JP2003101156A - Semiconductor light-emitting device and manufacturing method therefor - Google Patents

Semiconductor light-emitting device and manufacturing method therefor

Info

Publication number
JP2003101156A
JP2003101156A JP2001292748A JP2001292748A JP2003101156A JP 2003101156 A JP2003101156 A JP 2003101156A JP 2001292748 A JP2001292748 A JP 2001292748A JP 2001292748 A JP2001292748 A JP 2001292748A JP 2003101156 A JP2003101156 A JP 2003101156A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
light emitting
plane
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001292748A
Other languages
Japanese (ja)
Other versions
JP3697406B2 (en
Inventor
Shinji Saito
真司 齋藤
Masaaki Onomura
正明 小野村
Yoshiyuki Harada
佳幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001292748A priority Critical patent/JP3697406B2/en
Publication of JP2003101156A publication Critical patent/JP2003101156A/en
Application granted granted Critical
Publication of JP3697406B2 publication Critical patent/JP3697406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device in which a light- emitting element of multiple-wavelength is formed into monolithic, and to provide a manufacturing method therefor. SOLUTION: Semiconductor lasers LD1 and LD2 of different wavelength are integrally formed on a substrate 1 where an n-type GaN buffer layer 12 is formed on an n-type GaN substrate 11. An n-type AlGaN clad layer 2a on the LD1 side comprises a plane A which reflects a C-surface of the substrate, while an n-type AlGaN clad layer 2b on the LD2 side comprises a slope B. Over them, n-type GaN light-guide layers 3a and 3b, InGaN active layers 4a and 4b, p-type GaN light-guide layers 5a and 5b, p-type AlGaN clad layers 7a and 7b, and p-type contact layers 8a and 8b, are sequentially formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、基板上に異なる
2波長の発光素子を一体形成してなる半導体発光装置と
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device in which light emitting elements of two different wavelengths are integrally formed on a substrate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、家庭電化製品,OA機器,通
信機器,工業計測器などさまざまな分野で半導体レーザ
が用いられている。特に近年、高密度光ディスク記録等
への応用を目的として短波長の半導体レーザの開発が注
力されている。短波長半導体レーザには、GaN,Al
GaN,InGaN,InGaAlN,GaPNなどの
窒素を含む六方晶化合物半導体(以下、単に窒化物半導
体という)が用いられる。このような窒化物半導体を用
いて、350nm以下までの短波長が可能で,400n
mでの発振動作が報告されている。信頼性に関しても、
LEDにおいて1万時間以上の寿命が確認されている。
2. Description of the Related Art Conventionally, semiconductor lasers have been used in various fields such as home appliances, office automation equipment, communication equipment, and industrial measuring instruments. Particularly in recent years, development of short-wavelength semiconductor lasers has been focused on for the purpose of application to high-density optical disk recording and the like. For short wavelength semiconductor lasers, GaN, Al
A hexagonal compound semiconductor containing nitrogen (hereinafter simply referred to as a nitride semiconductor) such as GaN, InGaN, InGaAlN, or GaPN is used. Using such a nitride semiconductor, a short wavelength of up to 350 nm or less is possible,
Oscillation behavior at m has been reported. Regarding reliability,
It has been confirmed that LEDs have a life of 10,000 hours or more.

【0003】一方これまで、モノリシックに2波長以上
の波長で発振する半導体レーザを作る試みもなされてい
る。異なる波長が発光材料の同一組成比で発振可能であ
る場合には、共振器構造などを違えて発振させることが
可能である。しかし、2波長が大きく異なり、これらを
同一組成比で発振させるのが難しい場合にはそれぞれの
発光層を作るために別々の工程が必要であった。具体的
には、二つの発光層を順次に積層形成するか、或いは、
一方の発光層を作る際に他方の発光層領域をマスクし、
もう一度マスクを反転して他方の発光層の作成を行う必
要がある.
On the other hand, attempts have been made so far to make a semiconductor laser that oscillates monolithically at a wavelength of two or more wavelengths. When different wavelengths can oscillate with the same composition ratio of the light emitting material, it is possible to oscillate with different resonator structures and the like. However, when the two wavelengths are greatly different and it is difficult to oscillate them with the same composition ratio, separate steps are required to form the respective light emitting layers. Specifically, two light emitting layers are sequentially laminated or formed, or
When making one light emitting layer, mask the other light emitting layer area,
It is necessary to invert the mask again to create the other light emitting layer.

【0004】[0004]

【発明が解決しようとする課題】以上のように、2波長
レーザをモノリシックに作るには、工程数が多く、コス
トが上がり、歩留まりは低下する。特に、GaN系の窒
化物半導体においては、長波長にするためにInの組成
を高くする必要があるが、Inの組成比が25%以上,
波長450nm以上では、In組成の不均一により半導
体レーザは発振不能となる。
As described above, in order to make a two-wavelength laser monolithically, the number of steps is large, the cost is high, and the yield is low. In particular, in a GaN-based nitride semiconductor, it is necessary to increase the In composition in order to obtain a long wavelength, but the In composition ratio is 25% or more,
At a wavelength of 450 nm or more, the semiconductor laser cannot oscillate due to the nonuniform In composition.

【0005】本発明は上記事情を考慮してなされたもの
で、その目的は、複数波長の発光素子をモノリシックに
形成して成る半導体発光装置とその製造方法を提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a semiconductor light emitting device in which light emitting elements having a plurality of wavelengths are monolithically formed, and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】この発明に係る半導体発
光装置は、半導体基板と、この半導体基板の主面に、そ
の主面と平行な平面と主面から傾斜した傾斜面をもって
形成された六方晶窒化物からなる半導体層と、この半導
体層の前記平面上及び傾斜面上にそれぞれ形成されてI
nを互いに異なる組成比で含んだ、六方晶窒化物半導体
からなる第1及び第2の発光層と、を有することを特徴
とする。
SUMMARY OF THE INVENTION A semiconductor light emitting device according to the present invention is a hexagonal semiconductor device having a semiconductor substrate and a main surface of the semiconductor substrate having a plane parallel to the main surface and an inclined surface inclined from the main surface. A semiconductor layer made of crystal nitride, and I formed on the plane and the inclined surface of the semiconductor layer, respectively.
and a first light emitting layer and a second light emitting layer made of a hexagonal nitride semiconductor containing n in different composition ratios.

【0007】この発明に係る半導体発光装置の製造方法
は、半導体基板の主面上に、その主面と平行な平面と主
面から傾斜した傾斜面をもつように六方晶窒化物からな
る半導体層を形成する工程と、前記半導体層の前記平面
上及び傾斜面上にそれぞれ、Inを互いに異なる組成比
で含んだ、六方晶窒化物半導体からなる第1及び第2の
発光層を同時に形成する工程と、を有することを特徴と
する。この場合、半導体層の傾斜面は、半導体層を成長
させた後、メサエッチングにより形成するか或いは、成
長阻止用マスクを用いて半導体層を成長させることによ
り形成する。
In the method for manufacturing a semiconductor light emitting device according to the present invention, a semiconductor layer made of hexagonal nitride is formed on a main surface of a semiconductor substrate so as to have a plane parallel to the main surface and an inclined surface inclined from the main surface. And a step of simultaneously forming first and second light emitting layers made of a hexagonal nitride semiconductor containing In at different composition ratios on the flat surface and the inclined surface of the semiconductor layer, respectively. And are included. In this case, the inclined surface of the semiconductor layer is formed by mesa etching after growing the semiconductor layer or by growing the semiconductor layer using a growth blocking mask.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して、この発明
の実施の形態を説明する。 [実施の形態1]図1は、この発明の実施の形態に係わ
る半導体レーザ装置の概略構成を示す図である。この実
施の形態では、一つの半導体基板1上に、波長の異なる
二つの半導体レーザLD1,LD2が集積形成されてい
る。ここで半導体基板1は、六方晶窒化物半導体であ
り、具体的にはn型GaN基板11に、n型GaNバッ
ファ層12が成長形成されたものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 is a diagram showing a schematic configuration of a semiconductor laser device according to a first embodiment of the present invention. In this embodiment, two semiconductor lasers LD1 and LD2 having different wavelengths are integrated and formed on one semiconductor substrate 1. Here, the semiconductor substrate 1 is a hexagonal nitride semiconductor, and specifically, is an n-type GaN substrate 11 on which an n-type GaN buffer layer 12 is grown and formed.

【0009】第1の半導体レーザLD1は、半導体基板
1のバッファ層12上に、Siドープのn型AlGaN
クラッド層2a、n型GaN光導波層3a、InGaN
活性層(多重量子井戸層)4a、p型GaN光導波層5
a、Mgドープのp型クラッド層6aが順次積層されて
形成されている。第2の半導体レーザLD2は、半導体
基板1のバッファ層12上に、n型AlGaNクラッド
層2b、n型GaN光導波層3b、InGaN活性層
(多重量子井戸層)4b、p型GaN光導波層5b、p
型クラッド層6bが順次積層されて形成されている。
The first semiconductor laser LD1 comprises a Si-doped n-type AlGaN on the buffer layer 12 of the semiconductor substrate 1.
Cladding layer 2a, n-type GaN optical waveguide layer 3a, InGaN
Active layer (multiple quantum well layer) 4a, p-type GaN optical waveguide layer 5
The Mg-doped p-type clad layer 6a is formed by being sequentially stacked. The second semiconductor laser LD2 includes an n-type AlGaN cladding layer 2b, an n-type GaN optical waveguide layer 3b, an InGaN active layer (multiple quantum well layer) 4b, and a p-type GaN optical waveguide layer on the buffer layer 12 of the semiconductor substrate 1. 5b, p
The mold clad layer 6b is formed by being sequentially laminated.

【0010】ここで、n型AlGaNクラッド層2aと
2b、n型GaN光導波層3aと3b、InGaN活性
層(多重量子井戸層)4aと4b、p型GaN光導波層
5aと5b、p型クラッド層6aと6bは、後に説明す
るように、同時に結晶成長され、素子形成後にバッファ
層12に達する溝13を形成して分離されている。但
し、半導体レーザLD1では、n型クラッド層2aの上
面がバッファ層12の主面(c面)と同じ平面Aをもっ
て形成されて、この上に発光層が形成されているのに対
し、半導体レーザLD2では、n型クラッド層2bの上
面が傾斜面Bをもって形成され、従ってこの上に形成さ
れる発光層も傾斜面を持つ。
Here, n-type AlGaN cladding layers 2a and 2b, n-type GaN optical waveguide layers 3a and 3b, InGaN active layers (multiple quantum well layers) 4a and 4b, p-type GaN optical waveguide layers 5a and 5b, p-type. As will be described later, the cladding layers 6a and 6b are crystal-grown at the same time, and are separated by forming a groove 13 reaching the buffer layer 12 after the device is formed. However, in the semiconductor laser LD1, the upper surface of the n-type cladding layer 2a is formed with the same plane A as the main surface (c-plane) of the buffer layer 12, and the light emitting layer is formed on this, whereas the semiconductor laser LD1 is formed. In the LD2, the upper surface of the n-type cladding layer 2b is formed with the inclined surface B, so that the light emitting layer formed thereon also has the inclined surface.

【0011】各半導体レーザLD1,LD2のp型クラ
ッド層6a,6bの表面には、p型GaNコンタクト層
7a,7bが形成され、それぞれにp側電極8a,8b
が形成されている。p型コンタクト層7a,7b及びそ
の下のクラッド層6a,6bは、電流狭窄及び横方向の
光閉じ込めのため、メサエッチングされている。基板1
の裏面には共通のn側電極9が形成されている。溝13
により分離された各半導体レーザLD1,LD2は、Z
rO2等の絶縁膜によるパシベーション膜14で覆われ
ている。
P-type GaN contact layers 7a and 7b are formed on the surfaces of the p-type cladding layers 6a and 6b of the semiconductor lasers LD1 and LD2, and p-side electrodes 8a and 8b are formed on the p-type GaN contact layers 7a and 7b, respectively.
Are formed. The p-type contact layers 7a and 7b and the cladding layers 6a and 6b thereunder are mesa-etched for current confinement and lateral optical confinement. Board 1
A common n-side electrode 9 is formed on the back surface of the. Groove 13
Each of the semiconductor lasers LD1 and LD2 separated by
It is covered with a passivation film 14 made of an insulating film such as rO 2.

【0012】この実施の形態では、平面A上に結晶成長
されたレーザLD1のInGaN活性層4aと、傾斜面
B上に結晶成長されたレーザLD2のInGaN活性層
4bとが異なるIn組成比を持つこと、具体的には、傾
斜面B上に成長したレーザLD2のInGaN活性層4
bのIn組成比が高くなることを利用している。これに
より、半導体レーザLD2は、半導体レーザLD1に比
べて、長波長の発振が可能になる。
In this embodiment, the InGaN active layer 4a of the laser LD1 crystal-grown on the plane A and the InGaN active layer 4b of the laser LD2 crystal-grown on the inclined plane B have different In composition ratios. That is, specifically, the InGaN active layer 4 of the laser LD 2 grown on the inclined surface B.
The fact that the In composition ratio of b is high is used. As a result, the semiconductor laser LD2 can oscillate at a longer wavelength than the semiconductor laser LD1.

【0013】この実施の形態の具体的な製造工程を、図
2〜図6を参照して説明する。結晶成長には、MOCV
D法を用いる。GaN基板11を有機溶剤と酸で前処理
を行った後に、MOCVD装置の成長室に導入し、基板
温度が1030℃になるまで窒素雰囲気中で昇温して、
成長開始前に少量の水素を原料ガスを流す前に流し表面
の酸化膜を除去する。その後、図2に示すように、通常
のMOCVD成長法で、n型バッファ層12を成長し、
ガス切り換えを行ってn型AlGaNクラッド層2を成
長する。
A specific manufacturing process of this embodiment will be described with reference to FIGS. MOCV for crystal growth
Method D is used. After pretreating the GaN substrate 11 with an organic solvent and an acid, the GaN substrate 11 is introduced into a growth chamber of a MOCVD apparatus and heated in a nitrogen atmosphere until the substrate temperature reaches 1030 ° C.
Before starting the growth, a small amount of hydrogen is flown before the raw material gas is flowed to remove the oxide film on the surface. After that, as shown in FIG. 2, an n-type buffer layer 12 is grown by a normal MOCVD growth method,
Gas switching is performed to grow the n-type AlGaN cladding layer 2.

【0014】この後、基板を一旦成長室から取り出し、
第2の半導体レーザLD2の領域のクラッド層をメサエ
ッチングして傾斜面を形成する。具体的には、図3に破
線で示すように、二つのレーザ領域を覆うマスク31’
を形成し、その端部が次第に後退して、実線のマスク3
1となるようなエッチング条件に設定された反応性イオ
ンエッチングを行って、第2の半導体レーザLD2の領
域のクラッド層2に傾斜面Bを形成する。エッチング条
件は、イオンの引き出し電圧を通常のメサ形成時より低
めに設定して、スパッタリングよりも反応性エッチング
が支配的になる条件とする。このとき、イオンの引き出
し電圧を加減することにより、傾斜角度をコントロール
することができる。
After this, the substrate is once taken out from the growth chamber,
The cladding layer in the region of the second semiconductor laser LD2 is mesa-etched to form an inclined surface. Specifically, as shown by the broken line in FIG. 3, a mask 31 'that covers the two laser regions.
To form a mask 3 and its end gradually recedes to form a solid mask 3
Reactive ion etching is performed under the etching condition of 1 to form the inclined surface B on the cladding layer 2 in the region of the second semiconductor laser LD2. The etching conditions are set such that the extraction voltage of ions is set lower than that during normal mesa formation, and reactive etching is more dominant than sputtering. At this time, the tilt angle can be controlled by adjusting the extraction voltage of the ions.

【0015】この後、再び基板をMOCVD成長炉に導
入し、図4に示すように、n型GaN光導波層3、In
GaN活性層4、p型GaN光導波層5、p型AlGa
Nクラッド層6、p型コンタクト層7を順次形成する。
そして基板を成長炉より取り出し、図5に示すように、
p型コンタクト層7上にp側電極8a,8bをパターン
形成する。このとき、電極8a,8bを覆うマスクを用
いて、電極8a,8bをパターンニングすると共に、引
き続きp型クラッド層6をメサエッチングする。続い
て、素子間を分離するために、図6に示すように、n型
バッファ層12に達する溝13のエッチングを行う。そ
して、図1に示すように、素子側面を覆うパッシベーシ
ョン膜14としてZrO2膜を形成する。最後にGaN
基板11を研磨して厚さが100μm程度になるように
した後、n側電極9を形成し、2つの半導体レーザLD
1,LD2をペアとして含むように、ダイシングにより
分割する。
After that, the substrate is again introduced into the MOCVD growth furnace, and as shown in FIG. 4, the n-type GaN optical waveguide layer 3, In
GaN active layer 4, p-type GaN optical waveguide layer 5, p-type AlGa
The N-clad layer 6 and the p-type contact layer 7 are sequentially formed.
Then, the substrate was taken out from the growth furnace, and as shown in FIG.
The p-side electrodes 8a and 8b are patterned on the p-type contact layer 7. At this time, the electrodes 8a and 8b are patterned using a mask that covers the electrodes 8a and 8b, and the p-type cladding layer 6 is subsequently mesa-etched. Subsequently, in order to isolate the elements from each other, as shown in FIG. 6, the groove 13 reaching the n-type buffer layer 12 is etched. Then, as shown in FIG. 1, a ZrO 2 film is formed as the passivation film 14 covering the side surface of the element. Finally GaN
After polishing the substrate 11 to a thickness of about 100 μm, the n-side electrode 9 is formed and the two semiconductor laser LDs are formed.
It is divided by dicing so that 1 and LD2 are included as a pair.

【0016】この実施の形態において、第2の半導体レ
ーザLD2の活性層を形成する傾斜面Bの角度により、
活性層に含まれるIn量がコントロールされる。具体的
に図7は、傾斜面(c軸とR軸とが作る平面に対して垂
直で且つc面から傾斜した面)の角度とその傾斜面上に
形成されたInGaN層のIn組成比の関係を示してい
る。このデータは、InGaNのIn組成比がc面上で
11%になるような成長条件、具体的には成長温度85
0℃、原料ガスであるトリメチルインジウム(TMI)
とトリメチルガリウム(TMG)の気相比0.9で行っ
た場合のものである。この成長条件により、傾斜面上で
は最大45%のIn組成比が得られている。成長条件を
変えて、c面上でのIn組成比が大きくなるようにする
と、各角度でのIn組成比の角度に対する変化量はさら
に大きくなり、c面上でのIn組成比が小さくなる成長
条件で行うとIn組成比の角度に対する変化量は小さく
なる.
In this embodiment, depending on the angle of the inclined surface B forming the active layer of the second semiconductor laser LD2,
The amount of In contained in the active layer is controlled. Specifically, FIG. 7 shows the angle of an inclined surface (a surface perpendicular to the plane formed by the c-axis and the R-axis and inclined from the c-plane) and the In composition ratio of the InGaN layer formed on the inclined surface. It shows the relationship. This data is based on the growth conditions such that the In composition ratio of InGaN is 11% on the c-plane, specifically, the growth temperature of 85.
Trimethylindium (TMI) as a source gas at 0 ° C
And trimethylgallium (TMG) at a gas phase ratio of 0.9. Under this growth condition, a maximum In composition ratio of 45% is obtained on the inclined surface. When the growth conditions are changed to increase the In composition ratio on the c-plane, the amount of change of the In composition ratio at each angle with respect to the angle is further increased, and the In composition ratio on the c-plane is decreased. When performed under the conditions, the amount of change in the In composition ratio with respect to the angle becomes small.

【0017】具体的にこの実施の形態において、第2の
半導体レーザLD2の活性層のIn組成比を第1の半導
体レーザLD1のそれに対して十分な有意差をもって大
きくするためには、傾斜角度の設定が重要である。図8
に示した六方晶系の結晶軸を参照して説明すれば、半導
体基板1の主面をc面として、第2の半導体レーザLD
2の活性層の傾斜面Bは、c軸とR軸とが作る平面に対
して垂直で且つc面とのなす角が30度以上とすること
により、In組成比25〜45%を得ることができて好
ましい。或いは、c軸とa軸とが作る平面に対して垂直
で且つc面とのなす角が30度以上の面であることが好
ましい。
Specifically, in this embodiment, in order to increase the In composition ratio of the active layer of the second semiconductor laser LD2 with a sufficient significant difference from that of the first semiconductor laser LD1, the inclination angle is set to be large. The setting is important. Figure 8
Referring to the hexagonal crystal axis shown in FIG. 2, the second semiconductor laser LD with the main surface of the semiconductor substrate 1 as the c-plane.
The inclined surface B of the active layer 2 is perpendicular to the plane formed by the c-axis and the R-axis, and the angle formed by the c-plane is 30 degrees or more to obtain an In composition ratio of 25 to 45%. Is preferred, which is preferable. Alternatively, it is preferable that the surface is perpendicular to the plane formed by the c-axis and the a-axis and the angle formed by the c-plane is 30 degrees or more.

【0018】このような好ましい条件で作成した素子を
動作させたところ、二つの半導体レーザLD1,LD2
ともに、しきい値35mAで室温連続発振した。発振波
長は第1のレーザLD1が405nmであり、第2のレ
ーザが450nmであった。動作電圧は3.1Vであ
り、それぞれの発振しきい値はほぼ同じであった。信頼
性は、温度を70℃に設定しての加速試験において、1
0万時間相当の信頼性試験を行っても劣化は見られなか
った。
When the device produced under such preferable conditions is operated, two semiconductor lasers LD1 and LD2 are obtained.
In both cases, continuous oscillation at room temperature was achieved at a threshold value of 35 mA. The oscillation wavelength of the first laser LD1 was 405 nm and that of the second laser was 450 nm. The operating voltage was 3.1 V, and the oscillation thresholds were almost the same. Reliability is 1 in an accelerated test with the temperature set at 70 ° C.
No deterioration was observed even after performing a reliability test equivalent to 0,000 hours.

【0019】これまでInGaN系半導体レーザにおい
ては、In組成が大きくなるとInの組成の不均一いわ
ゆる組成分離が生じ、しきい値電流密度が上昇する傾向
が見られた。この発明を用いると、成長温度が高い状態
で高In組成のInGaNを成長させることができ、組
成分離が抑えられてしきい値電流を下げることができる
ことがわかった。この理由は、傾斜面B上においては表
面での結合エネルギーが変化するためであると考えられ
る。MOCVD成長においては通常Ga極性で成長は進
む事がわかっている。しかし、傾斜面B上では結合とし
て逆のN極性に対応する結合が生じ易く、これにより結
合時の表面エネルギーが変化して、Inが取り込まれや
すい状況が生じるものと考えられる。或いは、InGa
Nの成長時にはエッチングと成長の拮抗状態にあり、I
nの組成が大きくなるとエッチングされやすくなるが、
そのエッチングの割合が傾斜面Bでは小さくなるとも考
えられる。
Up to now, in InGaN semiconductor lasers, when the In composition is increased, the composition of In becomes non-uniform, that is, composition separation occurs, and the threshold current density tends to increase. It was found that the use of the present invention makes it possible to grow InGaN having a high In composition at a high growth temperature, suppress composition separation, and reduce the threshold current. It is considered that this is because the binding energy on the surface changes on the inclined surface B. In MOCVD growth, it is known that the growth normally proceeds with Ga polarity. However, it is considered that a bond corresponding to the opposite N-polarity is likely to occur on the inclined surface B, whereby the surface energy at the time of the bond is changed and In is likely to be incorporated. Alternatively, InGa
When N grows, it is in a state of competing etching and growth.
When the composition of n becomes large, it is easily etched,
It is considered that the etching rate becomes smaller on the inclined surface B.

【0020】以上のようにこの実施の形態によると、こ
れまでよりもIn組成の高いInGaN活性層をIn組
成の低い活性層と同時に作成でき、量産できていなかっ
た2波長緑色窒化物半導体レーザが量産できる。各半導
体レーザは、活性層形成前に一部表面処理工程が入るだ
けで、その他基本的に一つの半導体レーザを作る工程と
変わらず、2波長レーザを複雑な工程を要せず実現する
ことができる。
As described above, according to this embodiment, an InGaN active layer having a higher In composition than the conventional one can be formed simultaneously with an active layer having a lower In composition, and a two-wavelength green nitride semiconductor laser which has not been mass-produced is obtained. Mass production is possible. Each semiconductor laser has only a partial surface treatment process before the formation of the active layer, and is basically the same as the process of making one semiconductor laser, and can realize a two-wavelength laser without complicated processes. it can.

【0021】傾斜面Bの作成方法は、メサエッチングに
よらず、マスクを用いた再成長方法によっても良い。具
体的には、図9に示すように、n型AlGaNクラッド
層2の一部クラッド層21まで成長した後、成長炉から
基板を取り出し、ストライプ状にSiO2マスク91を
パターニングする。このとき、マスク91は、間隔を3
00μm程度とする。これを再び成長炉に導入し、残り
のクラッド層22を成長する。このとき、クラッド層2
2は、SiO2マスク91がない部分のみに成長し、そ
の両端部は傾斜面Bとなる。この後、再び基板取り出し
てSiO2マスクを除去し、以下先の工程と同様の工程
を行う。
The inclined surface B may be formed not by mesa etching but by a regrowth method using a mask. Specifically, as shown in FIG. 9, after partially growing the cladding layer 21 of the n-type AlGaN cladding layer 2, the substrate is taken out from the growth furnace and the SiO 2 mask 91 is patterned in a stripe shape. At this time, the mask 91 has an interval of 3
It is about 00 μm. This is again introduced into the growth furnace to grow the remaining clad layer 22. At this time, the clad layer 2
No. 2 grows only in a portion where the SiO 2 mask 91 is not present, and both end portions thereof become inclined surfaces B. After that, the substrate is taken out again, the SiO 2 mask is removed, and the same steps as the above steps are performed.

【0022】この方法によると、傾斜面BとしてR面を
出すことができる。この面におけるInの取り込みはも
っとも大きく、第1のレーザLD1の発振波長が405
nmの場合、第2のレーザLD2の発振波長は530n
mとなる。
According to this method, the R surface can be formed as the inclined surface B. Intake of In on this surface is the largest, and the oscillation wavelength of the first laser LD1 is 405.
In the case of nm, the oscillation wavelength of the second laser LD2 is 530n.
m.

【0023】[実施の形態2]図10は、この発明の実
施の形態2による半導体レーザ装置の概略構成を示して
いる。先の実施の形態の図1と対応する部分には同一符
号を付してある。この実施の形態では、第2の半導体レ
ーザLD2側の発光層部分が、両側に段差のある平面A
1,A2を持ち、これらの平面A1,A2間に傾斜面B
が形成された屈曲構造を有する。先の実施の形態と同様
に、傾斜面Bがc面とは異なる面になっており、この部
分でIn組成比が高い。
[Second Embodiment] FIG. 10 shows a schematic structure of a semiconductor laser device according to a second embodiment of the present invention. Parts corresponding to those of the previous embodiment shown in FIG. 1 are designated by the same reference numerals. In this embodiment, the light emitting layer portion on the second semiconductor laser LD2 side has a plane A having a step on both sides.
1 and A2, and an inclined surface B between these planes A1 and A2
Has a bent structure. Similar to the previous embodiment, the inclined surface B is a surface different from the c-plane, and the In composition ratio is high in this portion.

【0024】第1の半導体レーザLD1は、半導体基板
1のバッファ層12上に、Siドープのn型AlGaN
クラッド層2a、n型GaN光導波層3a、InGaN
活性層(多重量子井戸層)4a、p型GaN光導波層5
a、Mgドープのp型クラッド層6aが順次積層されて
形成されている。第2の半導体レーザLD2は、半導体
基板1のバッファ層12上に、n型AlGaNクラッド
層2b、n型GaN光導波層3b、InGaN活性層
(多重量子井戸層)4b、p型GaN光導波層5b、p
型クラッド層6bが順次積層されて形成されている。
The first semiconductor laser LD1 comprises a Si-doped n-type AlGaN on the buffer layer 12 of the semiconductor substrate 1.
Cladding layer 2a, n-type GaN optical waveguide layer 3a, InGaN
Active layer (multiple quantum well layer) 4a, p-type GaN optical waveguide layer 5
The Mg-doped p-type clad layer 6a is formed by being sequentially stacked. The second semiconductor laser LD2 includes an n-type AlGaN cladding layer 2b, an n-type GaN optical waveguide layer 3b, an InGaN active layer (multiple quantum well layer) 4b, and a p-type GaN optical waveguide layer on the buffer layer 12 of the semiconductor substrate 1. 5b, p
The mold clad layer 6b is formed by being sequentially laminated.

【0025】先の実施の形態と同様に、n型AlGaN
クラッド層2aと2b、n型GaN光導波層3aと3
b、InGaN活性層(多重量子井戸層)4aと4b、
p型GaN光導波層5aと5b、p型クラッド層6aと
6bは、同時に結晶成長され、素子形成後にバッファ層
12に達する溝13を形成して分離されている。半導体
レーザLD1では、n型クラッド層2aの上面がバッフ
ァ層12の主面(c面)と同じ平面Aをもって形成され
て、この上に発光層が形成されているのに対し、半導体
レーザLD2では、n型クラッド層2bの上面が二つの
平面A1,A2とこれらを結ぶ傾斜面Bをもって形成さ
れ、この上に形成される発光層も同様の屈曲構造を持
つ。
As in the previous embodiment, n-type AlGaN
Cladding layers 2a and 2b, n-type GaN optical waveguide layers 3a and 3
b, InGaN active layers (multiple quantum well layers) 4a and 4b,
The p-type GaN optical waveguide layers 5a and 5b and the p-type cladding layers 6a and 6b are crystal-grown at the same time, and are separated by forming a groove 13 that reaches the buffer layer 12 after the element is formed. In the semiconductor laser LD1, the upper surface of the n-type cladding layer 2a is formed with the same plane A as the main surface (c-plane) of the buffer layer 12, and the light emitting layer is formed thereon, whereas in the semiconductor laser LD2. , The upper surface of the n-type clad layer 2b is formed with two planes A1 and A2 and an inclined surface B connecting these planes, and the light emitting layer formed thereon also has the same bending structure.

【0026】各半導体レーザLD1,LD2のp型クラ
ッド層6a,6bの表面には、p型GaNコンタクト層
7a,7bが形成され、それぞれにp側電極8a,8b
が形成されている。p型コンタクト層7a,7b及びそ
の下のクラッド層7a,7bは、電流狭窄及び横方向の
光閉じ込めのため、メサエッチングされている。基板1
の裏面には共通のn側電極9が形成されている。溝13
により分離された各半導体レーザLD1,LD2は、Z
rO2等の絶縁膜によるパシベーション膜14で覆われ
ている。
P-type GaN contact layers 7a and 7b are formed on the surfaces of the p-type cladding layers 6a and 6b of the semiconductor lasers LD1 and LD2, and p-side electrodes 8a and 8b are formed on the p-type GaN contact layers 7a and 7b, respectively.
Are formed. The p-type contact layers 7a and 7b and the cladding layers 7a and 7b thereunder are mesa-etched for current confinement and lateral optical confinement. Board 1
A common n-side electrode 9 is formed on the back surface of the. Groove 13
Each of the semiconductor lasers LD1 and LD2 separated by
It is covered with a passivation film 14 made of an insulating film such as rO 2.

【0027】この実施の形態でも、平面A上に結晶成長
されたレーザLD1のInGaN活性層4aと、傾斜面
B上に結晶成長されたレーザLD2のInGaN活性層
4bとが異なるIn組成比を持つこと、具体的には、傾
斜面B上に成長したレーザLD2のInGaN活性層4
bのIn組成比が高くなることを利用している。これに
より、半導体レーザLD2は、半導体レーザLD1に比
べて、長波長の発振が可能になる。
Also in this embodiment, the InGaN active layer 4a of the laser LD1 crystal-grown on the plane A and the InGaN active layer 4b of the laser LD2 crystal-grown on the inclined plane B have different In composition ratios. That is, specifically, the InGaN active layer 4 of the laser LD 2 grown on the inclined surface B.
The fact that the In composition ratio of b is high is used. As a result, the semiconductor laser LD2 can oscillate at a longer wavelength than the semiconductor laser LD1.

【0028】具体的な製造工程は、説明を省略するが、
基本的に先の実施の形態と同様である。この実施の形態
の場合、第1のレーザLD1の発振しきい値35mAに
対して、第2のレーザLD2は発振しきい値20mAが
得られ、単一横モード発振が認められた。これは屈曲構
造により、光閉じ込め効果と電流狭窄効果が先の実施の
形態に比べて良好になっている結果である。
A detailed description of the manufacturing process is omitted,
Basically, it is similar to the previous embodiment. In the case of this embodiment, the oscillation threshold of the first laser LD1 is 35 mA, whereas the oscillation threshold of the second laser LD2 is 20 mA, and single transverse mode oscillation is observed. This is a result of the bent structure that the light confinement effect and the current constriction effect are better than those of the previous embodiments.

【0029】上記各実施の形態では、波長の異なる二つ
の半導体レーザを同一基板上に形成する場合を説明した
が、この発明はこれに限られない。例えば、3つ以上の
半導体レーザを集積形成することもできる。またその場
合、傾斜角度が異なる複数の傾斜面を形成すれば、発振
波長が3種以上のレーザを一体形成することができる。
また、この発明は半導体レーザに限らず、発光ダイオー
ドにも同様に適用可能である。
In each of the above embodiments, the case where two semiconductor lasers having different wavelengths are formed on the same substrate has been described, but the present invention is not limited to this. For example, three or more semiconductor lasers can be integrated and formed. Further, in that case, if a plurality of inclined surfaces having different inclination angles are formed, it is possible to integrally form lasers having three or more kinds of oscillation wavelengths.
Further, the present invention is not limited to semiconductor lasers and can be similarly applied to light emitting diodes.

【0030】更に実施の形態では、InGaN系の半導
体レーザであって、傾斜面でIn組成比が大きくなるこ
とを利用しているが、InGaAlN,InAlN,I
nGaBN,InBN,InGaAlBN等の他のIn
を含む六方晶窒化物半導体発光層を持つ発光装置におい
て、Inを互いに異なる組成比で含んだ、六方晶窒化物
半導体からなる少なくとも二つの発光層を持つ発光装置
に対しても同様の効果をもって適用できる。
Further, in the embodiment, the InGaN-based semiconductor laser is used in which the In composition ratio is increased on the inclined surface, but InGaAlN, InAlN, I
Other In such as nGaBN, InBN, InGaAlBN
In a light emitting device having a hexagonal nitride semiconductor light emitting layer containing Al, the same effect is applied to a light emitting device having at least two light emitting layers made of hexagonal nitride semiconductor containing In at different composition ratios. it can.

【0031】[0031]

【発明の効果】以上述べたようにこの発明によれば、複
数波長の発光素子をモノリシックに形成した半導体発光
装置を得ることができる。
As described above, according to the present invention, it is possible to obtain a semiconductor light emitting device in which light emitting elements having a plurality of wavelengths are monolithically formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態による半導体発光装置の
構成を示す図である。
FIG. 1 is a diagram showing a configuration of a semiconductor light emitting device according to an embodiment of the present invention.

【図2】同実施の形態のn型クラッド層形成までの工程
を示す図である。
FIG. 2 is a diagram showing a process up to formation of an n-type cladding layer according to the same embodiment.

【図3】同実施の形態のn型クラッド層の傾斜面を形成
する工程を示す図である。
FIG. 3 is a diagram showing a step of forming an inclined surface of the n-type cladding layer of the same embodiment.

【図4】同実施の形態のp型コンタクト層形成までの工
程を示す図である。
FIG. 4 is a diagram showing steps up to formation of the p-type contact layer in the same embodiment.

【図5】同実施の形態のp側電極形成及びメサエッチン
グ工程を示す図である。
FIG. 5 is a diagram showing a p-side electrode formation and mesa etching step of the same embodiment.

【図6】同実施の形態の素子分離溝形成工程を示す図で
ある。
FIG. 6 is a diagram showing an element isolation groove forming step of the same embodiment.

【図7】InGaN層の成長傾斜面の傾斜角とIn組成
比との関係を示す図である。
FIG. 7 is a diagram showing a relationship between an inclination angle of a growth inclined surface of an InGaN layer and an In composition ratio.

【図8】六方晶の結晶面の関係を示す図である。FIG. 8 is a diagram showing a relationship between hexagonal crystal faces.

【図9】傾斜面の他の形成方法を説明するための図であ
る。
FIG. 9 is a diagram for explaining another method of forming an inclined surface.

【図10】他の実施の形態による半導体発光装置の構成
を示す図である。
FIG. 10 is a diagram showing a configuration of a semiconductor light emitting device according to another embodiment.

【符号の説明】[Explanation of symbols]

LD1,LD2…半導体レーザ、1…半導体基板、11
…n型GaN基板、12…n型GaNバッファ層、2
a,2b…n型AlGaNクラッド層、3a,3b…n
型GaN光導波層、4a,4b…InGaN活性層、5
a,5b…p型GaN光導波層、6a,6b…p型Al
GaNクラッド層、7a,7b…p型コンタクト層、8
a,8b…p側電極、9…n側電極、13…溝、14…
パシベーション膜。A…平面、B…傾斜面。
LD1, LD2 ... Semiconductor laser, 1 ... Semiconductor substrate, 11
... n-type GaN substrate, 12 ... n-type GaN buffer layer, 2
a, 2b ... n-type AlGaN cladding layer, 3a, 3b ... n
-Type GaN optical waveguide layer, 4a, 4b ... InGaN active layer, 5
a, 5b ... p-type GaN optical waveguide layer, 6a, 6b ... p-type Al
GaN cladding layer, 7a, 7b ... P-type contact layer, 8
a, 8b ... P-side electrode, 9 ... N-side electrode, 13 ... Groove, 14 ...
Passivation film. A ... plane, B ... inclined surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 佳幸 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5F041 AA12 CA23 CA34 CA40 CB29 5F073 AA13 AA45 AA74 AB06 CA07 DA05 DA25 DA30 EA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshiyuki Harada             1st Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa             Inside the Toshiba Research and Development Center F term (reference) 5F041 AA12 CA23 CA34 CA40 CB29                 5F073 AA13 AA45 AA74 AB06 CA07                       DA05 DA25 DA30 EA04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、 この半導体基板の主面に、その主面と平行な平面と主面
から傾斜した傾斜面をもって形成された六方晶窒化物か
らなる半導体層と、 この半導体層の前記平面上及び傾斜面上にそれぞれ形成
されてInを互いに異なる組成比で含んだ、六方晶窒化
物半導体からなる第1及び第2の発光層と、を有するこ
とを特徴とする半導体発光装置。
1. A semiconductor substrate, a semiconductor layer made of hexagonal nitride formed on a main surface of the semiconductor substrate with a plane parallel to the main surface and an inclined surface inclined from the main surface, and a semiconductor layer of the semiconductor layer. A semiconductor light emitting device comprising: a first light emitting layer and a second light emitting layer made of a hexagonal nitride semiconductor, the first light emitting layer and the second light emitting layer respectively formed on the flat surface and the inclined surface and containing In at different composition ratios.
【請求項2】 前記半導体基板の主面はc面であり、前
記半導体層の傾斜面は、c軸とR軸とが作る平面に対し
て垂直で且つc面とのなす角が30度以上である面及
び、c軸とa軸とが作る平面に対して垂直で且つc面と
のなす角が30度以上である面のいずれか一方であるこ
とを特徴とする請求項1記載の半導体発光装置。
2. The main surface of the semiconductor substrate is a c-plane, and the inclined surface of the semiconductor layer is perpendicular to a plane formed by the c-axis and the R-axis and has an angle of 30 degrees or more with the c-plane. 2. The semiconductor according to claim 1, which is one of a surface that is perpendicular to the plane formed by the c-axis and the a-axis and that forms an angle of 30 degrees or more with the c-plane. Light emitting device.
【請求項3】 前記半導体基板の主面はc面であり、前
記半導体層の傾斜面は、R面であることを特徴とする請
求項1記載の半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein the main surface of the semiconductor substrate is a c-plane, and the inclined surface of the semiconductor layer is an R-plane.
【請求項4】 前記第1及び第2の発光層は、前記傾斜
面に形成された第2の発光層のIn組成比が前記平面に
形成された前記第1の発光層のそれより高いことを特徴
とする請求項1乃至3のいずれかに記載の半導体発光装
置。
4. In the first and second light emitting layers, the In composition ratio of the second light emitting layer formed on the inclined surface is higher than that of the first light emitting layer formed on the flat surface. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is a semiconductor light emitting device.
【請求項5】 半導体基板の主面上に、その主面と平行
な平面と主面から傾斜した傾斜面をもつように六方晶窒
化物からなる半導体層を形成する工程と、 前記半導体層の前記平面上及び傾斜面上にそれぞれ、I
nを互いに異なる組成比で含んだ、六方晶窒化物半導体
からなる第1及び第2の発光層を同時に形成する工程
と、を有することを特徴とする半導体発光装置の製造方
法。
5. A step of forming a semiconductor layer made of hexagonal nitride on a main surface of a semiconductor substrate so as to have a plane parallel to the main surface and an inclined surface inclined from the main surface, I on the flat surface and the inclined surface, respectively.
and a step of simultaneously forming first and second light emitting layers made of a hexagonal nitride semiconductor containing n in different composition ratios from each other.
JP2001292748A 2001-09-26 2001-09-26 Semiconductor light emitting device and manufacturing method thereof Expired - Fee Related JP3697406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292748A JP3697406B2 (en) 2001-09-26 2001-09-26 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292748A JP3697406B2 (en) 2001-09-26 2001-09-26 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003101156A true JP2003101156A (en) 2003-04-04
JP3697406B2 JP3697406B2 (en) 2005-09-21

Family

ID=19114653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292748A Expired - Fee Related JP3697406B2 (en) 2001-09-26 2001-09-26 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3697406B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303052A (en) * 2005-04-19 2006-11-02 Nec Electronics Corp Semiconductor laser device and manufacturing method thereof
JP2007500934A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing a plurality of optoelectronic semiconductor chips and optoelectronic semiconductor chips
JP2008218746A (en) * 2007-03-05 2008-09-18 Sumitomo Electric Ind Ltd Group iii nitride-system semiconductor light-emitting device
JP2009224704A (en) * 2008-03-18 2009-10-01 Sumitomo Electric Ind Ltd Nitride semiconductor light-emitting device, epitaxial wafer, and method of manufacturing the nitride semiconductor light-emitting device
JP2010003887A (en) * 2008-06-20 2010-01-07 Sony Corp Semiconductor laser, method for manufacturing the same, optical disk device, and optical pickup
JP2010034305A (en) * 2008-07-29 2010-02-12 Panasonic Corp Semiconductor laser device
US7745839B2 (en) 2006-02-23 2010-06-29 Rohm Co., Ltd. Double wavelength semiconductor light emitting device and method of manufacturing the same
JP2011077341A (en) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd Nitride semiconductor light emitting element
JP2011109136A (en) * 2011-02-22 2011-06-02 Sumitomo Electric Ind Ltd Gallium nitride epitaxial wafer and method of fabricating epitaxial wafer
DE102010045782A1 (en) 2010-09-17 2012-03-22 Osram Opto Semiconductors Gmbh Edge-emitting semiconductor laser manufacturing method, involves monolithically integrating laser diodes on common growth substrate, where laser diodes emit radiation of different wavelengths
US8158993B2 (en) 2006-08-28 2012-04-17 Stanley Electric Co., Ltd. Nitride semiconductor crystal with surface texture
JP2012191013A (en) * 2011-03-10 2012-10-04 Yamaguchi Univ Multi-wavelength light-emitting element and manufacturing method for the same
WO2012133546A1 (en) * 2011-03-29 2012-10-04 住友電気工業株式会社 Optical semiconductor element
JP2015130530A (en) * 2010-01-08 2015-07-16 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. Optical device
JP7242574B2 (en) 2009-05-29 2023-03-20 キョウセラ エスエルディー レイザー,インコーポレイテッド Display method and system using laser

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500934A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing a plurality of optoelectronic semiconductor chips and optoelectronic semiconductor chips
JP2006303052A (en) * 2005-04-19 2006-11-02 Nec Electronics Corp Semiconductor laser device and manufacturing method thereof
US7745839B2 (en) 2006-02-23 2010-06-29 Rohm Co., Ltd. Double wavelength semiconductor light emitting device and method of manufacturing the same
US8658440B2 (en) 2006-08-28 2014-02-25 Stanley Electric Co., Ltd. Nitride semiconductor crystal with surface texture
US8158993B2 (en) 2006-08-28 2012-04-17 Stanley Electric Co., Ltd. Nitride semiconductor crystal with surface texture
JP2008218746A (en) * 2007-03-05 2008-09-18 Sumitomo Electric Ind Ltd Group iii nitride-system semiconductor light-emitting device
JP2009224704A (en) * 2008-03-18 2009-10-01 Sumitomo Electric Ind Ltd Nitride semiconductor light-emitting device, epitaxial wafer, and method of manufacturing the nitride semiconductor light-emitting device
JP2010003887A (en) * 2008-06-20 2010-01-07 Sony Corp Semiconductor laser, method for manufacturing the same, optical disk device, and optical pickup
US7899102B2 (en) 2008-06-20 2011-03-01 Sony Corporation Semiconductor laser, method for manufacturing semiconductor laser, optical disk device, and optical pickup
JP4582210B2 (en) * 2008-06-20 2010-11-17 ソニー株式会社 Semiconductor laser, semiconductor laser manufacturing method, optical disc apparatus, and optical pickup
JP2010034305A (en) * 2008-07-29 2010-02-12 Panasonic Corp Semiconductor laser device
JP7242574B2 (en) 2009-05-29 2023-03-20 キョウセラ エスエルディー レイザー,インコーポレイテッド Display method and system using laser
JP2011077341A (en) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd Nitride semiconductor light emitting element
JP2015130530A (en) * 2010-01-08 2015-07-16 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. Optical device
DE102010045782A1 (en) 2010-09-17 2012-03-22 Osram Opto Semiconductors Gmbh Edge-emitting semiconductor laser manufacturing method, involves monolithically integrating laser diodes on common growth substrate, where laser diodes emit radiation of different wavelengths
DE102010045782B4 (en) 2010-09-17 2018-09-06 Osram Opto Semiconductors Gmbh Method for producing an edge-emitting semiconductor laser and edge-emitting semiconductor laser
JP2011109136A (en) * 2011-02-22 2011-06-02 Sumitomo Electric Ind Ltd Gallium nitride epitaxial wafer and method of fabricating epitaxial wafer
JP2012191013A (en) * 2011-03-10 2012-10-04 Yamaguchi Univ Multi-wavelength light-emitting element and manufacturing method for the same
CN103460529A (en) * 2011-03-29 2013-12-18 住友电气工业株式会社 Optical semiconductor element
US8445925B2 (en) 2011-03-29 2013-05-21 Sumitomo Electric Industries, Ltd. Semiconductor optical device
JP2012209352A (en) * 2011-03-29 2012-10-25 Sumitomo Electric Ind Ltd Optical semiconductor element
WO2012133546A1 (en) * 2011-03-29 2012-10-04 住友電気工業株式会社 Optical semiconductor element

Also Published As

Publication number Publication date
JP3697406B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
KR100683877B1 (en) Nitride Semiconductor Laser Element
US5780873A (en) Semiconductor device capable of easily forming cavity and its manufacturing method
JP3697406B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2003017790A (en) Nitride-based semiconductor device and manufacturing method
JPH10321910A (en) Light-emitting semiconductor element
WO2004086579A1 (en) Nitride semiconductor device and its manufacturing method
JP2010109147A (en) Light emitting element and method of manufacturing the same
JP2000106473A (en) Semiconductor device, semiconductor light emitting device and manufacture thereof, and forming method of nitride semiconductor layer
JPH10270802A (en) Nitride iii-v compound semiconductor device and its manufacture
JP2000164987A (en) Semiconductor light emitting element and manufacture thereof
JP2000315838A (en) Nitride semiconductor laser device
JPH09266352A (en) Semiconductor light emitting element
JPH09307188A (en) Nitride based iii-v compound semiconductor element and its manufacture
JPH0955536A (en) Group iii nitride based compound semiconductor light emitting element and its manufacture
JP2001308458A (en) Semiconductor light emitting element and method for manufacturing the same and semiconductor device and method for manufacturing the same
JP2000216502A (en) Manufacture of nitride semiconductor element
JP2004311964A (en) Nitride semiconductor element and its manufacturing method
JPH10303505A (en) Gallium nitride semiconductor light emitting device and its manufacture
JP3685682B2 (en) Nitride semiconductor laser device
JP3759746B2 (en) Method for producing group III nitride compound semiconductor light emitting diode
JP2002009003A (en) Semiconductor substrate, its manufacturing method, and light emitting device
JPH10256657A (en) Gallium nitride based semiconductor light emitting element and semiconductor laser light source device
JP3456118B2 (en) Light emitting device, method of manufacturing the same, and optical disk device
JP2002280308A (en) Method of growing nitride semiconductor and element using the same
JP3455500B2 (en) Semiconductor laser and method for manufacturing semiconductor laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees