is preferably in the range of 20 seconds to 40 seconds. The adsorption time refers to the time during which the source gas is supplied to the adsorption tower in the high pressure adsorption process.
[0038]
Furthermore, the present invention is a nitrogen gas separation apparatus having an adsorption tower (8) packed with molecular sieve carbon (1) to (3) as an adsorbent. The molecular sieving carbon of the nitrogen gas separation apparatus of the present invention is 250 (Nm with a product nitrogen generation amount per unit weight of 99% nitrogen purity.Three/ h ・ t) or more and 300 (NmThree/ h · t) or more, 99.9% is 150 (NmThree/ h · t) or more and 200 (NmThree/ h · t) or more, 99.99% is 100 (NmThree/ h · t) or higher performance.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is based on a molecular sieving carbon that selectively adsorbs oxygen from a raw material gas mainly composed of oxygen and nitrogen, and a method and a separation apparatus for separating nitrogen gas by using it as an adsorbent.
[0040]
This molecular sieving carbon forms, for example, a uniform mixture of 100 to 50 parts by weight of a granular phenol resin, 5 to 50 parts by weight of a thermosetting resin and 1 to 30 parts by weight of a polymer binder, and is 500 in a non-oxidizing atmosphere. It can be obtained by heat treatment at a temperature in the range of from 1C to 1100C.
[0041]
In the present invention, the adsorption capacity ratio (Q after one minute) of oxygen and nitrogen when performing single component adsorption under a constant pressure.O1m/ QN1m  ) Is 1.4 or more and 3 or less, and further 1.5 to 2.5, and the adsorption amount of oxygen after 5 seconds is 0.85 or more of the adsorption amount after 1 minute, and further 0.9 or more. In order to control the pores that can generate the adsorption characteristics, the pretreatment conditions before heat treatment, the selection of non-oxidizing atmosphere gas, the detailed setting of heat treatment temperature, the re-treatment after heat treatment Processing etc. were performed, and the characteristic was made possible.
[0042]
Examples of the granular phenol resin include resole resin and novolac resin, but other special phenol resins and modified resins may be used. Examples of the thermosetting resin include phenol resin and melamine resin. Examples of the polymer binder include polyvinyl alcohol and water-soluble or water-swellable cellulose derivatives.
[0043]
The pretreatment conditions before the heat treatment include heat treatment at 150 to 400 ° C. for 1 to 10 hours in a non-oxidizing atmosphere. Moreover, nitrogen, argon gas, etc. are mentioned as selection of non-oxidizing atmosphere gas.
[0044]
As detailed setting of heat processing temperature, 500-1000 degreeC, Furthermore, 650-800 degreeC is preferable, As heating time, 1-24 hours, Furthermore, 1-12 hours are preferable, In heating, a rotary kiln etc. are suitable. is there.
[0045]
If necessary after the heat treatment, re-heat treatment is performed. However, the setting of the re-heat treatment is preferably 50 to 800 ° C., more preferably 100 to 600 ° C., and the heating time is 1 hour or more, more preferably 1 to 10 hours. preferable.
[0046]
However, the present invention is not limited to the production method as described above, and may be any molecular sieve carbon that satisfies (1) to (3). At this time, the molecular sieve carbon of the present invention has an adsorption capacity ratio (Q after 1 minute) of oxygen and nitrogen when single component adsorption is performed under a constant pressure.O1m/ QN1m  ) Is 1.4 or more and 3 or less, more preferably 1.5 to 2.5, and the adsorption amount of oxygen after 5 seconds is 0.85 or more of the adsorption amount after 1 minute, What is 0.9 or more is suitable.
[0047]
Also, the adsorption capacity ratio Q for 5 secondsO5s/ QN5sIs preferably 3 or more, and more preferably 5 or more.
[0048]
An embodiment of an apparatus using a method of separating nitrogen gas by a pressure swing adsorption method in which a raw material gas mainly composed of oxygen and nitrogen is supplied to a packed adsorption tower and a high pressure adsorption process and a low pressure regeneration process are repeated in the adsorption tower. An example is shown in FIG.
[0049]
In order to control the flow of gas and the adsorbing tower filled with molecular sieve carbon described above, raw material gas supply means such as a compressor, product tank for storing nitrogen gas, piping for connecting these components, and gas flow Automatic valve and its control system, flow rate controller and gas concentration analyzer.
[0050]
As an operation method, for example, in the case of the apparatus of FIG. 2 using two adsorption towers, the raw material gas passes through 24 and 25 and is supplied to the adsorption tower 23 in the high-pressure adsorption step of the adsorption tower 23. The source gas to be supplied is composed mainly of oxygen and nitrogen, and has a content of 3 to 10 kgf / cm.2A pressurized gas of G is preferred.
[0051]
The amount of raw material gas to be supplied is, for example, 1500 Nm when the product nitrogen purity is 99.9%Three/ H · t or less is preferable, and further 1200 NmThree/ H · t or less is preferable, and further 500 NmThree/ H · t ~ 1200NmThree/ H · t is preferred.
[0052]
The pressure in the high-pressure adsorption process may be basically the pressure of the raw material gas, but in some cases, it may be further pressurized with a compressor. The adsorption time in the high pressure adsorption step is sufficient to be 50 seconds or less, and more preferably 20 seconds to 40 seconds.
[0053]
Oxygen is adsorbed by molecular sieving carbon in the adsorption tower, and the concentrated nitrogen gas passes through 29, 30, 31 and is once stored in the product tank 34, and then supplied as a product through 36, 26. Then, after a predetermined adsorption time has elapsed, the solenoid valves 24 and 30 are closed. In the low pressure regeneration process of the adsorption tower 23, the electromagnetic valve 27 is opened to release the raw material gas filled in the pressurized adsorption tower 23 into the atmosphere, and the internal pressure of the adsorption tower is rapidly reduced to near atmospheric pressure, Regenerate the adsorbent. If necessary, the adsorbing tower 23 is regenerated by opening the solenoid valves 33 and 35 and allowing the nitrogen gas in the product tank to flow in the counterflow direction (opposite to the nitrogen gas extraction direction) through the adsorption tower. . When this regeneration step is completed, 27, 33, and 35 are closed, and if necessary, a pressure equalizing step is performed, followed by an adsorption operation. By repeatedly performing the above adsorption step and regeneration step, the molecular sieve carbon in the adsorption tower is smoothly regenerated and high-purity nitrogen can be taken out.
[0054]
In the above method, if necessary, a pressure equalization step and a reflux step are incorporated, and for example, an adsorption step, a pressure equalization step, a regeneration step, a pressure equalization step, a reflux step, and an adsorption step can be operated. good.
[0055]
The pressure equalization process is a process of equalizing the internal pressure of the adsorption tower by connecting the adsorption tower that has completed the high pressure adsorption process and the adsorption tower that has completed the low pressure regeneration process when two or more adsorption towers are used. means. For example, in the case of an apparatus using two adsorption towers, the upper pressure is equalized when only the upper parts of the two adsorption towers are connected, the lower pressure is equalized when only the lower parts are connected, and both the upper and lower parts are connected. This is called up and down equalization. In the refluxing process, a part of the nitrogen gas is returned from the product tank to the adsorption tower, but it is not discharged outside the system, but the nitrogen gas is retained in the adsorption tower, making it easy to take out high-concentration nitrogen gas in the adsorption process. It means the process of making. However, the above-described operation method is an example, and does not limit the present invention.
[0056]
【Example】
(1) Adsorption amount measurement method
The single component adsorption amount of oxygen and nitrogen of molecular sieve carbon of the present invention was measured using the adsorption characteristic measuring apparatus shown in FIG.
[0057]
In the figure, 3 g of sample is placed in sample chamber 4 (200 ml), solenoid valves 11 and 18 and valve 8 are closed, solenoid valves 2 and 3 are opened, and after deaeration for 30 minutes, solenoid valves 2 and 3 are closed. Open the valve 11 and fill the adjustment chamber 5 with the measurement gas (oxygen or nitrogen). When the set pressure is reached, close the solenoid valve 11 and open the solenoid valve 3 to measure the change in internal pressure over a specified time. And the adsorption amount in each time of nitrogen was calculated | required. The set pressure at this time is 2.5 kgf / cm at the time of adsorption.2It adjusted so that it might become G (gauge pressure). In addition, 1 is a vacuum pump, 6 and 7 are pressure sensors, 9 is a recorder, 14 and 15 are gas regulators, 16 is a nitrogen cylinder, and 17 is an oxygen cylinder.
[0058]
  The amount of adsorption Q (mg / g) was calculated using the gas equation of state PV = nRT. Initial pressure P0And pressure P after adsorptiontFrom the pressure difference of the initial number of moles n0Number of moles after adsorption from ntThe difference Δn was calculated using the following formula.
n = PV / RT
Δn = (n0-Nt) = (P0-Pt) RT
Since Δn is the number of moles of adsorbed gas, the amount of adsorption per gram of MSC was determined from the following formula.
Q (mg / g) = 1000 × Δn (mol) × molecular weight of adsorbed molecule (g / mol) / MSC weight (g)
P: Measurement pressure V: Space volume in the measurement system n: Number of moles of measurement gas in the measurement system
R: Gas constant T: Measurement temperature(25 ° C)
[0059]
Example 1
8 parts by weight of solid melamine resin aqueous solution (Sumitomo Chemical Co., Ltd., Sumtex Resin M-3, solid content concentration 80% by weight) with respect to 100 parts by weight of granular phenol resin (Kanebo Co., Ltd., Bell Pearl R800) Polyvinyl alcohol having a polymerization degree of 1700 and a saponification degree of 99% dissolved in warm water to give a 20% by weight aqueous solution of polyvinyl alcohol, 20 parts by weight, potato starch, 2 parts by weight, a surfactant (PEX NB manufactured by Kao Corporation) -L) 0.7 part by weight was weighed.
[0060]
The melamine resin aqueous solution, the polyvinyl alcohol aqueous solution, the potato starch, and the surfactant among the above raw materials were mixed for 5 minutes, and the phenol resin powder was added to the mixture and further mixed for 10 minutes.
[0061]
This mixed composition was extruded with a biaxial extrusion granulator (Fuji Paudal Co., Ltd., Peretta Double EXDF-100 type) to obtain cylindrical pellets of 1.3φ × 1 to 3 mm.
[0062]
The obtained pellets were heat treated at 290 ° C. for 4 hours under a nitrogen stream, then placed in a rotary kiln having an effective diameter of 750 mmφ × 4250 mmL, heated to 650-750 ° C. under a nitrogen stream, and held at each treatment temperature for 3 hours. Thereafter, the furnace was cooled in a nitrogen stream.
[0063]
A molecular sieve carbon treated at a treatment temperature of 650 ° C. in a rotary kiln was designated as A. The molecular sieve carbon treated at a treatment temperature of 700 ° C. in a rotary kiln was further reheated at 400 ° C. for 1, 5, and 10 hours under a nitrogen stream, and the carbons under the respective reheat conditions were designated as B, C, and D.
[0064]
(Comparative Example 1)
E was molecular sieve carbon treated with a rotary kiln only at a treatment temperature of 750 ° C. using the same raw materials and methods as in Example 1. Further, molecular sieve carbon obtained by treating a molecular sieve carbon treated at a treatment temperature of 700 ° C. in a rotary kiln with the same raw materials and method as in Example 1 at 600 ° C. for 1 hour in a nitrogen stream containing 5% oxygen by volume. Carbon was F.
[0065]
These adsorption amount measurement results are shown in Table 1. Here, the oxygen adsorption amount after 5 seconds is expressed as Q.O5SQ is the oxygen adsorption amount after 1 minute.O1mQ is the amount of nitrogen adsorbed after 5 seconds.N5SQ is the amount of nitrogen adsorbed after 1 minute.N1mRepresented by
[0066]
[Table 1]
Figure 0004780903
[0067]
The obtained molecular sieve carbons A to F were evaluated by the PSA nitrogen generator shown in FIG.
[0068]
First, the air compressed in the compressor is sent to the adsorption tower, and the pressure of the adsorption tower is 9.5 kgf / cm in terms of gauge pressure.2G (gauge pressure), PSA operation was performed in four steps of up / down pressure equalization-adsorption-up / down pressure equalization-regeneration (purge), and switching of each step was performed by controlling the solenoid valve with a sequencer. The obtained product nitrogen was evaluated by measuring the oxygen concentration with an oxygen concentration meter.
[0069]
Table 2 shows the results of measuring the 99.9% purity nitrogen yield when the adsorption time of the PSA nitrogen generator was changed from 10 seconds to 60 seconds. The nitrogen yield was determined by the above formula. At this time, F does not have the ability to generate 99.9% purity nitrogen under these conditions, and the nitrogen yield is not required. The molecular sieve carbons A, B, C, and D have the highest nitrogen yield when the adsorption time is 30 seconds.
[0070]
[Table 2]
Figure 0004780903
[0071]
(Example 2)
Next, select a molecular sieve carbon having a relatively high yield and supply a pressurized raw material gas (air) treatment amount of 530 Nm supplied in the PSA nitrogen generator.Three/ H · t ~ 940NmThreeThe amount of product nitrogen generated with a nitrogen purity of 99.9% was measured by changing to / h · t. The adsorption time and pressure equalization time were the times considered appropriate for each measurement. The results are shown in Table 3.
[0072]
(Comparative Example 2)
In the same manner as in Example 2, the molecular sieve carbon of E was measured with a PSA nitrogen generator. The results are shown in Table 3.
[0073]
[Table 3]
Figure 0004780903
[0074]
The molecular sieve carbon of C is 940 NmThree/ H · t or more of air can be processed, and the product nitrogen generation amount is 940 Nm of raw material gas processing amountThree260 Nm at / h · tThreeThere are many / h · t. On the other hand, the molecular sieve carbon of E is 530 NmThreeOnly air up to / h · t can be processed and the amount of product nitrogen generated is 140 NmThreeLess than / h · t. “Non-suppliable” means a state in which supply cannot be performed due to an increase in the pressure in the adsorption tower when adsorption is performed for an adsorption time necessary to obtain nitrogen having a nitrogen purity of 99.9%.
[0075]
(Example 3)
Using the PSA-type nitrogen generator used in Example 2, the amount of product nitrogen generated per 1 ton of molecular sieve carbon when the molecular nitrogen purity of the molecular sieve carbon C is 99.99%, 99.9%, 99% ( NmThree/ H · t) and the raw material gas throughput per ton of molecular sieve carbon at that time (NmThree/ H · t). Adsorption time and pressure equalization time were each considered as appropriate. Adsorption pressure is 9.5kg / cm2G (gauge pressure). The results are shown in Table 4. Also in each product nitrogen purity, C has a large product nitrogen generation amount and raw material gas processing amount per unit weight.
[0076]
(Comparative Example 3)
As in Example 3, using the PSA-type nitrogen generator used in Comparative Example 2, each product of molecular sieve carbon E had a nitrogen purity of 99.99%, 99.9%, and 99% per 1 t of molecular sieve carbon. Product Nitrogen Generation (NmThree/ H · t) and the raw material gas throughput per ton of molecular sieve carbon at that time (NmThree/ H · t). The results are shown in Table 4. In each product nitrogen purity, E does not have a sufficient amount of product nitrogen generated per unit weight and a sufficient amount of raw material gas.
[0077]
[Table 4]
Figure 0004780903
[0078]
【The invention's effect】
By using the molecular sieving carbon of the present invention as an adsorbent, the PSA nitrogen generator can be greatly reduced in size.
[0079]
The downsizing of the device is based on the amount of product nitrogen generated per ton of molecular sieve carbon (NmThree/ H · t) and raw material gas throughput per ton of molecular sieve carbon (NmThree/ H · t) is greatly improved and can be achieved by reducing the amount of molecular sieve carbon used.
[Brief description of the drawings]
FIG. 1 is an adsorption characteristic measuring apparatus.
FIG. 2 is a pressure swing adsorption (PSA) apparatus used in Examples.
[Explanation of symbols]
1 vacuum pump
2, 3, 11, 18 Solenoid valve
4 Sample chamber
5 Adjustment room
6, 7 pressure sensor
8, 12, 13 valves
9 recorder
10 Pressure gauge
14, 15 Gas regulator
16 Nitrogen cylinder
17 oxygen cylinder
21 air compressor
22 air dryer
23, 23a Adsorption tower
24, 24a, 27, 27a, 30, 30a, 33, 33a, 35, 36 Solenoid valve
25, 25a, 26, 28, 29, 29a, 31, 32 Piping
34 Product tank
36 pressure regulator

Claims (1)

吸着剤として、粒状フェノール樹脂、熱硬化性樹脂およびバインダーを含む混合物の成形物を、非酸化性雰囲気下150〜400℃で1〜10時間熱処理する予備処理を行い、ついで、非酸化性雰囲気下650〜800℃まで昇温し、同温度範囲で1〜24時間加熱処理してなる分子ふるい炭素であって、2.5kgf/cm2G(ゲージ圧)の加圧下、25℃において単成分吸着を行ったときの酸素と窒素との1分後の吸着量の比が1.4以上3以下であり、且つ酸素の5秒後の吸着量が1分後の吸着量の0.85以上である圧力スイング吸着式窒素発生装置用分子ふるい炭素を充填した2塔の吸着塔を備える窒素発生装置の前記吸着塔に主成分が酸素と窒素からなる圧力3〜10kgf/cm2Gの原料ガスを供給し、高圧吸着工程と低圧再生工程とを前記吸着塔で繰り返す圧力スイング吸着法による窒素ガスの分離方法であって、
高圧吸着工程での吸着時間が20秒〜40秒の範囲である窒素ガスの分離方法。
As the adsorbent, a pre-treatment is performed in which a molded product containing a granular phenol resin, a thermosetting resin, and a binder is heat-treated at 150 to 400 ° C. for 1 to 10 hours in a non-oxidizing atmosphere, and then in a non-oxidizing atmosphere. Molecular sieve carbon that is heated to 650-800 ° C. and heat-treated in the same temperature range for 1-24 hours, adsorbed at 25 ° C. under a pressure of 2.5 kgf / cm 2 G (gauge pressure). The ratio of the adsorption amount after 1 minute of oxygen and nitrogen when performing the process is 1.4 or more and 3 or less, and the adsorption amount after 5 seconds of oxygen is 0.85 or more of the adsorption amount after 1 minute. A raw material gas having a pressure of 3 to 10 kgf / cm 2 G composed mainly of oxygen and nitrogen is applied to the adsorption tower of a nitrogen generator comprising two adsorption towers packed with molecular sieve carbon for a pressure swing adsorption nitrogen generator. Supply and high pressure adsorption process and low A method of separating nitrogen gas by the pressure swing adsorption method repeating the regeneration step in the adsorption tower,
A method for separating nitrogen gas, wherein the adsorption time in the high-pressure adsorption step is in the range of 20 seconds to 40 seconds .
JP2003164759A 2003-06-10 2003-06-10 Separation method of nitrogen gas using molecular sieve carbon Expired - Lifetime JP4780903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164759A JP4780903B2 (en) 2003-06-10 2003-06-10 Separation method of nitrogen gas using molecular sieve carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164759A JP4780903B2 (en) 2003-06-10 2003-06-10 Separation method of nitrogen gas using molecular sieve carbon

Publications (2)

Publication Number Publication Date
JP2005000749A JP2005000749A (en) 2005-01-06
JP4780903B2 true JP4780903B2 (en) 2011-09-28

Family

ID=34091446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164759A Expired - Lifetime JP4780903B2 (en) 2003-06-10 2003-06-10 Separation method of nitrogen gas using molecular sieve carbon

Country Status (1)

Country Link
JP (1) JP4780903B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342773B1 (en) 2006-10-20 2013-12-19 에아.워타 가부시키가이샤 Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
JP4972467B2 (en) * 2007-06-06 2012-07-11 大陽日酸株式会社 Low purity nitrogen gas generation method

Also Published As

Publication number Publication date
JP2005000749A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
EP1798197B1 (en) Method of separating nitrogen gas and molecular sieve carbon
CA2193949C (en) Carbon adsorbent, manufacturing method therefor,gas seperation method and device therefor
JP3524527B2 (en) Adsorbent and method and apparatus for producing nitrogen using the same
KR100851241B1 (en) Absorbent for Separating Nitrogen from Mixed Gas of Oxygen And Nitrogen
JP2516159B2 (en) Method for separating air to recover nitrogen by pressure swing adsorption
US4915711A (en) Adsorptive process for producing two gas streams from a gas mixture
US5164355A (en) High capacity coconut shell char for carbon molecular sieves
US4790859A (en) Method of separating gaseous mixture
NO316950B1 (en) Process for pressure swing adsorption of carbon dioxide from a gas
EP3849699A1 (en) Biomass based activated carbon as co2 and co absorbent method and apparatus for separating co and co2 from a gas such as blast furnace gas
CN110813022A (en) Multi-bed rapid cycle dynamics PSA
Das et al. Development of a helium purification system using pressure swing adsorption
JP4780903B2 (en) Separation method of nitrogen gas using molecular sieve carbon
JP3768134B2 (en) Molecular sieve carbon and pressure swing adsorption device using it
CN108939811B (en) Gaseous iodine extraction method
JP2546797B2 (en) Separation method of gas mixture
CN113620289A (en) Preparation method and application of granular carbon material for separating propylene/propane
JP6093519B2 (en) Method and apparatus for separating nitrogen from nitrogen-containing hydrocarbon gas
BR102019016323A2 (en) IMPROVED CARBON MOLECULAR SCREEN ADSORBENT
JPH06154595A (en) Molecular sieve carbon for pressure swing type adsorption apparatus
JP2995495B2 (en) Carbon adsorbent, its production method, gas separation method and its apparatus
JP2681894B2 (en) Oxygen gas separation method
JP2788164B2 (en) Separation method of high purity oxygen gas
JPH06277435A (en) Separation of high-purity oxygen gas
JPH08165104A (en) Separation of high purity hydrogen gas

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term