JP2003104716A - Method for producing low-boron silica particle and low- boron silica particle using it and method for producing low-boron quartz glass using it - Google Patents

Method for producing low-boron silica particle and low- boron silica particle using it and method for producing low-boron quartz glass using it

Info

Publication number
JP2003104716A
JP2003104716A JP2001297773A JP2001297773A JP2003104716A JP 2003104716 A JP2003104716 A JP 2003104716A JP 2001297773 A JP2001297773 A JP 2001297773A JP 2001297773 A JP2001297773 A JP 2001297773A JP 2003104716 A JP2003104716 A JP 2003104716A
Authority
JP
Japan
Prior art keywords
boron
silica particles
low
silica
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001297773A
Other languages
Japanese (ja)
Other versions
JP5057622B2 (en
Inventor
Masaki Kusuhara
昌樹 楠原
Hiroyuki Watabe
弘行 渡部
Hiroshi Uehara
啓史 上原
Keiko Sanpei
桂子 三瓶
Ariyasu Kurita
有康 栗田
Jinichi Omi
仁一 尾見
Makio Takahashi
真木雄 高橋
Hiroshi Morita
博 森田
Tsugutaka Asahioka
嗣貴 旭岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Watanabe Shoko KK
M Watanabe and Co Ltd
Original Assignee
Watanabe Shoko KK
M Watanabe and Co Ltd
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Watanabe Shoko KK, M Watanabe and Co Ltd, Asahi Denka Kogyo KK filed Critical Watanabe Shoko KK
Priority to JP2001297773A priority Critical patent/JP5057622B2/en
Publication of JP2003104716A publication Critical patent/JP2003104716A/en
Application granted granted Critical
Publication of JP5057622B2 publication Critical patent/JP5057622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/10Doped silica-based glasses containing boron or halide containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/24Wet processes, e.g. sol-gel process using alkali silicate solutions

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a low-boron silica particle with high purity and in which boron content is reduced sufficiently even if an inexpensive alkali metal silicate solution is used as a raw material, the low-boron silica particle obtained by the method and a method for producing a low-boron quartz glass particle using the low-boron silica particle. SOLUTION: An acidic silica solution whose pH is 2.0 or less is obtained from the alkali metal silicate solution. The method for producing the low-boron silica particle is comprised of the first step to obtain a hydrated silica gel by leaving the solution in the conditions of pH 2.0 or less and 60 deg.C or less to change it to a gel, the second step to obtain a hydrated silica particle in which water content is decreased by thawing it after freezing and the third step to wash the obtained hydrated silica particle at 60 deg.C or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は低ホウ素シリカ粒子
の製造方法、この方法により得られる低ホウ素シリカ粒
子及びこれを用いた低ホウ素石英ガラス粒子の製造方法
に関し、特には、半導体用シリコン単結晶引き上げ用坩
堝などの原料として使用される低ホウ素石英ガラス粒子
を得ることのできる低ホウ素シリカ粒子、その製造方法
及び低ホウ素石英ガラス粒子の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing low-boron silica particles, a low-boron silica particle obtained by this method, and a method for producing low-boron silica glass particles using the same, and particularly to a silicon single crystal for semiconductors. The present invention relates to low-boron silica particles capable of obtaining low-boron silica glass particles used as a raw material for a crucible for pulling, a method for producing the same, and a method for producing the low-boron quartz glass particles.

【0002】[0002]

【従来の技術】石英原料としては、長く天然石英が使用
されてきたが、純度のバラつき、資源の枯渇、開発によ
る環境汚染問題などから、最近では、合成石英が使用さ
れるようになってきている。従来、合成石英粉はテトラ
メトキシシラン、テトラエトキシシラン、四塩化珪素等
を原料としていたため、高純度ではあるが高価であり、
これを使用して合成石英ガラス粒子を製造すると非常に
高コストになることから、工業的に適性の高いものでは
なかった。
2. Description of the Related Art Although natural quartz has long been used as a quartz raw material, synthetic quartz has come to be used recently due to variations in purity, exhaustion of resources, and environmental pollution caused by development. There is. Conventionally, synthetic quartz powder is made from tetramethoxysilane, tetraethoxysilane, silicon tetrachloride, etc. as a raw material, so it is highly pure but expensive.
If synthetic quartz glass particles are produced using this, the cost will be very high, and therefore it was not industrially suitable.

【0003】一方、半導体製品の高集積化が進んでいる
現在、特に半導体用シリコン単結晶引き上げ用坩堝部材
については、金属不純物の極めて少ない高純度合成石英
ガラスが求められている。
On the other hand, at the present time when semiconductor products are highly integrated, especially for crucible members for pulling silicon single crystals for semiconductors, high-purity synthetic quartz glass with extremely few metal impurities is required.

【0004】こうした要求から、近年、低コストで高純
度の合成石英ガラス粉を得る試みが種々なされてきてお
り、原料として安価な水ガラス(アルカリ金属珪酸塩水
溶液)を使用してシリカ粒子を得、これを用いて石英ガ
ラス粉を得る方法が、特開昭59−54632号公報、
特開平4−349126号公報、特開平11−1192
9号公報等に記載されている。
In response to these demands, various attempts have recently been made to obtain high-purity synthetic silica glass powder at low cost, and silica particles are obtained by using inexpensive water glass (alkali metal silicate aqueous solution) as a raw material. Japanese Patent Laid-Open No. 59-54632 discloses a method of obtaining quartz glass powder using the same.
JP-A-4-349126, JP-A-11-1192
No. 9 publication and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法で得られるシリカ粒子あるいは合成石英粉は微量
なホウ素を十分に取り除くことができないものであっ
た。例えば、合成石英を半導体用シリコン単結晶引き上
げ用坩堝部材とした際に、合成石英中のホウ素が十分低
減されていないと、単結晶シリコン製造に供した場合に
単結晶シリコンの抵抗値を設計通りに製造することがで
きなくなってしまう。そのため、シリカ粒子、ひいては
合成石英粉中のホウ素の含有量をより十分なレベルにま
で低減することのできる技術が求められていた。
However, the silica particles or synthetic quartz powder obtained by these methods cannot sufficiently remove a trace amount of boron. For example, when synthetic quartz is used as a crucible member for pulling a silicon single crystal for semiconductors, if the boron in the synthetic quartz is not sufficiently reduced, the resistance value of the single crystal silicon will be as designed when it is used in the production of single crystal silicon. Can no longer be manufactured. Therefore, there has been a demand for a technique capable of reducing the content of boron in the silica particles, and further in the synthetic quartz powder, to a more sufficient level.

【0006】そこで本発明の目的は、安価なアルカリ金
属珪酸塩水溶液を原料として用いても高純度なシリカ粒
子を得ることができ、特にはホウ素含量を十分に低減し
た低ホウ素シリカ粒子を得ることのできる低ホウ素シリ
カ粒子の製造方法及びこの方法により得られる低ホウ素
シリカ粒子を提供することにある。また、本発明の他の
目的は、この低ホウ素シリカ粒子を用いた低ホウ素石英
ガラス粒子の製造方法を提供することにある。
Therefore, an object of the present invention is to obtain high-purity silica particles even when an inexpensive alkali metal silicate aqueous solution is used as a raw material, and particularly to obtain low-boron silica particles having a sufficiently reduced boron content. It is an object of the present invention to provide a method for producing low-boron silica particles that can be produced and low-boron silica particles obtained by this method. Another object of the present invention is to provide a method for producing low boron silica glass particles using the low boron silica particles.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、シリカ粒子の製造工程
において所定の条件設定を行うことにより、ホウ素の含
有量をこれまでになく低減することができることを見出
して、本発明を完成するに至った。即ち、本発明は以下
の通りである。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the content of boron has never been higher by setting predetermined conditions in the production process of silica particles. The inventors have found that it can be reduced, and have completed the present invention. That is, the present invention is as follows.

【0008】本発明の低ホウ素シリカ粒子の製造方法
(以下、「本第1発明」とする)は、アルカリ金属珪酸
塩水溶液からpH2.0以下の酸性シリカ水溶液を得、
該酸性シリカ水溶液を、pH2.0以下かつ60℃以下
の条件下で静置してゲル化させ、含水シリカゲルを得る
第1工程と、得られた含水シリカゲルを凍結し、解凍し
て離水させて水分を減少させ、含水シリカ粒子を得る第
2工程と、得られた含水シリカ粒子を60℃以下の条件
下で洗浄する第3工程と、を包含することを特徴とする
ものである。
The method for producing low-boron silica particles of the present invention (hereinafter referred to as "present first invention") is to obtain an acidic silica aqueous solution having a pH of 2.0 or less from an alkali metal silicate aqueous solution,
The acidic silica aqueous solution is allowed to stand under conditions of pH 2.0 or lower and 60 ° C. or lower to cause gelation to obtain hydrous silica gel, and the obtained hydrous silica gel is frozen, thawed and allowed to separate water. The method is characterized by including a second step of reducing water content to obtain hydrous silica particles, and a third step of washing the obtained hydrous silica particles under conditions of 60 ° C. or lower.

【0009】本第1発明においては、前記pH2.0以
下の酸性シリカ水溶液を、下記(1)または(2)、
(1)前記アルカリ金属珪酸塩水溶液を、脱アルカリ金
属処理及び/若しくは酸性化処理した後、若しくはいず
れの処理も行わずに、少なくとも陽イオン交換処理して
得られたもの、または、該陽イオン交換処理後に酸を添
加することにより得られたもの、(2)前記アルカリ金
属珪酸塩水溶液を電気透析処理して、酸を添加すること
により得られたもの、のうちのいずれかとして好ましく
得ることができる。
In the first aspect of the present invention, the acidic silica aqueous solution having a pH of 2.0 or less is added to the following (1) or (2):
(1) A product obtained by subjecting the alkali metal silicate aqueous solution to at least a cation exchange treatment after dealkalizing metal treatment and / or acidification treatment or without any treatment, or the cation It is preferably obtained as any one of a product obtained by adding an acid after the exchange treatment and a product obtained by (2) electrodialyzing the alkali metal silicate aqueous solution and adding an acid. You can

【0010】また、本発明の低ホウ素シリカ粒子(以
下、「本第2発明」とする)は、上記本発明の製造方法
により得られ、ホウ素含有量が0.05ppm以下、好
ましくは0.01ppm以下であることを特徴とするも
のである。
The low-boron silica particles of the present invention (hereinafter referred to as "the second invention") are obtained by the above-mentioned production method of the present invention and have a boron content of 0.05 ppm or less, preferably 0.01 ppm. It is characterized by the following.

【0011】さらに、本発明の低ホウ素石英ガラス粒子
の製造方法(以下、「本第3発明」とする)は、本第2
発明の低ホウ素シリカ粒子に、焼成工程を含む処理を施
すことを特徴とするものである。
Furthermore, the method for producing low-boron silica glass particles of the present invention (hereinafter referred to as "the third invention") is based on the second invention.
The low boron silica particles of the invention are subjected to a treatment including a firing step.

【0012】[0012]

【発明の実施の形態】以下、本発明の具体的な実施の形
態について詳述する。まず、本第1発明について説明す
る。本第1発明における第1工程は、アルカリ金属珪酸
塩水溶液からpH2.0以下の酸性シリカ水溶液を得、
この酸性シリカ水溶液を、pH2.0以下かつ60℃以
下の条件下で静置してゲル化させ、含水シリカゲルを得
るものである。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of the present invention will be described in detail below. First, the first invention will be described. The first step in the first invention is to obtain an acidic silica aqueous solution having a pH of 2.0 or less from an alkali metal silicate aqueous solution,
This aqueous acidic silica solution is allowed to stand under conditions of pH 2.0 or lower and 60 ° C. or lower to cause gelation to obtain hydrous silica gel.

【0013】第1工程に用いられるアルカリ金属珪酸塩
水溶液としては特に限定されず、どのようなアルカリ金
属珪酸塩水溶液でも使用することができるが、好ましく
はSiO2/M2O(MはNa、KまたはLiであり、工
業的には入手の容易なNaが好ましい)のモル比が0.
4〜10.0、好ましくは0.5〜8.0であるアルカ
リ金属珪酸塩水溶液が使用できる。モル比が上記未満で
あると、全工程にわたって過大な設備が必要であり、上
記を超えると工業的に安定なアルカリ金属珪酸塩水溶液
になり得ず入手が困難となり、いずれも工業的な適性を
欠くこととなりやすい。
The alkali metal silicate aqueous solution used in the first step is not particularly limited, and any alkali metal silicate aqueous solution can be used, but SiO 2 / M 2 O (M is Na, K or Li, which is industrially easily available Na), has a molar ratio of 0.
An aqueous alkali metal silicate solution having a concentration of 4 to 10.0, preferably 0.5 to 8.0 can be used. If the molar ratio is less than the above, excessive equipment is required over the entire process, and if it exceeds the above, industrially stable aqueous alkali metal silicate solution cannot be obtained, and it becomes difficult to obtain it. It is easy to lack.

【0014】また、アルカリ金属珪酸塩水溶液における
SiO2の濃度は、好ましくは2〜30重量%、より好
ましくは3〜15重量%である。濃度が上記未満である
と含水シリカゲルを得ることが困難であり、また、上記
を超えると不安定となりやすく、いずれも工業的な適性
を欠くこととなりやすい。
The concentration of SiO 2 in the alkali metal silicate aqueous solution is preferably 2 to 30% by weight, more preferably 3 to 15% by weight. When the concentration is less than the above, it is difficult to obtain hydrous silica gel, and when the concentration is more than the above, the silica tends to be unstable, and any of them tends to lack industrial suitability.

【0015】上記濃度のアルカリ金属珪酸塩水溶液を得
るには、幾つか方法がある、最も簡便なのは上記濃度の
アルカリ金属珪酸塩水溶液をそのまま使用する方法であ
る。これはアルカリ金属珪酸塩水溶液の製造にあたって
濃度を調整しておけばよい。次に、上記濃度よりも高濃
度のアルカリ金属珪酸塩水溶液を、水、好ましくは純水
にて希釈する方法である。また、粉末の水溶性珪酸アル
カリも市販されており、これを、水、好ましくは純水中
に溶解して上記濃度とすることによっても得ることがで
きる。
There are several methods for obtaining an alkali metal silicate aqueous solution having the above concentration. The simplest method is to use the alkali metal silicate aqueous solution having the above concentration as it is. The concentration of this may be adjusted in the production of the alkali metal silicate aqueous solution. Next, a method of diluting an aqueous solution of an alkali metal silicate having a concentration higher than the above concentration with water, preferably pure water. Powdered water-soluble alkali silicate is also commercially available, and it can be obtained by dissolving it in water, preferably pure water, to the above concentration.

【0016】第1工程においては、このようなアルカリ
金属珪酸塩水溶液からpH2.0以下の酸性シリカ水溶
液を得るが、その方法は、以下の(1)または(2)の
方法によることができる。
In the first step, an acidic silica aqueous solution having a pH of 2.0 or less is obtained from such an alkali metal silicate aqueous solution, and the method can be the following method (1) or (2).

【0017】(1)は、アルカリ金属珪酸塩水溶液を、
脱アルカリ金属処理及び/若しくは酸性化処理した後、
若しくはいずれの処理も行わずに、少なくとも陽イオン
交換処理するか、または、陽イオン交換処理後に酸を添
加して、pH2.0以下の酸性シリカ水溶液を得る方法
である。
(1) is an aqueous solution of an alkali metal silicate,
After dealkalizing metal treatment and / or acidification treatment,
Alternatively, it is a method of obtaining an acidic silica aqueous solution having a pH of 2.0 or less by performing at least cation exchange treatment without performing any treatment, or adding an acid after the cation exchange treatment.

【0018】上記脱アルカリ金属処理とは、例えば、陽
イオン交換法、電気泳動法、電気透析法(電解透析法)
などによりアルカリ金属分を除去乃至低減する処理であ
る。この脱アルカリ金属処理により、殆どのアルカリ金
属分を、概ねNa2O濃度が1%以下程度となるまで除
去することが、低ホウ素化だけでなく他の金属不純物、
特には多価金属不純物を極力低下させ、低ホウ素シリカ
粒子を広範な用途に使用できるようにする上で好まし
い。
The dealkalizing metal treatment is, for example, a cation exchange method, an electrophoresis method, an electrodialysis method (electrolytic dialysis method).
This is a treatment for removing or reducing the alkali metal content by, for example, By this dealkalizing metal treatment, most of the alkali metal components can be removed until the Na 2 O concentration becomes approximately 1% or less.
In particular, it is preferable in that the polyvalent metal impurities are reduced as much as possible and the low boron silica particles can be used in a wide range of applications.

【0019】また、上記酸性化処理とは、例えば、塩
酸、硫酸、硝酸を単独で、若しくは、これらを組み合わ
せた酸等を用いてpH調整して酸性とするものである。
イオン交換能向上の観点からは、好ましくは少なくとも
硝酸を含む組合せの酸を用い、より好ましくは硝酸を単
独で用いる。酸性化処理においては、pHが酸性領域と
なればよいが、低ホウ素化の観点からは、好ましくはp
H3.0以下とする。
The above acidification treatment is, for example, acidification by adjusting the pH using hydrochloric acid, sulfuric acid, nitric acid alone or a combination thereof.
From the viewpoint of improving the ion exchange capacity, it is preferable to use a combination of acids containing at least nitric acid, and more preferable to use nitric acid alone. In the acidification treatment, the pH may be in the acidic region, but from the viewpoint of low boron, it is preferably p.
H3.0 or less.

【0020】(1)の方法では、アルカリ金属珪酸塩水
溶液を、所望に応じ上記脱アルカリ金属処理及び/若し
くは酸性化処理した後、陽イオン交換樹脂等を用いて陽
イオン交換処理すればよい。この陽イオン交換処理に使
用する陽イオン交換樹脂は、特に限定されるものではな
く、市販の強酸性型のビーズ状、繊維状、クロス状等の
水素型陽イオン交換樹脂等を使用することができる。ま
た、使用済みの陽イオン交換樹脂は通常の方法、即ち、
塩酸、硫酸、硝酸等の酸を使用して再生することができ
る。
In the method (1), the alkali metal silicate aqueous solution may be subjected to the dealkalizing metal treatment and / or the acidifying treatment as desired, and then subjected to a cation exchange treatment using a cation exchange resin or the like. The cation exchange resin used for this cation exchange treatment is not particularly limited, and commercially available strong acid type bead-like, fibrous, cloth-like hydrogen type cation-exchange resin, etc. may be used. it can. In addition, the used cation exchange resin is treated by the usual method, that is,
It can be regenerated using an acid such as hydrochloric acid, sulfuric acid or nitric acid.

【0021】これら陽イオン交換樹脂に対する上記アル
カリ金属珪酸塩水溶液の通液方法はなんら限定されるも
のではなく、たとえばカラムに上記陽イオン交換樹脂を
充填して通液する方法や、アルカリ金属珪酸塩水溶液と
陽イオン交換樹脂をバッチ方式で処理するなどの周知の
方法を用いることができる。尚、上述の陽イオン交換樹
脂やアルカリ金属珪酸塩水溶液の通液方法等の条件は、
脱アルカリ金属処理において陽イオン交換処理を行う場
合についても同様である。
The method of passing the aqueous solution of the alkali metal silicate through these cation exchange resins is not limited in any way. For example, a method of filling the column with the cation exchange resin and passing the solution, or an alkali metal silicate. Well-known methods such as treating the aqueous solution and the cation exchange resin in a batch system can be used. The conditions such as the above-mentioned cation exchange resin and the method for passing the alkali metal silicate aqueous solution are as follows.
The same applies to the case of performing the cation exchange treatment in the dealkalizing metal treatment.

【0022】陽イオン交換処理を施すにあたり、pHを
0.3〜3.0、特には0.5〜2.0としておくと、
多価金属のイオン化が促され、陽イオン交換処理におい
てこれらの除去能が向上されて、ホウ素だけでなく多価
金属不純物についても低含有量とすることができるため
に好ましい。pHの調整には上記と同様の酸を用いれば
よい。尚、pHが0.5未満であると、長時間、例え
ば、半日程度のうちにはゲル化するため、迅速な操作が
好ましい。
In carrying out the cation exchange treatment, if the pH is set to 0.3 to 3.0, particularly 0.5 to 2.0,
It is preferable because the ionization of the polyvalent metal is promoted, the removal ability thereof is improved in the cation exchange treatment, and the content of not only boron but also the polyvalent metal impurity can be reduced. The same acid as described above may be used to adjust the pH. If the pH is less than 0.5, gelation occurs over a long period of time, for example, in about half a day, so a rapid operation is preferable.

【0023】上記のような処理を行ったアルカリ金属珪
酸塩水溶液は、酸性シリカ水溶液となる。ここで、陽イ
オン交換処理によってpHが2.0以下、好ましくは
1.0以下になっていない場合には、上記と同様の酸を
添加することによりpHを調整して、pH2.0以下の
酸性シリカ水溶液を得ることができる。
The alkali metal silicate aqueous solution treated as described above becomes an acidic silica aqueous solution. Here, when the pH is not 2.0 or less, preferably 1.0 or less by the cation exchange treatment, the pH is adjusted by adding the same acid as described above to adjust the pH to 2.0 or less. An acidic silica aqueous solution can be obtained.

【0024】(2)は、アルカリ金属珪酸塩水溶液を、
電気透析法(電解透析法)などによる処理をして得られ
たシリカ水溶液に酸を添加して、pH2.0以下の酸性
シリカ水溶液を得る方法である。
(2) is an aqueous solution of an alkali metal silicate,
This is a method in which an acid is added to a silica aqueous solution obtained by a treatment such as an electrodialysis method (electrolytic dialysis method) to obtain an acidic silica aqueous solution having a pH of 2.0 or less.

【0025】この方法において、電気透析処理にあたっ
てpHが酸性側であると、電気透析処理に比較的長時間
を要することになり、ゲル化またはコロイド化が生じや
すいため、好ましくは、電気透析処理にあたってはpH
を10.5以上とする。
In this method, when the pH is acidic on the electrodialysis treatment, the electrodialysis treatment requires a relatively long time, and gelation or colloidation is likely to occur. Is pH
Is set to 10.5 or more.

【0026】電気透析処理によりpHが低下する程度は
小さいため、通常、電気透析処理を行った後、上記と同
様の酸を用いてpHを調整することが必要であり、これ
によりpH2.0以下、好ましくは1.0以下の酸性シ
リカ水溶液を得ることができる。
Since the degree to which the pH is lowered by the electrodialysis treatment is small, it is usually necessary to adjust the pH using the same acid as described above after performing the electrodialysis treatment. It is possible to obtain an acidic silica aqueous solution of preferably 1.0 or less.

【0027】第1工程は、このようにして得られたpH
2.0以下、好ましくは1.0以下の酸性シリカ水溶液
を、pH2.0以下かつ60℃以下の条件下で静置して
ゲル化させ、含水シリカゲルを得るものである。
The first step is the pH thus obtained.
An aqueous solution of acidic silica of 2.0 or less, preferably 1.0 or less is allowed to stand under the conditions of pH 2.0 or less and 60 ° C. or less to cause gelation to obtain hydrous silica gel.

【0028】通常、酸性のシリカ水溶液は放置すること
によってゲル化し、また温度が高いほどゲル化しやすい
が、本発明においては、pH2.0以下、好ましくはp
H1.0以下を維持したままで放置してゲル化させるこ
とで、最終的にホウ素含有量を低下させることができ
る。これは、pHが上記を超えると、ホウ素がSi−O
−B結合を形成してしまい、後述の洗浄によっても除去
が困難となるためである。
Usually, an acidic silica aqueous solution gels when left to stand, and tends to gel at higher temperatures. In the present invention, however, the pH is 2.0 or less, preferably p.
The boron content can be finally reduced by allowing the gel to stand while keeping H1.0 or less. This is because when the pH exceeds the above, boron becomes Si-O.
This is because the -B bond is formed and it is difficult to remove it even by the cleaning described later.

【0029】また、放置時の温度は、60℃以下、好ま
しくは40℃以下を維持したままで放置してゲル化させ
ることが重要であり、これにより最終的にホウ素含有量
を低下させることができる。これは、pHの場合と同様
に、60℃を超えるとホウ素がSi−O−B結合を形成
して、後述の洗浄によっても除去が困難となるためであ
る。
Further, it is important that the temperature at the time of standing is kept at 60 ° C. or lower, preferably 40 ° C. or lower to allow it to gel, so that the boron content is finally lowered. it can. This is because, as in the case of pH, when the temperature exceeds 60 ° C., boron forms Si—O—B bonds, which makes it difficult to remove even by the cleaning described later.

【0030】また、本第1発明における第2工程は、第
1工程で得られた含水シリカゲルを凍結し、解凍して離
水させて水分を減少させ、含水シリカ粒子を得るもので
ある。
In the second step of the first invention, the hydrous silica gel obtained in the first step is frozen, thawed, and water is removed to reduce water content to obtain hydrous silica particles.

【0031】含水シリカゲルの凍結は、かかる含水シリ
カゲルが凍結し始める温度以下の温度で行えばよい。含
水シリカゲル中のシリカ濃度及びpHによって含水シリ
カゲルが凍結し始める温度は異なるが、おおよそ−2℃
〜−15℃の温度で凍結し始めるため、このような含水
シリカゲルが凍結し始める温度以下の温度で凍結を行え
ばよい。ここで、凍結方法や凍結スピード等は特に限定
されるものではない。
The hydrated silica gel may be frozen at a temperature below the temperature at which the hydrated silica gel begins to freeze. The temperature at which the hydrous silica gel begins to freeze varies depending on the silica concentration and pH in the hydrous silica gel, but is approximately -2 ° C.
Since freezing starts at a temperature of -15 ° C, freezing may be performed at a temperature below the temperature at which such hydrous silica gel begins to freeze. Here, the freezing method, freezing speed, etc. are not particularly limited.

【0032】次に、凍結した含水シリカゲルを解凍す
る。解凍の方法は何ら限定されるものではなく、単に室
温にて放置すれば足りるが、より短時間で解凍するため
に、加温することもできる。加温は、例えば、温水や温
風等により行えばよいが、この場合も、前述した理由か
ら、含水シリカゲルの温度が60℃以下、特には40℃
以下となるようにすることが好ましい。
Next, the frozen hydrous silica gel is thawed. The method of thawing is not limited at all, and it is sufficient to simply leave it at room temperature, but it is possible to heat it for thawing in a shorter time. The heating may be performed with, for example, warm water or warm air, but in this case as well, the temperature of the hydrous silica gel is 60 ° C. or less, particularly 40 ° C., for the reason described above.
The following is preferable.

【0033】凍結した含水シリカゲルを解凍すると、凍
結水分が離水するため、もとの含水シリカゲルの状態に
戻ることはない。即ち、含水シリカゲルは、解凍による
離水によって砕かれたようになって粒子化し、遊離水と
シリカ粒子とに分離するため、濾過等の従来公知の方法
で遊離水を分離することにより、水分を減少させた含水
シリカ粒子を得ることができる。
When the frozen hydrous silica gel is thawed, the frozen water content is released so that the original hydrous silica gel does not return to its original state. That is, hydrous silica gel becomes particles when it is crushed by water separation by thawing, and separates into free water and silica particles. Therefore, by separating the free water by a conventionally known method such as filtration, the water content is reduced. The hydrous silica particles thus obtained can be obtained.

【0034】尚、この凍結・解凍・離水水分除去の一連
のプロセスにより、含水シリカゲル中の微量不純物は遊
離水側に移行して除去されるものである。
By the series of processes of freezing, thawing, and removal of separated water, trace impurities in the hydrous silica gel are transferred to the free water side and removed.

【0035】第3工程は、第2工程で得られた含水シリ
カ粒子を60℃以下、好ましくは40℃以下の条件下で
洗浄するものである。第2工程で得られた含水シリカ粒
子を洗浄することにより、ホウ素含量を良好に低減する
ことができる。温度を60℃以下、好ましくは40℃以
下とする理由は上記と同様である。
In the third step, the hydrous silica particles obtained in the second step are washed under the conditions of 60 ° C. or lower, preferably 40 ° C. or lower. By washing the hydrous silica particles obtained in the second step, the boron content can be satisfactorily reduced. The reason why the temperature is 60 ° C. or lower, preferably 40 ° C. or lower is the same as above.

【0036】洗浄は、水、好ましくは超純水による洗浄
であっても差し支えない。これは、上記までの処理が十
分な酸性条件下で行われているために含水シリカ粒子中
のホウ素はホウ酸として存在しており、水による洗浄で
あっても十分ホウ素を除去することができるためである
が、ホウ素の含有量をより低減するために、また、ホウ
素以外の金属元素不純物、特には多価金属元素不純物を
も効果的に除去してこれらの含有量を低減するために
も、酸を含有する洗浄液にて洗浄することが好ましい。
The washing may be washing with water, preferably ultrapure water. This is because boron in the hydrous silica particles is present as boric acid because the treatment up to the above is performed under sufficient acidic conditions, and it is possible to sufficiently remove boron even by washing with water. However, in order to further reduce the content of boron, and also to effectively remove metal element impurities other than boron, particularly polyvalent metal element impurities, to reduce the content thereof. It is preferable to wash with a washing liquid containing an acid.

【0037】酸としては、塩酸、硝酸、硫酸等の単独及
びこれらの組み合わせの何れでもよい。酸の濃度は特に
限定されないが、好ましくは2〜20重量%である。2
重量%未満では酸を使用する効果が顕著でなく、また、
20重量%を超えてもそれ以上効果は向上せず、工業的
に不利である。
The acid may be hydrochloric acid, nitric acid, sulfuric acid or the like, alone or in combination. The concentration of the acid is not particularly limited, but it is preferably 2 to 20% by weight. Two
If it is less than wt%, the effect of using an acid is not remarkable, and
Even if it exceeds 20% by weight, the effect is not further improved, which is industrially disadvantageous.

【0038】更に、洗浄液に過酸化水素を加えて、酸及
び過酸化水素を含有する洗浄液を用いると、より金属元
素不純物、特には多価金属元素不純物を効果的に除去す
ることができるために好ましい。
Further, when hydrogen peroxide is added to the cleaning liquid and a cleaning liquid containing acid and hydrogen peroxide is used, more metal element impurities, particularly polyvalent metal element impurities can be effectively removed. preferable.

【0039】過酸化水素の濃度は特に限定されないが、
2重量%以上使用しても、それ以上効果は向上せず、工
業的に不利である。尚、過酸化水素の使用効果はごく微
量でも生ずるが、特に100ppm以上であるとその効
果が顕著であり好ましい。
Although the concentration of hydrogen peroxide is not particularly limited,
Even if it is used in an amount of 2% by weight or more, the effect is not further improved, which is industrially disadvantageous. Although the effect of using hydrogen peroxide occurs even in a very small amount, the effect is particularly remarkable when it is 100 ppm or more, which is preferable.

【0040】勿論、これら過酸化水素及び酸を含有する
洗浄液が、極力高純度の洗浄液であることが好ましいの
は言うまでもないことである。
Needless to say, it is preferable that the cleaning liquid containing hydrogen peroxide and the acid is a cleaning liquid of high purity as much as possible.

【0041】また、本第1発明においては、第3工程に
おける上記60℃以下の条件下での洗浄に先立ち、含水
シリカ粒子を乾燥させることが好ましい。
In the first aspect of the present invention, it is preferable to dry the hydrous silica particles prior to the washing in the third step under the conditions of 60 ° C. or lower.

【0042】乾燥について説明すると、含水シリカ粒子
を乾燥させることにより、含水シリカ粒子中に含まれて
いるホウ素(但し、酸性条件下での処理を経ているため
ホウ酸として存在する)や他の金属不純物は、水分の移
動に伴って含水シリカ粒子の表層部に移動すると考えら
れる。従って、その後上述の洗浄を行うことにより表層
部に移動したホウ素や不純物が除去されて、より低ホウ
素化、より高純度化が図られると考えられるのである。
Explaining the drying, by drying the hydrated silica particles, the boron contained in the hydrated silica particles (provided that they are present as boric acid because they have undergone treatment under acidic conditions) and other metals. It is considered that the impurities move to the surface layer of the hydrous silica particles as the water moves. Therefore, it is considered that the boron and impurities that have moved to the surface layer portion are removed by performing the above-mentioned cleaning thereafter, so that the boron content can be further lowered and the purity can be further increased.

【0043】尚、ホウ素は上述の洗浄のみによっても十
分除去することができるので、乾燥処理を行う利点は主
として金属元素不純物、特には多価金属元素不純物を低
減できることにある。
Since boron can be sufficiently removed only by the above-mentioned washing, the advantage of performing the drying treatment is mainly that the metal element impurities, especially the polyvalent metal element impurities can be reduced.

【0044】乾燥の程度は特に限定されず、含水シリカ
粒子中の遊離水が減少しさえすればよいが、含水シリカ
粒子表層部へのホウ素及び金属不純物の移動は、乾燥に
よる含水シリカ粒子中の遊離水の減少量に依存するの
で、軽微な乾燥では僅かにしかホウ素及び金属不純物の
移動は起こらず、従って、その後上述の洗浄を経てもホ
ウ素及び金属不純物量は僅かしか減少しないこととなる
ので、極力十分な乾燥を行うことが好ましい。
The degree of drying is not particularly limited as long as the free water in the hydrous silica particles is reduced, but the migration of boron and metal impurities to the surface layer of the hydrous silica particles is caused by the drying. Since it depends on the reduction amount of free water, slight movement of boron and metal impurities occurs in the slight drying, and therefore, the boron and metal impurity amounts decrease only slightly after the above-mentioned washing. It is preferable to perform sufficient drying as much as possible.

【0045】乾燥方法は特に限定されず、従来公知の方
法で乾燥させればよいが、乾燥温度としては、例えば、
室温〜200℃で乾燥させることができる。但し、比較
的低温での乾燥は、雰囲気を低湿度として行っても長時
間を要することがあるので、短時間での乾燥を所望する
場合は100〜200℃程度の温度で、例えば、熱風乾
等により乾燥させればよい。また、乾燥温度が室温〜1
00℃未満の場合には、減圧下で乾燥を行うことが好ま
しい。
The drying method is not particularly limited and may be a conventionally known method. The drying temperature is, for example,
It can be dried at room temperature to 200 ° C. However, since drying at a relatively low temperature may take a long time even if the atmosphere is set to low humidity, if drying in a short time is desired, the temperature is about 100 to 200 ° C., for example, hot air drying. It may be dried by, for example. Also, the drying temperature is room temperature to 1
When the temperature is lower than 00 ° C, it is preferable to perform drying under reduced pressure.

【0046】ここで、60℃を超える温度を用いると、
上述したように含水シリカ粒子中のホウ素がSi−O−
B結合を形成し、洗浄によっても除去が困難となってし
まうため、本発明においては、乾燥処理においても、6
0℃以下、特には40℃以下の温度で乾燥を行うことが
好ましい。
If a temperature above 60 ° C. is used,
As described above, the boron in the hydrous silica particles is Si-O-
Since the B bond is formed and the removal becomes difficult even by washing, in the present invention, even in the drying treatment, 6
Drying is preferably carried out at a temperature of 0 ° C. or lower, particularly 40 ° C. or lower.

【0047】但し、上記乾燥処理に先立って含水シリカ
粒子を洗浄しておくと、この洗浄により十分にホウ素が
除去されるため、60℃以上の温度で乾燥を行うことが
可能となる。この場合の洗浄の方法等は上記と同様であ
る。従って、含水シリカ粒子を一度洗浄し、乾燥処理
し、再度洗浄することが、ホウ素及び金属元素の何れを
も効果的に減少させることができるために好ましい。
尚、この場合において、乾燥に先立つ洗浄が60℃以下
の条件下での洗浄である場合、かかる乾燥に先立つ洗浄
が本発明における上記必須の洗浄となり、即ち、必須の
洗浄の後の任意の処理として乾燥及びそれに続く洗浄処
理を行うことと同義となる。
However, if the hydrous silica particles are washed prior to the above-mentioned drying treatment, boron can be sufficiently removed by this washing, so that the drying can be performed at a temperature of 60 ° C. or higher. The washing method and the like in this case are the same as above. Therefore, it is preferable to wash the hydrous silica particles once, dry them, and wash them again because both the boron and the metal elements can be effectively reduced.
In this case, when the washing prior to drying is washing under the condition of 60 ° C. or less, the washing prior to such drying is the above essential cleaning in the present invention, that is, any treatment after the essential cleaning. As a result, it is synonymous with performing drying and subsequent washing treatment.

【0048】尚、上記含水シリカ粒子は、乾燥処理に供
する以前において、または、含水シリカゲルとして得る
までの何れかの工程において、過酸化水素を含有する処
理液にて処理するか、または、過酸化水素を添加したも
のであることが、乾燥による金属不純物、特に多価金属
のイオン化を促し、乾燥工程におけるこれらの含水シリ
カ粒子の表層部への移動を容易にし、洗浄によって金属
不純物、特に多価金属を効果的に除去する点で好まし
い。
The hydrous silica particles are treated with a treatment solution containing hydrogen peroxide or subjected to a peroxide treatment before being subjected to a drying treatment or in any step until obtaining hydrous silica gel. The addition of hydrogen promotes the ionization of metal impurities, especially polyvalent metals by drying, facilitates the transfer of these hydrous silica particles to the surface layer during the drying step, and the washing of metal impurities, especially polyvalent metals. It is preferable in that the metal is effectively removed.

【0049】本第2発明は、本第1発明の低ホウ素シリ
カ粒子の製造方法により得られるアルカリ金属珪酸塩由
来のシリカ粒子であって、ホウ素含有量が0.05pp
m以下、好ましくは0.01ppm以下のものである。
The second invention is a silica particle derived from an alkali metal silicate obtained by the method for producing low boron silica particles according to the first invention, which has a boron content of 0.05 pp.
m or less, preferably 0.01 ppm or less.

【0050】前述したように、従来の低ホウ素のシリカ
粒子は、テトラメトキシシラン、テトラエトキシシラ
ン、四塩化珪素等を原料としていたため、高純度ではあ
るが高価であり、これを使用して合成石英ガラス粒子を
製造すると高コストとなるため、工業的に適性の高いも
のではなかったが、本発明の低ホウ素シリカ粒子は、ア
ルカリ金属珪酸塩を出発物質とすることにより低コスト
で工業的に適性が高く、かつ、0.05ppm以下、好
ましくは0.01ppm以下という低ホウ素含有量のシ
リカ粒子である。
As described above, the conventional low-boron silica particles are made of tetramethoxysilane, tetraethoxysilane, silicon tetrachloride, etc. as raw materials, so that they are highly pure but expensive, and are synthesized using these. Since the production of the quartz glass particles is high cost, it was not industrially highly suitable, but the low boron silica particles of the present invention are industrially low cost by using an alkali metal silicate as a starting material. The silica particles are highly suitable and have a low boron content of 0.05 ppm or less, preferably 0.01 ppm or less.

【0051】また、本第3発明は、本第2発明の低ホウ
素シリカ粒子に、焼成工程を有する処理を施すことを特
徴とする低ホウ素石英ガラス粒子の製造方法である。本
第2発明の低ホウ素シリカ粒子は、上記したように、実
質的に遊離水を含まない状態の場合に限られず、少量な
がら遊離水を含有する状態の場合があるため、本第3発
明においては、本第2発明の低ホウ素シリカ粒子が実質
的に遊離水を含まない状態かまたは焼成工程に影響しな
い程度の微量の遊離水しか含有しない状態の場合はその
まま焼成工程にかけてもよいが、第2発明の低ホウ素シ
リカ粒子が遊離水を含有する場合は、焼成工程にかける
前に遊離水を除去すべく乾燥させることが好ましい。こ
れは、遊離水を含有するシリカゲルを焼成すると石英ガ
ラス粒子に気泡が生じることがあるためである。気泡を
含有する石英ガラスは、その用途が限定されてしまうた
め、気泡を有さない石英ガラス粒子が好ましいのであ
る。
The third invention is a method for producing low-boron silica glass particles, which comprises subjecting the low-boron silica particles of the second invention to a treatment having a firing step. As described above, the low-boron silica particles of the present second invention are not limited to the case of containing substantially no free water and may contain a small amount of free water. The low-boron silica particles of the second invention may be subjected to the calcination step as they are, if the low-boron silica particles of the second invention do not substantially contain the free water or if they contain only a trace amount of free water that does not affect the calcination step. 2 If the low boron silica particles of the invention contain free water, it is preferably dried to remove the free water prior to the firing step. This is because when silica gel containing free water is fired, bubbles may occur in the quartz glass particles. Quartz glass containing bubbles is limited in its use. Therefore, quartz glass particles having no bubbles are preferable.

【0052】本第3発明における焼成工程は、シリカ粒
子を石英ガラス粒子とすることができるものであればよ
いため特に限定されず、従来高純度の石英を得る場合に
行われる焼成と同程度の温度及び時間で行えばよく、従
来公知の方法を使用することができる。高純度の石英ガ
ラス粒子は極力OH含量の少ないことが好ましく、より
高温でより長時間の焼成を行えばそれだけOH含量の少
ない石英を得ることができるので、所望のOH含量とな
るよう適宜条件を設定すればよい。
The firing step in the third aspect of the invention is not particularly limited as long as it can convert silica particles into quartz glass particles, and the firing step is the same as that conventionally performed to obtain high-purity quartz. The temperature and time may be used, and a conventionally known method can be used. It is preferable that the high-purity quartz glass particles have as low an OH content as possible, and if firing is performed at a higher temperature for a longer time, quartz having a lower OH content can be obtained. Just set it.

【0053】[0053]

【実施例】〔実施例1〕SiO2/Na2O=3.0のモ
ル比の珪酸ソーダ水溶液(1)(SiO2濃度29重量
%)を純水で希釈して、SiO2濃度13重量%の珪酸
ソーダ水溶液とした。この珪酸ソーダ水溶液に、過酸化
水素をSiO2重量に対して0.7%添加し、硝酸と混
合してpH2とした後、水素型陽イオン交換樹脂(オル
ガノ(株)製アンバーライトIR−120B)を充填し
たカラムに通液して、SiO2濃度9.3重量%、pH
0.0のシリカ水溶液(1)を得た。
EXAMPLES Example 1 An aqueous solution of sodium silicate (1) (SiO 2 concentration 29% by weight) having a molar ratio of SiO 2 / Na 2 O = 3.0 (SiO 2 concentration 29% by weight) was diluted with pure water to obtain an SiO 2 concentration of 13% by weight. % Sodium silicate aqueous solution. After adding 0.7% of hydrogen peroxide to the weight of SiO 2 to the aqueous solution of sodium silicate and mixing it with nitric acid to adjust the pH to 2, a hydrogen type cation exchange resin (Amberlite IR-120B manufactured by Organo Corporation) was used. ) Through a column filled with), SiO 2 concentration 9.3 wt%, pH
An aqueous silica solution (1) of 0.0 was obtained.

【0054】得られたシリカ水溶液(1)を、温度(室
温)及びpHを維持しながら5時間静置して含水シリカ
ゲルを得た。
The resulting silica aqueous solution (1) was allowed to stand for 5 hours while maintaining the temperature (room temperature) and pH to obtain hydrous silica gel.

【0055】得られたシリカゲルを−30℃の雰囲気下
に15時間置いて凍結させた後、35℃の雰囲気下に5
時間おいて解凍して離水させ、濾過して水分を除き、含
水シリカ粒子(1)を得た。
The obtained silica gel was placed in an atmosphere of −30 ° C. for 15 hours to be frozen, and then it was placed in an atmosphere of 35 ° C. for 5 hours.
After thawing for a while, water was removed and water was removed by filtration to obtain hydrous silica particles (1).

【0056】得られた含水シリカ粒子につき、塩酸10
重量%、過酸化水素0.7重量%(SiO2重量に対し
て)を含有する洗浄液(水溶液)を用いて、室温下で1
時間の洗浄を3回繰り返した。
Hydrochloric acid was added to the obtained hydrous silica particles in an amount of 10
1% at room temperature using a cleaning solution (aqueous solution) containing 1% by weight and 0.7% by weight of hydrogen peroxide (based on the weight of SiO 2 ).
The time wash was repeated 3 times.

【0057】その後、120℃の温度下に15時間置い
て乾燥させた後、前記同様の洗浄を再度行って低ホウ素
シリカ粒子を得た。得られた低ホウ素シリカ粒子を12
0℃で15時間乾燥させた後、その不純物量を常法に従
い測定した。結果を下記の表1に示す。
After that, it was left at 120 ° C. for 15 hours to be dried, and then washed in the same manner as above to obtain low boron silica particles. The obtained low boron silica particles are 12
After drying at 0 ° C. for 15 hours, the amount of impurities was measured by a conventional method. The results are shown in Table 1 below.

【0058】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0059】〔実施例2〕珪酸ソーダ水溶液(1)を硝
酸と混合する替わりに硫酸と混合した他は実施例1と同
様にして低ホウ素シリカ粒子を得た。但し、陽イオン交
換処理後のpHは0.4であった。不純物量の測定結果
は表1に示したとおりであった。
Example 2 Low boron silica particles were obtained in the same manner as in Example 1 except that the sodium silicate aqueous solution (1) was mixed with sulfuric acid instead of nitric acid. However, the pH after the cation exchange treatment was 0.4. The measurement results of the amount of impurities are as shown in Table 1.

【0060】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0061】〔実施例3〕珪酸ソーダ水溶液を硝酸と混
合する替わりに塩酸と混合してpHを0.9とし、ゲル
化における静置時間を15時間とした他は実施例1と同
様にして低ホウ素シリカ粒子を得た。不純物量の測定結
果は表1に示したとおりであった。
Example 3 Similar to Example 1, except that the aqueous solution of sodium silicate was mixed with hydrochloric acid instead of nitric acid to adjust the pH to 0.9 and the standing time in gelation was set to 15 hours. Low boron silica particles were obtained. The measurement results of the amount of impurities are as shown in Table 1.

【0062】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0063】〔実施例4〕珪酸ソーダ水溶液(1)に替
えて、SiO2/Na2O=1.0のモル比の珪酸ソーダ
水溶液(SiO2濃度10重量%)を用いた他は実施例
1と同様にして低ホウ素シリカ粒子を得た。不純物量の
測定結果は表1に示したとおりであった。
Example 4 Example 4 was repeated except that a sodium silicate aqueous solution (1) was replaced with a sodium silicate aqueous solution (SiO 2 concentration 10% by weight) having a molar ratio of SiO 2 / Na 2 O = 1.0. Low boron silica particles were obtained in the same manner as in 1. The measurement results of the amount of impurities are as shown in Table 1.

【0064】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0065】〔実施例5〕珪酸ソーダ水溶液(1)を純
水で希釈してSiO2濃度6重量%の珪酸ソーダ水溶液
とした。この珪酸ソーダ水溶液に、過酸化水素をSiO
2重量に対して0.7%添加した後、水素型陽イオン交
換樹脂(オルガノ(株)製アンバーライトIR−120
B)を充填したカラムに通液して、SiO2濃度5.5
重量%、pH2.5のシリカ水溶液を得、これを塩酸と
混合してpH0.3のシリカ水溶液を得た。
Example 5 A sodium silicate aqueous solution (1) was diluted with pure water to obtain a sodium silicate aqueous solution having a SiO 2 concentration of 6% by weight. Hydrogen peroxide is added to this aqueous solution of sodium silicate by SiO 2.
After adding 0.7% to 2 weight, hydrogen type cation exchange resin (Amberlite IR-120 manufactured by Organo Corporation)
The solution was passed through a column packed with B) to obtain a SiO 2 concentration of 5.5.
A silica aqueous solution having a weight% of 2.5 was obtained, which was mixed with hydrochloric acid to obtain a silica aqueous solution having a pH of 0.3.

【0066】得られたシリカ水溶液を、温度(室温)及
びpHを維持しながら5時間静置して含水シリカゲルを
得た。
The obtained silica aqueous solution was allowed to stand for 5 hours while maintaining the temperature (room temperature) and pH to obtain hydrous silica gel.

【0067】以下、実施例1と同様にして低ホウ素シリ
カ粒子を得た。不純物量の測定結果は表1に示したとお
りであった。
Then, low boron silica particles were obtained in the same manner as in Example 1. The measurement results of the amount of impurities are as shown in Table 1.

【0068】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0069】〔実施例6〕珪酸ソーダ水溶液(1)を純
水で希釈してSiO2濃度6重量%の珪酸ソーダ水溶液
とした。この珪酸ソーダ水溶液を水素型陽イオン交換樹
脂(オルガノ(株)製アンバーライトIR−120B)
を充填したカラムに通液して、SiO2濃度5.5重量
%、pH2.5のシリカ水溶液を得た。これを硝酸でp
H1.0に調整し、水素型陽イオン交換樹脂(オルガノ
(株)製アンバーライトIR−120B)を充填したカ
ラムに通液して、SiO2濃度5.5重量%、pH1.
0のシリカ水溶液を得、これを塩酸と混合してpH0.
3のシリカ水溶液を得た。
Example 6 A sodium silicate aqueous solution (1) was diluted with pure water to obtain a sodium silicate aqueous solution having a SiO 2 concentration of 6% by weight. This aqueous solution of sodium silicate was used as a hydrogen type cation exchange resin (Amberlite IR-120B manufactured by Organo Corporation).
The solution was passed through a column packed with to obtain a silica aqueous solution having a SiO 2 concentration of 5.5% by weight and a pH of 2.5. P with this with nitric acid
The column was adjusted to H1.0 and passed through a column packed with a hydrogen type cation exchange resin (Amberlite IR-120B manufactured by Organo Corporation) to give a SiO 2 concentration of 5.5% by weight and a pH of 1.
0 silica aqueous solution was obtained and mixed with hydrochloric acid to obtain a pH of 0.
An aqueous silica solution of 3 was obtained.

【0070】得られたシリカ水溶液を、温度(室温)及
びpHを維持しながら5時間静置して含水シリカゲルを
得た。
The obtained silica aqueous solution was allowed to stand for 5 hours while maintaining the temperature (room temperature) and pH to obtain hydrous silica gel.

【0071】以下、実施例1と同様にして低ホウ素シリ
カ粒子を得た。不純物量の測定結果は表1に示したとお
りであった。
Then, low boron silica particles were obtained in the same manner as in Example 1. The measurement results of the amount of impurities are as shown in Table 1.

【0072】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0073】〔実施例7〕珪酸ソーダ水溶液(1)を純
水で希釈してSiO2濃度10重量%の珪酸ソーダ水溶
液とした。この珪酸ソーダ水溶液に、過酸化水素をSi
2重量に対して0.7%添加した後、陰陽両イオン交
換膜を4枚づつ交互に配置した電気透析槽を用い、珪酸
ソーダ水溶液に3A/dm2の直流電流を通電してpH
11となるように透析を行って脱アルカリ処理し、次い
で水素型陽イオン交換樹脂(オルガノ(株)製アンバー
ライトIR−120B)を充填したカラムに通液して、
SiO2濃度9.5重量%、pH1.5のシリカ水溶液
(2)を得た。
Example 7 A sodium silicate aqueous solution (1) was diluted with pure water to obtain a sodium silicate aqueous solution having a SiO 2 concentration of 10% by weight. Hydrogen peroxide is added to this sodium silicate solution as Si.
After adding 0.7% to O 2 weight, an electrodialysis tank with four anion and cation exchange membranes alternately arranged was used to apply a direct current of 3 A / dm 2 to the aqueous sodium silicate solution to adjust pH.
The resulting solution was dialyzed to deal with 11 to dealkalize, and then passed through a column packed with a hydrogen type cation exchange resin (Amberlite IR-120B manufactured by Organo Corporation),
An aqueous silica solution (2) having a SiO 2 concentration of 9.5% by weight and a pH of 1.5 was obtained.

【0074】得られたシリカ水溶液を、温度(室温)及
びpHを維持しながら15時間静置して含水シリカゲル
を得た。
The obtained aqueous silica solution was allowed to stand for 15 hours while maintaining the temperature (room temperature) and pH to obtain hydrous silica gel.

【0075】以下、実施例1と同様にして低ホウ素シリ
カ粒子を得た。不純物量の測定結果は表1に示したとお
りであった。
Then, low boron silica particles were obtained in the same manner as in Example 1. The measurement results of the amount of impurities are as shown in Table 1.

【0076】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0077】〔実施例8〕シリカ水溶液(2)を塩酸と
混合してpH0.0のシリカ水溶液を得た。
Example 8 The silica aqueous solution (2) was mixed with hydrochloric acid to obtain a silica aqueous solution having a pH of 0.0.

【0078】得られたシリカ水溶液を、温度(室温)及
びpHを維持しながら5時間静置して含水シリカゲルを
得た。
The obtained silica aqueous solution was allowed to stand for 5 hours while maintaining the temperature (room temperature) and pH to obtain hydrous silica gel.

【0079】以下、実施例1と同様にして低ホウ素シリ
カ粒子を得た。不純物量の測定結果は表1に示したとお
りであった。
Then, low boron silica particles were obtained in the same manner as in Example 1. The measurement results of the amount of impurities are as shown in Table 1.

【0080】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0081】〔実施例9〕珪酸ソーダ水溶液(1)を純
水で希釈してSiO2濃度13重量%の珪酸ソーダ水溶
液とした。この珪酸ソーダ水溶液に、陰陽両イオン交換
膜を4枚づつ交互に配置した電気透析槽を用い、3A/
dm2の直流電流を通電してpH11となるように透析
を行い、過酸化水素をSiO2重量に対して0.7%添
加し、硝酸と混合してpH0.5としpH0.5のシリ
カ水溶液を得た。
Example 9 A sodium silicate aqueous solution (1) was diluted with pure water to obtain a sodium silicate aqueous solution having a SiO 2 concentration of 13% by weight. Using this sodium silicate aqueous solution, an electrodialysis tank in which four anion and cation exchange membranes are alternately arranged is used, and 3 A /
A direct current of dm 2 is applied to perform dialysis so as to have a pH of 11, and 0.7% of hydrogen peroxide is added to the weight of SiO 2 , and the mixture is mixed with nitric acid to a pH of 0.5 to obtain a silica aqueous solution of pH 0.5. Got

【0082】得られたシリカ水溶液を、温度(室温)及
びpHを維持しながら5時間静置して含水シリカゲルを
得た。
The silica aqueous solution thus obtained was allowed to stand for 5 hours while maintaining the temperature (room temperature) and pH to obtain hydrous silica gel.

【0083】以下、実施例1と同様にして低ホウ素シリ
カ粒子を得た。不純物量の測定結果は表1に示したとお
りであった。
Then, low boron silica particles were obtained in the same manner as in Example 1. The measurement results of the amount of impurities are as shown in Table 1.

【0084】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0085】〔実施例10〕含水シリカ粒子(1)につ
き、35℃の超純水中で1時間の洗浄を3回繰り返して
低ホウ素シリカ粒子を得た。得られた低ホウ素シリカ粒
子を120℃で15時間乾燥させた後、その不純物量を
常法に従い測定した。不純物量の測定結果を下記の表1
に示す。
Example 10 The hydrous silica particles (1) were washed in ultrapure water at 35 ° C. for 1 hour three times to obtain low boron silica particles. The obtained low boron silica particles were dried at 120 ° C. for 15 hours, and the amount of impurities was measured by a conventional method. The measurement results of the amount of impurities are shown in Table 1 below.
Shown in.

【0086】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0087】〔実施例11〕含水シリカ粒子(1)につ
き、塩酸10重量%を含有する洗浄液(水溶液)にて室
温下で1時間の洗浄を3回繰り返して低ホウ素シリカ粒
子を得た。得られた低ホウ素シリカ粒子シリカ粒子を1
20℃で15時間乾燥させた後、その不純物量を常法に
従い測定した。不純物量の測定結果を下記の表1に示
す。
Example 11 The hydrous silica particles (1) were washed with a cleaning solution (aqueous solution) containing 10% by weight of hydrochloric acid at room temperature for 1 hour three times to obtain low boron silica particles. The obtained low boron silica particles are silica particles 1
After drying at 20 ° C. for 15 hours, the amount of impurities was measured by a conventional method. The measurement results of the amount of impurities are shown in Table 1 below.

【0088】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0089】〔実施例12〕含水シリカ粒子(1)につ
き、塩酸10重量%、過酸化水素0.7重量%(SiO
2重量に対して)を含有する洗浄液(水溶液)にて室温
下で1時間の洗浄を3回繰り返して低ホウ素シリカ粒子
を得た。得られた低ホウ素シリカ粒子を120℃で15
時間乾燥させた後、その不純物量を常法に従い測定し
た。不純物量の測定結果を下記の表1に示す。
Example 12 With respect to the hydrous silica particles (1), hydrochloric acid 10% by weight and hydrogen peroxide 0.7% by weight (SiO 2
A low-boron silica particle was obtained by repeating washing for 1 hour at room temperature three times with a cleaning liquid (aqueous solution) containing 2 weight parts). The obtained low boron silica particles were heated at 120 ° C. for 15
After drying for an hour, the amount of impurities was measured according to a conventional method. The measurement results of the amount of impurities are shown in Table 1 below.

【0090】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0091】〔実施例13〕含水シリカ粒子(1)を、
35℃の温度で減圧下(約1kPa)に10時間置いて
乾燥させた後、塩酸10重量%、過酸化水素0.7重量
%(SiO2重量に対して)を含有する洗浄液(水溶
液)にて室温下で1時間の洗浄を3回繰り返して低ホウ
素シリカ粒子を得た。得られた低ホウ素シリカ粒子を1
20℃で15時間乾燥させた後、その不純物量を常法に
従い測定した。不純物量の測定結果を下記の表1に示
す。
Example 13 Hydrous silica particles (1)
After drying under reduced pressure (about 1 kPa) for 10 hours at a temperature of 35 ° C., a cleaning solution (aqueous solution) containing 10% by weight of hydrochloric acid and 0.7% by weight of hydrogen peroxide (based on SiO 2 weight) was used. After that, washing at room temperature for 1 hour was repeated 3 times to obtain low boron silica particles. 1 for the obtained low boron silica particles
After drying at 20 ° C. for 15 hours, the amount of impurities was measured by a conventional method. The measurement results of the amount of impurities are shown in Table 1 below.

【0092】得られた低ホウ素シリカ粒子を1250℃
にて24時間焼成して、低ホウ素石英ガラス粒子を得
た。得られた石英ガラス粒子の不純物量はシリカ粒子の
ときと変化がなかった。
The obtained low boron silica particles were treated at 1250 ° C.
After that, it was baked for 24 hours to obtain low boron quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0093】〔比較例1〕シリカ水溶液(1)をアンモ
ニアと混合してpHを6.0とし、1時間静置して含水
シリカゲルを得た。
[Comparative Example 1] Aqueous silica solution (1) was mixed with ammonia to adjust the pH to 6.0 and allowed to stand for 1 hour to obtain hydrous silica gel.

【0094】以下、実施例1と同様にしてシリカ粒子を
得た。不純物量の測定結果は表1に示したとおりであっ
た。
Thereafter, silica particles were obtained in the same manner as in Example 1. The measurement results of the amount of impurities are as shown in Table 1.

【0095】得られたシリカ粒子を1250℃にて24
時間焼成して、石英ガラス粒子を得た。得られた石英ガ
ラス粒子の不純物量はシリカ粒子のときと変化がなかっ
た。
The obtained silica particles were treated at 1250 ° C. for 24 hours.
Firing was carried out for a period of time to obtain quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0096】〔比較例2〕シリカ水溶液(1)を、80
℃に昇温させ、温度及びpHを維持しながら3時間静置
して含水シリカゲルを得た。
Comparative Example 2 Aqueous silica solution (1) was added to 80
The temperature was raised to ° C, and the mixture was allowed to stand for 3 hours while maintaining the temperature and pH to obtain hydrous silica gel.

【0097】以下、実施例1と同様にしてシリカ粒子を
得た。不純物量の測定結果は表1に示したとおりであっ
た。
Thereafter, silica particles were obtained in the same manner as in Example 1. The measurement results of the amount of impurities are as shown in Table 1.

【0098】得られたシリカ粒子を1250℃にて24
時間焼成して、石英ガラス粒子を得た。得られた石英ガ
ラス粒子の不純物量はシリカ粒子のときと変化がなかっ
た。
The obtained silica particles were heated at 1250 ° C. for 24 hours.
Firing was carried out for a period of time to obtain quartz glass particles. The amount of impurities in the obtained quartz glass particles did not change from that of silica particles.

【0099】[0099]

【表1】 尚、表中の単位は重量ppmである。[Table 1] The unit in the table is ppm by weight.

【0100】[0100]

【発明の効果】以上説明してきたように、本発明によれ
ば、安価なアルカリ金属珪酸塩水溶液を原料として用い
ても高純度なシリカ粒子を得ることができ、特にはホウ
素含量を十分に低減した低ホウ素シリカ粒子を得ること
ができる。また、この方法により得られた低ホウ素シリ
カ粒子を用いて、安価で高純度の低ホウ素石英ガラス粒
子を得ることができる。
As described above, according to the present invention, high-purity silica particles can be obtained even when an inexpensive aqueous alkali metal silicate solution is used as a raw material, and particularly, the boron content is sufficiently reduced. The obtained low boron silica particles can be obtained. Further, by using the low boron silica particles obtained by this method, inexpensive and highly pure low boron silica glass particles can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C03B 20/00 C03B 20/00 D C03C 3/06 C03C 3/06 (72)発明者 渡部 弘行 東京都中央区日本橋室町4−2−16 株式 会社渡邊商行内 (72)発明者 上原 啓史 東京都中央区日本橋室町4−2−16 株式 会社渡邊商行内 (72)発明者 三瓶 桂子 東京都中央区日本橋室町4−2−16 株式 会社渡邊商行内 (72)発明者 栗田 有康 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 尾見 仁一 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 高橋 真木雄 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 森田 博 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 旭岡 嗣貴 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 Fターム(参考) 4G014 AH02 AH04 AH06 4G062 AA10 BB02 CC01 CC05 DA08 MM01 NN40 4G072 AA27 AA28 AA34 BB05 BB15 CC10 GG01 GG03 HH22 JJ13 MM01 MM23 MM24 MM31 PP05 PP13 TT19 UU21 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C03B 20/00 C03B 20/00 D C03C 3/06 C03C 3/06 (72) Inventor Hiroyuki Watanabe Central Tokyo 4-2-16 Nihonbashi Muromachi, Ltd., Watanabe Shoten, Ltd. (72) Inventor, Keishi Uehara 4-2-16 Nihonbashi Muromachi, Chuo-ku, Tokyo Incorporated, Watanabe, Ltd. (72) Keiko Sanbe 4 Nihonbashi Muromachi, Chuo-ku, Tokyo -2-16 Watanabe Shokai Co., Ltd. (72) Inventor Ariyasu Kurita 7-35, Higashiohisa, Arakawa-ku, Tokyo Within Asahi Denka Kogyo Co., Ltd. (72) Initiator, Niichi Omi Hisaichi Higashio, Arakawa-ku, Tokyo Asahi Denka Kogyo Co., Ltd. (2-35) Inventor Maki Takahashi Makio Takahashi 7-35 Higashiohisa Arakawa-ku, Tokyo Asahi Denka Kogyo Co., Ltd. (72) Inventor Hiroshi Morita Asahi Denka Kogyo Co., Ltd. 7-35, Higashiokyu, Arakawa-ku, Tokyo (72) Inventor Tsugutaka Asahioka 7-35, Higashiohisa, Higashiokyu, Arakawa-ku, Tokyo F-Term (Reference) 4G014 AH02 AH04 AH06 4G062 AA10 BB02 CC01 CC05 DA08 MM01 NN40 4G072 AA27 AA28 AA34 BB05 BB15 CC10 GG01 GG03 HH22 JJ13 MM01 MM23 MM24 MM31 PP05 PP13 TT19 UU21

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属珪酸塩水溶液からpH2.
0以下の酸性シリカ水溶液を得、該酸性シリカ水溶液
を、pH2.0以下かつ60℃以下の条件下で静置して
ゲル化させ、含水シリカゲルを得る第1工程と、得られ
た含水シリカゲルを凍結し、解凍して離水させて水分を
減少させ、含水シリカ粒子を得る第2工程と、得られた
含水シリカ粒子を60℃以下の条件下で洗浄する第3工
程と、を包含することを特徴とする低ホウ素シリカ粒子
の製造方法。
1. A pH of 2. from an alkali metal silicate aqueous solution.
The acidic silica aqueous solution of 0 or less is obtained, and the acidic silica aqueous solution is allowed to stand under conditions of pH 2.0 or lower and 60 ° C. or lower to cause gelation to obtain hydrous silica gel. Including a second step of freezing, thawing and allowing water to reduce water content to obtain water-containing silica particles, and a third step of washing the obtained water-containing silica particles at a temperature of 60 ° C. or lower. A method for producing low boron silica particles.
【請求項2】 前記pH2.0以下の酸性シリカ水溶液
が、下記(1)または(2)、(1)前記アルカリ金属
珪酸塩水溶液を、脱アルカリ金属処理及び/若しくは酸
性化処理した後、若しくはいずれの処理も行わずに、少
なくとも陽イオン交換処理して得られたもの、または、
該陽イオン交換処理後に酸を添加することにより得られ
たもの、(2)前記アルカリ金属珪酸塩水溶液を電気透
析処理して、酸を添加することにより得られたもの、の
うちのいずれかである請求項1記載の低ホウ素シリカ粒
子の製造方法。
2. The acidic silica aqueous solution having a pH of 2.0 or less after (1) or (2) below, (1) the alkali metal silicate aqueous solution is dealkalized and / or acidified, or Those obtained by at least cation exchange treatment without any treatment, or
One obtained by adding an acid after the cation exchange treatment, or (2) obtained by electrodialysis of the aqueous alkali metal silicate solution and adding an acid. The method for producing low boron silica particles according to claim 1.
【請求項3】 前記洗浄を、酸を含有する洗浄液、また
は、過酸化水素及び酸を含有する洗浄液にて行う請求項
1または2記載の低ホウ素シリカ粒子の製造方法。
3. The method for producing low boron silica particles according to claim 1, wherein the cleaning is performed with a cleaning solution containing an acid or a cleaning solution containing hydrogen peroxide and an acid.
【請求項4】 前記第3工程における前記60℃以下の
条件下での洗浄に先立ち、前記含水シリカ粒子を乾燥さ
せる請求項1〜3のうちいずれか一項記載の低ホウ素シ
リカ粒子の製造方法。
4. The method for producing low boron silica particles according to claim 1, wherein the hydrous silica particles are dried prior to the washing in the third step under the condition of 60 ° C. or lower. .
【請求項5】 前記含水シリカ粒子の乾燥に先立ち、該
含水シリカ粒子を洗浄する請求項4記載の低ホウ素シリ
カ粒子の製造方法。
5. The method for producing low boron silica particles according to claim 4, wherein the hydrous silica particles are washed prior to drying the hydrous silica particles.
【請求項6】 請求項1〜5のうちいずれか一項記載の
製造方法により得られ、ホウ素含有量が0.05ppm
以下であることを特徴とする低ホウ素シリカ粒子。
6. The method according to claim 1, wherein the boron content is 0.05 ppm.
A low-boron silica particle characterized by being:
【請求項7】 前記ホウ素含有量が0.01ppm以下
である請求項6記載の低ホウ素シリカ粒子。
7. The low-boron silica particles according to claim 6, wherein the boron content is 0.01 ppm or less.
【請求項8】 請求項6または7記載の低ホウ素シリカ
粒子に、焼成工程を含む処理を施すことを特徴とする低
ホウ素石英ガラス粒子の製造方法。
8. A method for producing low-boron silica glass particles, which comprises subjecting the low-boron silica particles according to claim 6 or 7 to a treatment including a firing step.
JP2001297773A 2001-09-27 2001-09-27 Method for producing low boron silica particles, low boron silica particles obtained by this method, and method for producing low boron silica glass particles using the same Expired - Fee Related JP5057622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297773A JP5057622B2 (en) 2001-09-27 2001-09-27 Method for producing low boron silica particles, low boron silica particles obtained by this method, and method for producing low boron silica glass particles using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297773A JP5057622B2 (en) 2001-09-27 2001-09-27 Method for producing low boron silica particles, low boron silica particles obtained by this method, and method for producing low boron silica glass particles using the same

Publications (2)

Publication Number Publication Date
JP2003104716A true JP2003104716A (en) 2003-04-09
JP5057622B2 JP5057622B2 (en) 2012-10-24

Family

ID=19118783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297773A Expired - Fee Related JP5057622B2 (en) 2001-09-27 2001-09-27 Method for producing low boron silica particles, low boron silica particles obtained by this method, and method for producing low boron silica glass particles using the same

Country Status (1)

Country Link
JP (1) JP5057622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922989B2 (en) 2006-03-15 2011-04-12 Amendola Steven C Method for making silicon for solar cells and other applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313613A (en) * 1999-04-27 2000-11-14 Nippon Chem Ind Co Ltd Production of silica sol containing silica particle having large particle diameter
JP2003012321A (en) * 2001-06-27 2003-01-15 Watanabe Shoko:Kk Method for producing high purity silica particles and high purity silica particles and method for producing high purity quartz glass particles using them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313613A (en) * 1999-04-27 2000-11-14 Nippon Chem Ind Co Ltd Production of silica sol containing silica particle having large particle diameter
JP2003012321A (en) * 2001-06-27 2003-01-15 Watanabe Shoko:Kk Method for producing high purity silica particles and high purity silica particles and method for producing high purity quartz glass particles using them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922989B2 (en) 2006-03-15 2011-04-12 Amendola Steven C Method for making silicon for solar cells and other applications
US8568683B2 (en) 2006-03-15 2013-10-29 Steven C. Amendola Method for making silicon for solar cells and other applications

Also Published As

Publication number Publication date
JP5057622B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
US5100581A (en) Method of preparing high-purity aqueous silica sol
JPS6283313A (en) Method for highly purifying silica
CZ302013B6 (en) Process for preparing stable colloidal silica
US7140201B2 (en) Method for producing silica particles
JPS61158810A (en) Production of high-purity silica sol
US4150100A (en) Preparing zeolite NaA
JP2004530533A5 (en)
JP2003104716A (en) Method for producing low-boron silica particle and low- boron silica particle using it and method for producing low-boron quartz glass using it
JPS6316329B2 (en)
JP3225553B2 (en) Method for producing high-purity aqueous silica sol
JPS63123807A (en) Production of acidic silica sol
JP2001072409A (en) Production of high-purity silica gel and its use
US3492090A (en) Process for producing faujasite
JP3362793B2 (en) Method for producing silica sol
CN112642405B (en) Recyclable adsorbent and preparation method and application thereof
JP2003012321A (en) Method for producing high purity silica particles and high purity silica particles and method for producing high purity quartz glass particles using them
JP4504491B2 (en) Manufacturing method of high purity synthetic quartz powder
JP4649677B2 (en) Method for producing high-purity silica particles, high-purity silica particles obtained thereby, and method for producing high-purity quartz glass particles using the same
JP3362792B2 (en) Method for producing silica sol
JP2535972B2 (en) Method for producing silica sol
JPH0457604B2 (en)
JP2001233628A (en) Method of producing synthetic quartz glass powder
JPH0118006B2 (en)
JP3478394B2 (en) Silica sol and silica powder
US2940939A (en) Process of preparing silica sols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5057622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees