JP2003101044A - Connection structure of optical waveguide and semiconductor light-receiving element - Google Patents

Connection structure of optical waveguide and semiconductor light-receiving element

Info

Publication number
JP2003101044A
JP2003101044A JP2001287709A JP2001287709A JP2003101044A JP 2003101044 A JP2003101044 A JP 2003101044A JP 2001287709 A JP2001287709 A JP 2001287709A JP 2001287709 A JP2001287709 A JP 2001287709A JP 2003101044 A JP2003101044 A JP 2003101044A
Authority
JP
Japan
Prior art keywords
light receiving
semiconductor light
receiving element
optical waveguide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001287709A
Other languages
Japanese (ja)
Other versions
JP3793561B2 (en
Inventor
Katsuhiro Kaneko
勝弘 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001287709A priority Critical patent/JP3793561B2/en
Publication of JP2003101044A publication Critical patent/JP2003101044A/en
Application granted granted Critical
Publication of JP3793561B2 publication Critical patent/JP3793561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To set a semiconductor light-receiving element which is arranged on a substrate in such a manner that a light-receiving surface is almost in parallel to the light-propagating direction of an optical waveguide, for receiving the propagating light effectively. SOLUTION: The light propagates on the optical waveguide 16 which is provided with clad parts 13, 15 formed on the substrate 11 and a core part 14 in the clad parts 13, 15. This connection structure located between the optical waveguide 16 and the semiconductor light-receiving element 12 is used for detecting the propagating light by using the semiconductor light-receiving element 12 which is arranged in the vicinity of the core part 14 on the substrate 11. In the structure, the semiconductor light- receiving element 12 is installed on an installation part whose surface is formed almost flat in shape by burying an electrode wiring 18 for installing the element 12 in an upper surface of the substrate 11, so that the element 12 is not largely bent. As a result, the increase of a dark current which is caused by stresses corresponding to the bending, generation of cracks in the element 12, and generation of peeling, wrinkles and cracks on a wiring of element 12 can be restrained, and the propagating light can be received effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に形成され
た光導波路によって伝搬させる伝搬光を同じ基板上に配
置された半導体受光素子で受光・検出するための、高い
信頼性を有する光導波路と半導体受光素子との接続構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide having a high reliability for receiving and detecting light propagated by an optical waveguide formed on a substrate by a semiconductor light receiving element arranged on the same substrate. And a semiconductor light receiving element.

【0002】[0002]

【従来の技術】光回路基板や光電気回路基板等において
は、基板上に形成された光導波路により伝搬される伝搬
光を同じ基板上に配置した半導体受光素子に光接続して
受光させるために、種々の光導波路と半導体受光素子と
の接続構造が用いられている。
2. Description of the Related Art In an optical circuit board, an optoelectronic circuit board, or the like, in order to optically connect the propagating light propagated by an optical waveguide formed on the board to a semiconductor light receiving element arranged on the same board, to receive the light. Various types of optical waveguides and semiconductor light receiving elements are used in the connection structure.

【0003】従来の光導波路と半導体受光素子との接続
構造の例を図3に断面図で示す。図3に示す接続構造で
は、基板31上に形成された電極配線38に半導体受光素子
32が固定されて配置され、その上に下部クラッド部33・
コア部34・上部クラッド部35から構成される光導波路36
が形成されている。なお、コア部34はその周囲を下部ク
ラッド部33および上部クラッド部35により取り囲まれて
クラッド部中に配設されている。
FIG. 3 is a sectional view showing an example of a conventional connection structure between an optical waveguide and a semiconductor light receiving element. In the connection structure shown in FIG. 3, a semiconductor light receiving element is formed on the electrode wiring 38 formed on the substrate 31.
32 is fixed and arranged, and the lower clad 33 /
Optical waveguide 36 composed of core portion 34 and upper cladding portion 35
Are formed. The core portion 34 is surrounded by the lower clad portion 33 and the upper clad portion 35 and is disposed in the clad portion.

【0004】この接続構造においては、コア部34を中心
に伝搬する伝搬光は、図3中に示すようにその電磁界フ
ィールド37がコア部34の外側にも広がっているため、こ
れをコア部34の近傍に配置された半導体受光素子32の受
光面に光結合させて受光させることができるものであ
る。
In this connection structure, the propagating light propagating through the core portion 34 has its electromagnetic field field 37 spreading outside the core portion 34 as shown in FIG. The light receiving surface of the semiconductor light receiving element 32 arranged in the vicinity of 34 can be optically coupled to receive light.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図3に
示すような従来の接続構造では、電極配線38上に半導体
受光素子32を実装する際、半導体受光素子32の電極はそ
の周辺部に設けられており、半導体受光素子32の中央付
近と基板31の上面との間には間隙があるため、図3に示
すように、半導体受光素子32の中央部が基板31側へ湾曲
することがある。このことは、特に半導体受光素子32の
厚さが数μm程度と薄い場合に顕著である。このように
半導体受光素子32が湾曲した場合、湾曲部で生じる応力
によって半導体受光素子32の暗電流が増加したり、極端
な場合には、半導体受光素子32に亀裂が生じたり、半導
体受光素子32に形成された金属配線に剥離・しわ・クラ
ックが生じることによって、半導体受光素子32が破壊さ
れたり、受光素子としての特性が劣化して期待する特性
が得られなくなったりするなどの信頼性上の問題が生じ
る。
However, in the conventional connection structure as shown in FIG. 3, when the semiconductor light receiving element 32 is mounted on the electrode wiring 38, the electrode of the semiconductor light receiving element 32 is provided in the peripheral portion thereof. Since there is a gap between the vicinity of the center of the semiconductor light receiving element 32 and the upper surface of the substrate 31, the central portion of the semiconductor light receiving element 32 may curve toward the substrate 31 side as shown in FIG. This is particularly noticeable when the thickness of the semiconductor light receiving element 32 is as thin as several μm. When the semiconductor light receiving element 32 is curved in this way, the dark current of the semiconductor light receiving element 32 increases due to the stress generated at the curved portion, or in extreme cases, the semiconductor light receiving element 32 is cracked or the semiconductor light receiving element 32 is cracked. Due to peeling, wrinkles, and cracks in the metal wiring formed on the semiconductor light receiving element 32, the semiconductor light receiving element 32 may be destroyed, or the characteristics as the light receiving element may deteriorate and the expected characteristics may not be obtained. The problem arises.

【0006】一方、特開平2000−215371号公報において
半導体受光素子32の中央付近と基板31との間の間隙を光
学接着材で充填する提案がなされている。しかしなが
ら、この場合は、光学接着材が硬化する際の収縮によっ
て半導体受光素子32が湾曲したりして応力を付与するこ
とになり問題が生じることとなる。また、数μm程度の
厚さの電極の段差で生じる間隙を光学接着剤等の樹脂で
充填することも容易ではない。
On the other hand, in Japanese Patent Laid-Open No. 2000-215371, it has been proposed to fill the gap between the center of the semiconductor light receiving element 32 and the substrate 31 with an optical adhesive. However, in this case, the semiconductor light receiving element 32 is curved due to contraction when the optical adhesive material is cured, and stress is applied, which causes a problem. Further, it is not easy to fill the gap generated at the step of the electrode having a thickness of about several μm with a resin such as an optical adhesive.

【0007】本発明は上記従来の技術における問題点に
鑑みてなされたものであり、その目的は、基板上に形成
された光導波路を伝搬する伝搬光をこの基板上の光導波
路の近傍に配置された半導体受光素子によって受光・検
出することができる高い信頼性を有した光導波路と半導
体受光素子との接続構造を提供することにある。
The present invention has been made in view of the above-mentioned problems in the prior art, and an object thereof is to arrange propagating light propagating in an optical waveguide formed on a substrate in the vicinity of the optical waveguide on the substrate. It is an object of the present invention to provide a connection structure between an optical waveguide and a semiconductor light receiving element, which has a high reliability and can be received and detected by the semiconductor light receiving element.

【0008】[0008]

【課題を解決するための手段】本発明の光導波路と半導
体受光素子との接続構造は、基板上に形成されたクラッ
ド部およびこのクラッド部中のコア部を有する光導波路
を伝搬する伝搬光を、前記基板上の前記コア部の近傍に
受光面を前記コア部に略平行にして配置された半導体受
光素子で検出するための光導波路と半導体受光素子との
接続構造であって、前記半導体受光素子は、半導体受光
素子設置用の電極配線を前記基板の上面に埋設すること
によって表面が略平坦に形成された設置部に設置されて
いることを特徴とするものである。
A connection structure of an optical waveguide and a semiconductor light receiving element according to the present invention provides a propagating light propagating through an optical waveguide having a clad portion formed on a substrate and a core portion in the clad portion. A connection structure of an optical waveguide and a semiconductor light receiving element for detecting with a semiconductor light receiving element arranged with a light receiving surface in the vicinity of the core portion on the substrate substantially parallel to the core portion, The device is characterized in that it is installed in an installation part having a substantially flat surface by burying electrode wiring for installing a semiconductor light receiving device on the upper surface of the substrate.

【0009】また、本発明の光導波路と半導体受光素子
との接続構造は、基板上に形成されたクラッド部および
このクラッド部中のコア部を有する光導波路を伝搬する
伝搬光を、前記基板上の前記コア部の近傍に受光面を前
記コア部に略平行にして配置された半導体受光素子で検
出するための光導波路と半導体受光素子との接続構造で
あって、前記半導体受光素子は、上面に電極を有すると
ともに、該電極と前記半導体受光素子の周囲の前記基板
の上面に形成された半導体受光素子設置用の電極配線と
を電気的に接続する配線導体により前記電極およびその
近傍の上面が覆われていることを特徴とするものであ
る。
Further, in the connection structure of the optical waveguide and the semiconductor light receiving element of the present invention, the propagation light propagating in the optical waveguide having the clad portion formed on the substrate and the core portion in the clad portion is propagated on the substrate. In the connection structure of an optical waveguide and a semiconductor light receiving element for detecting with a semiconductor light receiving element arranged with the light receiving surface in the vicinity of the core portion substantially parallel to the core portion, the semiconductor light receiving element has an upper surface. An electrode on the upper surface of the electrode and its vicinity by a wiring conductor that electrically connects the electrode and an electrode wiring for mounting the semiconductor light receiving element formed on the upper surface of the substrate around the semiconductor light receiving element. It is characterized by being covered.

【0010】本発明の光導波路と半導体受光素子との接
続構造によれば、半導体受光素子が半導体受光素子設置
用の電極配線を基板の上面に埋設することによって表面
が略平坦に形成された設置部に設置されていることか
ら、半導体受光素子をこの設置部に大きな湾曲や歪みを
生じさせることなく設置することができる。
According to the connection structure of the optical waveguide and the semiconductor light receiving element of the present invention, the semiconductor light receiving element is installed in such a manner that the surface of the semiconductor light receiving element is formed substantially flat by burying the electrode wiring for mounting the semiconductor light receiving element on the upper surface of the substrate. Since the semiconductor light receiving element is installed in the installation section, the semiconductor light receiving element can be installed in the installation section without causing a large curve or distortion.

【0011】また、本発明の光導波路と半導体受光素子
との接続構造によれば、半導体受光素子が上面に電極を
有するとともに、半導体受光素子のこの電極およびその
近傍の上面が、この電極と半導体受光素子の周囲の基板
の上面に形成された半導体受光素子設置用の電極配線と
を電気的に接続する配線導体により覆われていることか
ら、半導体受光素子は基板の上面に対して電極配線に乗
ることなく平坦な状態で設置されるので、半導体受光素
子に湾曲や歪みを生じさせることなく設置することがで
きる。
Further, according to the connection structure of the optical waveguide and the semiconductor light receiving element of the present invention, the semiconductor light receiving element has an electrode on the upper surface, and this electrode of the semiconductor light receiving element and the upper surface in the vicinity thereof have the electrode and the semiconductor. Since the semiconductor light receiving element is covered by the wiring conductor that electrically connects to the electrode wiring for installing the semiconductor light receiving element formed on the upper surface of the substrate around the light receiving element, Since it is installed in a flat state without riding, the semiconductor light receiving element can be installed without causing bending or distortion.

【0012】従って、本発明によれば、半導体受光素子
の湾曲や歪みに伴う応力による暗電流の増加や感度の低
下を抑制することができ、また、半導体受光素子に亀裂
が生じたり、半導体受光素子に形成された金属配線に剥
離・しわ・クラックが生じたりすることを抑制すること
ができるので、高い信頼性を有した光導波路と半導体受
光素子との接続構造を提供することができる。
Therefore, according to the present invention, it is possible to suppress an increase in dark current and a decrease in sensitivity due to the stress caused by the bending and distortion of the semiconductor light receiving element, and to prevent the semiconductor light receiving element from being cracked or the semiconductor light receiving element. Since it is possible to prevent peeling, wrinkles, and cracks from occurring in the metal wiring formed on the element, it is possible to provide a highly reliable connection structure between the optical waveguide and the semiconductor light receiving element.

【0013】[0013]

【発明の実施の形態】以下、図面に基づいて本発明の光
導波路と半導体受光素子との接続構造を詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a connection structure between an optical waveguide and a semiconductor light receiving element of the present invention will be described in detail with reference to the drawings.

【0014】図1および図2は、それぞれ本発明の光導
波路と半導体受光素子との接続構造の実施の形態の例を
示す断面図である。
1 and 2 are cross-sectional views showing an example of an embodiment of a connection structure between an optical waveguide and a semiconductor light receiving element of the present invention.

【0015】図1に示す例では、基板11上に半導体受光
素子設置用の電極配線18を基板11の上面に埋設すること
によって表面が略平坦に形成された設置部に半導体受光
素子12が配置固定されて設置されており、その上に下部
クラッド部13・コア部14・上部クラッド部15から構成さ
れる光導波路16が形成されている。また、半導体受光素
子12の下面に電圧印加用や光電流検出用の電極配線18が
形成されている。
In the example shown in FIG. 1, the semiconductor light receiving element 12 is arranged in an installation portion whose surface is formed to be substantially flat by embedding the electrode wiring 18 for installing the semiconductor light receiving element on the substrate 11 on the upper surface of the substrate 11. It is fixed and installed, and an optical waveguide 16 composed of a lower clad portion 13, a core portion 14, and an upper clad portion 15 is formed on it. Further, an electrode wiring 18 for voltage application and photocurrent detection is formed on the lower surface of the semiconductor light receiving element 12.

【0016】図2に示す例では、基板11上に半導体受光
素子22上が固定されて配置され、半導体受光素子22の上
面に形成された電極と半導体受光素子22の周囲の基板11
の上面に形成された半導体受光素子設置用の電極配線
(塗りつぶし部分で示す)とを電気的に接続しつつ半導
体受光素子22の上面の電極およびその近傍の上面を覆う
ように配線導体28が形成されており、さらにその上に、
下部クラッド部13・コア部14・上部クラッド部15から構
成される光導波路16が形成されている。
In the example shown in FIG. 2, the semiconductor light receiving element 22 is fixedly arranged on the substrate 11, the electrodes formed on the upper surface of the semiconductor light receiving element 22 and the substrate 11 around the semiconductor light receiving element 22.
A wiring conductor 28 is formed so as to cover the electrode on the upper surface of the semiconductor light receiving element 22 and the upper surface in the vicinity thereof while electrically connecting to the electrode wiring for installation of the semiconductor light receiving element (shown by the filled portion) formed on the upper surface of the And on top of that,
An optical waveguide 16 including a lower clad portion 13, a core portion 14, and an upper clad portion 15 is formed.

【0017】本発明の光導波路と半導体受光素子との接
続構造において、基板11は、電気回路および光導波路を
始めとする光電気回路が形成され、また光導波路中に埋
設される半導体受光素子12・22に対する支持基板として
機能するものであり、光集積回路基板や光電子混在基板
等の光信号を扱う基板として使用される種々の基板、例
えばシリコン基板やアルミナ基板・ガラスセラミック基
板・多層セラミック基板・薄膜多層セラミック基板・プ
ラスチック電気配線基板等が使用できる。
In the connection structure of the optical waveguide and the semiconductor light receiving element of the present invention, a semiconductor light receiving element 12 in which a photoelectric circuit including an electric circuit and the optical waveguide is formed on the substrate 11 and which is embedded in the optical waveguide.・ Various substrates that function as a support substrate for 22 and are used as substrates for handling optical signals, such as optical integrated circuit substrates and optoelectronic mixed substrates, such as silicon substrates, alumina substrates, glass ceramic substrates, and multilayer ceramic substrates. Thin film multilayer ceramic substrates, plastic electrical wiring substrates, etc. can be used.

【0018】半導体受光素子設置用の電極配線18を基板
11の上面に埋設することによって表面が略平坦な設置部
を形成する方法としては、電極配線18を埋設する部分に
プレス法やエッチング法によって予め電極配線18が埋め
込まれる溝を形成した後、スクリーン印刷法や薄膜金属
配線微細加工技術等を用いてこの溝内に電極配線18の材
料を埋設すればよい。また、樹脂材料から成る基板11の
上面に電極配線18を埋設して形成する場合には、基板11
の上面に電極配線18を形成した後、加圧プレスによって
この電極配線18を基板11の樹脂中に埋設するようにして
もよい。また、その後、研磨やエッチバック法等によっ
て設置部の表面をさらに平坦化してもよい。設置部の表
面に対する平坦化の度合いとしては、電極配線18による
段差が1μm程度以下となるようにすればよい。
A substrate is provided with an electrode wiring 18 for installing a semiconductor light receiving element.
As a method of forming an installation portion having a substantially flat surface by burying it on the upper surface of 11, the electrode wire 18 is formed in advance with a groove in which the electrode wire 18 is embedded by a pressing method or an etching method, and then a screen is formed. The material of the electrode wiring 18 may be embedded in the groove by using a printing method, a thin film metal wiring fine processing technique, or the like. When the electrode wiring 18 is embedded and formed on the upper surface of the substrate 11 made of a resin material, the substrate 11
After the electrode wiring 18 is formed on the upper surface of the substrate, the electrode wiring 18 may be embedded in the resin of the substrate 11 by pressure pressing. After that, the surface of the installation portion may be further flattened by polishing, an etch back method, or the like. As the degree of flattening of the surface of the installation portion, the step due to the electrode wiring 18 may be about 1 μm or less.

【0019】電極配線18および配線導体28の材料として
は、Au・Ti・Pd・Pt・Al・Cu・W・Cr等
の周知の配線導体材料を用いた単体もしくはこれらの合
金による単層や多層体を用いればよい。また、AuSn
・AuGeなどの半田材料を最上層としてもよい。
As a material for the electrode wiring 18 and the wiring conductor 28, a single body using a well-known wiring conductor material such as Au, Ti, Pd, Pt, Al, Cu, W and Cr, or a single layer or a multi-layer made of an alloy thereof is used. Use your body. Also, AuSn
-A solder material such as AuGe may be used as the uppermost layer.

【0020】本発明の接続構造に用いられる光導波路16
の形成材料としては、光導波路を形成できる種々の光学
材料を用いることができるが、中でもシロキサン系ポリ
マを用いることが望ましい。シロキサン系ポリマによる
光導波路とすれば、下部および上部クラッド部13・15に
シロキサン系ポリマを用い、コア部14に金属、例えばチ
タン(Ti)を含有したシロキサン系ポリマを用いた光
導波路16とすることにより、チタン含有量の制御によっ
てクラッド部13・15とコア部14との間で所望の屈折率差
を有する光導波路16を容易に作製することができ、半導
体受光素子12・22との受光効率が良好となる構造のもの
を設計することが容易となる。また、100℃〜300℃程度
の低温で光導波路16を作製することができるので、半導
体受光素子12・22を埋設するようにしてこの上に光導波
路16を作製する場合でも、半導体受光素子12・22に熱的
ダメージを与えることがない。また、下地の表面状態に
よらず膜表面の平坦化性・平滑化性に優れており、半導
体受光素子12・22を埋設するように光導波路16を形成す
る場合に、散乱損失を招来する表面の凹凸を緩和するこ
とができるので好適である。
Optical waveguide 16 used in the connection structure of the present invention
Various optical materials capable of forming an optical waveguide can be used as the forming material of (1), and among them, it is preferable to use a siloxane-based polymer. If the optical waveguide is made of a siloxane-based polymer, the lower and upper clad portions 13 and 15 are made of a siloxane-based polymer, and the core portion 14 is made of an optical waveguide 16 made of a siloxane-based polymer containing a metal such as titanium (Ti). Thereby, the optical waveguide 16 having a desired refractive index difference between the cladding portions 13 and 15 and the core portion 14 can be easily manufactured by controlling the titanium content, and the light receiving with the semiconductor light receiving elements 12 and 22 can be performed. It becomes easy to design a structure with good efficiency. Further, since the optical waveguide 16 can be formed at a low temperature of about 100 ° C. to 300 ° C., even when the optical waveguide 16 is formed on the semiconductor light receiving elements 12 and 22 by embedding them, the semiconductor light receiving element 12・ No thermal damage to 22. In addition, the film surface is excellent in flatness / smoothness irrespective of the surface state of the base, and when the optical waveguide 16 is formed so as to embed the semiconductor light receiving elements 12/22, a surface that causes scattering loss. It is preferable because the unevenness can be alleviated.

【0021】このようなシロキサン系ポリマとしては、
ポリマの骨格にシロキサン結合が含まれている樹脂であ
ればよく、例えばポリフェニルシルセスキオキサン・ポ
リメチルフェニルシルセスキオキサン・ポリジフェニル
シルセスキオキサン等がある。
As such a siloxane-based polymer,
Any resin can be used as long as it has a siloxane bond in the polymer skeleton, and examples thereof include polyphenylsilsesquioxane, polymethylphenylsilsesquioxane, and polydiphenylsilsesquioxane.

【0022】また、コア部14ならびにクラッド部13・15
に含有させる金属としては、チタンに限られるものでは
なく、ゲルマニウム(Ge)・アルミニウム(Al)・
エルビウム(Er)等も使用できる。これらの金属を含
有したコア部14を形成するには、その金属アルコキシド
を添加したシロキサン系ポリマ層を形成し、これを所望
の形状・寸法に加工すればよい。
Further, the core portion 14 and the clad portions 13 and 15
The metal contained in is not limited to titanium, but germanium (Ge), aluminum (Al),
Erbium (Er) or the like can also be used. In order to form the core portion 14 containing these metals, a siloxane-based polymer layer to which the metal alkoxide is added may be formed and processed into a desired shape and size.

【0023】なお、クラッド部13・15に用いるシロキサ
ン系ポリマにも上記と同様の金属を含有させてもよく、
その場合はコア部14との含有量の差により屈折率差を設
けるようにすればよい。
The siloxane polymer used for the cladding portions 13 and 15 may contain the same metal as described above.
In that case, a difference in refractive index may be provided depending on the difference in content with the core portion 14.

【0024】また、屈折率を制御するには、金属を添加
する他に、例えばシロキサン系ポリマの組成を変化させ
て屈折率を制御してもよい。あるいは、光重合型のシロ
キサン系ポリマを用いて光照射量の違いによって生じる
屈折率変化を利用してもよい。
In addition, in order to control the refractive index, the refractive index may be controlled by changing the composition of, for example, a siloxane polymer, in addition to adding a metal. Alternatively, a photopolymerization type siloxane polymer may be used to utilize the change in the refractive index caused by the difference in the light irradiation amount.

【0025】また、光導波路16の材料としては、この他
にも、低損失で光を伝搬させることができる透明性があ
り、所望の屈折率差を得ることができるコア部材とクラ
ッド部材との組合せであれば各種の材料を用いることが
できる。シロキサン系ポリマ以外には、例えばフッ素化
ポリイミド・ポリメチルメタクリレート(PMMA)・
ポリカーボネート(PC)等の溶液状態で塗布可能な樹
脂系光学材料が好適に用いられる。また、気相成長法に
よるシリカ等の無機材料を用いてもよい。
In addition to the above, the material of the optical waveguide 16 is transparent so that light can be propagated with low loss, and is made of a core member and a clad member which can obtain a desired refractive index difference. Various materials can be used as long as they are combined. Other than siloxane-based polymers, for example, fluorinated polyimide / polymethylmethacrylate (PMMA) /
A resin optical material such as polycarbonate (PC) that can be applied in a solution state is preferably used. Alternatively, an inorganic material such as silica produced by a vapor phase growth method may be used.

【0026】光導波路16の作製方法としては、まず基板
11上に下部クラッド部13を形成する。次にコア部14とな
るコア層を積層形成した後、フォトリソグラフィやRI
E(Reactive Ion Etching)等の周知の薄膜微細加工技
術を用いて、所定の形状でコア部14を形成する。その
後、上部クラッド部15を被覆形成する。この薄膜微細加
工技術によれば、コア部14を形成する際、異なった幅の
コア部14を容易に作製することができる。また、光硬化
型のシロキサン系ポリマを用いれば、光未照射部が特定
の溶液に対して可溶で硬化部が不溶となる場合にはフォ
トリソグラフィの手法と同様の方法によって容易にコア
パターンが形成できる。このようなプレーナ微細加工技
術を用いれば本発明のコア幅が部分的に異なるコアパタ
ーンも容易に形成できる。
As a method of manufacturing the optical waveguide 16, first, a substrate
The lower clad portion 13 is formed on the upper portion 11. Next, after a core layer to be the core portion 14 is formed, photolithography and RI are performed.
The core portion 14 is formed in a predetermined shape by using a well-known thin film microfabrication technique such as E (Reactive Ion Etching). After that, the upper clad portion 15 is formed by coating. According to this thin film microfabrication technique, when forming the core portion 14, the core portions 14 having different widths can be easily manufactured. In addition, when a photo-curable siloxane-based polymer is used, when the unirradiated area is soluble in a specific solution and the cured area becomes insoluble, the core pattern can be easily formed by a method similar to the photolithography method. Can be formed. By using such a planar microfabrication technique, core patterns of the present invention having partially different core widths can be easily formed.

【0027】基板11上に配置され設置される半導体受光
素子12・22は、例えばSi・Ge・InP・GaAs・
InAs・InGaAsP等の半導体材料を用いて製造
された半導体受光素子であり、pnフォトダイオード・
pinフォトダイオード・フォトトランジスタ・MSM
(Metal-Semiconductor-Metal)フォトダイオード・アバ
ランシェフォトダイオードといった半導体受光素子が用
いられる。
The semiconductor light receiving elements 12 and 22 arranged and installed on the substrate 11 are, for example, Si.Ge.InP.GaAs.
A semiconductor light receiving element manufactured using a semiconductor material such as InAs / InGaAsP, which is a pn photodiode
pin photodiode, phototransistor, MSM
A semiconductor light receiving element such as a (Metal-Semiconductor-Metal) photodiode or avalanche photodiode is used.

【0028】[0028]

【実施例】次に、本発明の光導波路と半導体受光素子と
の接続構造について具体例を説明する。
EXAMPLES Next, concrete examples of the connection structure between the optical waveguide and the semiconductor light receiving element of the present invention will be described.

【0029】〔例1〕図1に示すように、屈折率1.447
の石英基板11の上面にフォトリソグラフィとドライエッ
チング法を用いて形成した深さ1.5μmの溝に、リフト
オフ法を利用してAuから成る電極配線18を形成した。
その後、基板11の上面をラッピング研磨により半導体受
光素子12の設置部の実装領域において表面粗さにおける
最大高さRmaxが0.1μm程度以下になるように平坦
化した。
Example 1 As shown in FIG. 1, the refractive index is 1.447.
Electrode wiring 18 made of Au was formed by a lift-off method in a groove having a depth of 1.5 μm formed on the upper surface of the quartz substrate 11 by photolithography and dry etching.
After that, the upper surface of the substrate 11 was flattened by lapping so that the maximum height Rmax of the surface roughness was about 0.1 μm or less in the mounting region of the installation portion of the semiconductor light receiving element 12.

【0030】次に、半導体受光素子12として厚さ1μm
のInGaAs上にTi/Pt/Auからなるラダー型
電極配線を形成した、受光面が100μm四方のMSM型
フォトダイオードを準備し、MSM電極を下向きにし
て、電極配線18と電気的な接続が得られるように設置部
に配置し固定した。その後、良好な電極接続が得られる
ように熱処理を施した。
Next, the semiconductor light receiving element 12 has a thickness of 1 μm.
Prepare an MSM photodiode with a light-receiving surface of 100 μm square and a ladder-type electrode wiring made of Ti / Pt / Au formed on InGaAs, and make the MSM electrode face down to make electrical connection with the electrode wiring 18. It was placed in the installation section and fixed. After that, heat treatment was performed so that good electrode connection was obtained.

【0031】次に、クラッド部13・15がシロキサン系ポ
リマから成り、コア部14がチタン含有シロキサン系ポリ
マから成るステップインデックス型の光導波路16を形成
した。光導波路16の各部の厚さは、下部クラッド部13を
2μm、コア部14を7μm・上部クラッド部15を8μm
とした。コア部14の幅は7μmとした。なお、クラッド
部13・15の屈折率は1.448、コア部14の屈折率は1.4533
とした。
Next, a step index type optical waveguide 16 was formed in which the clad portions 13 and 15 were made of a siloxane polymer and the core portion 14 was made of a titanium-containing siloxane polymer. The thickness of each part of the optical waveguide 16 is 2 μm for the lower clad part 13, 7 μm for the core part 14 and 8 μm for the upper clad part 15.
And The width of the core portion 14 was 7 μm. The clad portions 13 and 15 have a refractive index of 1.448, and the core portion 14 has a refractive index of 1.4533.
And

【0032】また、半導体受光素子12からの電気信号を
検出するため、電極配線18の一部分をドライエッチング
技術を用いて露出させ、外部電気回路と電気的に接続し
た。
Further, in order to detect an electric signal from the semiconductor light receiving element 12, a part of the electrode wiring 18 was exposed by a dry etching technique and electrically connected to an external electric circuit.

【0033】このようにして作製した、図1に示すよう
な構成の本発明の光導波路と半導体受光素子との接続構
造について、光入力ポート17から光導波路に波長1.3μ
mの光を伝搬させて、半導体受光素子12でコア部14から
漏れ出した伝搬光を検出して光強度を測定したところ、
この光導波路16と半導体受光素子12とは約7%の光結合
効率を有しており、伝搬光を十分な強度で検出できるこ
とが確認できた。
With respect to the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element having the structure shown in FIG. 1 manufactured in this manner, the wavelength of 1.3 μm from the optical input port 17 to the optical waveguide.
The light intensity was measured by propagating m light and detecting the propagating light leaking from the core portion 14 in the semiconductor light receiving element 12.
It has been confirmed that the optical waveguide 16 and the semiconductor light receiving element 12 have an optical coupling efficiency of about 7%, and the propagating light can be detected with sufficient intensity.

【0034】また、光導波路16の形成前後での半導体光
素子12の破壊や顕著な特性の劣化は見られなかった。
Further, neither destruction of the semiconductor optical device 12 nor remarkable deterioration of characteristics was observed before and after the formation of the optical waveguide 16.

【0035】〔例2〕図2に示すように、屈折率1.447
の石英基板11の上面に、半導体受光素子22として厚さ1
μmのInGaAs上にTi/Pt/Auからなるラダ
ー型電極配線を形成した受光面が100μm四方のMSM
型フォトダイオードを、MSM電極を上向きにして設置
した。この際、半導体受光素子22と石英基板11とはファ
ンデールスワールス力によって密着している状態とし
た。
Example 2 As shown in FIG. 2, the refractive index is 1.447.
On the upper surface of the quartz substrate 11 as the semiconductor light receiving element 22 having a thickness of 1
MSM with a light receiving surface of 100 μm square in which a ladder type electrode wiring made of Ti / Pt / Au is formed on μm InGaAs
Type photodiode was installed with the MSM electrode facing up. At this time, the semiconductor light receiving element 22 and the quartz substrate 11 were brought into close contact with each other by the Van der Swirl force.

【0036】次に、フォトレジストパターンを形成した
後、電子ビーム蒸着法によって全厚2μmのTi/Pt
/Au層を形成し、リフトオフ法により不要部分を除去
して、半導体受光素子22の上面のMSM電極と半導体受
光素子22の周囲の基板11の上面に配設された半導体受光
素子設置用の電極配線とを電気的に接続する配線導体28
を形成した。配線導体28は半導体受光素子22のMSM電
極と基板11の電極配線との電気的な接続を行なうととも
に、半導体受光素子22のMSM電極およびその近傍の上
面外周部を被覆することによって半導体受光素子22と基
板11との密着強度を高めている。
Next, after forming a photoresist pattern, Ti / Pt having a total thickness of 2 μm is formed by an electron beam evaporation method.
/ Au layer is formed, an unnecessary portion is removed by a lift-off method, and an MSM electrode on the upper surface of the semiconductor light receiving element 22 and an electrode for mounting the semiconductor light receiving element provided on the upper surface of the substrate 11 around the semiconductor light receiving element 22. Wiring conductor 28 that electrically connects to the wiring
Was formed. The wiring conductor 28 electrically connects the MSM electrode of the semiconductor light receiving element 22 and the electrode wiring of the substrate 11, and covers the MSM electrode of the semiconductor light receiving element 22 and the peripheral portion of the upper surface in the vicinity of the MSM electrode. The adhesion strength between the substrate 11 and the substrate 11 is increased.

【0037】次に、クラッド部13・15がシロキサン系ポ
リマから成り、コア部14がチタン含有シロキサン系ポリ
マから成るステップインデックス型の光導波路16を形成
した。光導波路16の各部の厚さは、下部クラッド部13を
2μm、コア部14を7μm・上部クラッド部15を8μm
とした。コア部14の幅は7μmとした。なお、クラッド
部13・15の屈折率は1.448、コア部14の屈折率は1.4533
とした。
Next, a step index type optical waveguide 16 was formed in which the clad portions 13 and 15 were made of a siloxane polymer and the core portion 14 was made of a titanium-containing siloxane polymer. The thickness of each part of the optical waveguide 16 is 2 μm for the lower clad part 13, 7 μm for the core part 14 and 8 μm for the upper clad part 15.
And The width of the core portion 14 was 7 μm. The clad portions 13 and 15 have a refractive index of 1.448, and the core portion 14 has a refractive index of 1.4533.
And

【0038】また、半導体受光素子12からの電気信号を
検出するため、配線導体28の一部分をドライエッチング
技術を用いて露出させ、外部電気回路と接続した。
Further, in order to detect an electric signal from the semiconductor light receiving element 12, a part of the wiring conductor 28 was exposed using a dry etching technique and connected to an external electric circuit.

【0039】このようにして作製した本発明の光導波路
と半導体受光素子との接続構造について、光入力ポート
17から光導波路に波長1.3μmの光を伝搬させて、半導
体受光素子22でコア部14から漏れ出した伝搬光を検出し
て光強度を測定したところ、この光導波路16と半導体受
光素子22とは約5%の光結合効率を有しており、伝搬光
を十分な強度で検出できることが確認できた。
Regarding the connection structure between the optical waveguide of the present invention and the semiconductor light receiving element thus manufactured, an optical input port
When light having a wavelength of 1.3 μm is propagated from 17 to the optical waveguide and the propagating light leaked from the core portion 14 is detected by the semiconductor light receiving element 22 to measure the light intensity, the optical waveguide 16 and the semiconductor light receiving element 22 are Has an optical coupling efficiency of about 5%, and it was confirmed that the propagating light can be detected with sufficient intensity.

【0040】また、光導波路16の形成前後での半導体光
素子22の破壊や顕著な特性の劣化は見られなかった。
Further, neither destruction of the semiconductor optical device 22 nor remarkable deterioration of characteristics was observed before and after the formation of the optical waveguide 16.

【0041】〔例3〕本発明の実施例との比較のため
に、従来例による比較例の試作評価を行なった。
[Example 3] For comparison with the examples of the present invention, trial evaluation of comparative examples according to the conventional example was performed.

【0042】図3に示すように、屈折率1.447の石英基
板11の上面に厚さ1.5μmのAuから成る電極配線38を
形成した。次に、半導体受光素子12として厚さ1μmの
InGaAs上にTi/Pt/Auからなるラダー型電
極配線を形成した受光面が100μm四方のMSM型フォ
トダイオードを、MSM電極を下向きにして、電極配線
38と電気的な接続が得られるように配置し固定した。そ
の後、良好な電極接続が得られるように熱処理を施し
た。
As shown in FIG. 3, an electrode wiring 38 made of Au having a thickness of 1.5 μm was formed on the upper surface of the quartz substrate 11 having a refractive index of 1.447. Next, as a semiconductor light receiving element 12, an MSM photodiode having a light receiving surface of 100 μm square, in which a ladder type electrode wiring made of Ti / Pt / Au was formed on InGaAs having a thickness of 1 μm, was used, with the MSM electrode facing downward.
It was placed and fixed so that it could be electrically connected to 38. After that, heat treatment was performed so that good electrode connection was obtained.

【0043】次に、クラッド部33・35がシロキサン系ポ
リマから成り、コア部34がチタン含有シロキサン系ポリ
マから成るステップインデックス型の光導波路36を形成
した。光導波路36の各部の厚さは、下部クラッド部33を
2μm、コア部34を7μm・上部クラッド部35を8μm
とした。コア部34の幅は7μmとした。なお、クラッド
部33・35の屈折率は1.448、コア部34の屈折率は1.4533
とした。
Next, a step index type optical waveguide 36 was formed in which the clad portions 33 and 35 were made of a siloxane polymer and the core portion 34 was made of a titanium-containing siloxane polymer. The thickness of each part of the optical waveguide 36 is 2 μm for the lower clad 33, 7 μm for the core 34 and 8 μm for the upper clad 35.
And The width of the core portion 34 was 7 μm. The clad portions 33 and 35 have a refractive index of 1.448, and the core portion 34 has a refractive index of 1.4533.
And

【0044】また、半導体受光素子32からの電気信号を
検出するため、電極配線38の一部分をドライエッチング
技術を用いて露出させ、外部電気回路と接続した。
Further, in order to detect an electric signal from the semiconductor light receiving element 32, a part of the electrode wiring 38 was exposed by a dry etching technique and connected to an external electric circuit.

【0045】このようにして作製した従来例による光導
波路と半導体受光素子との接続構造について、評価を試
みたところ、光導波路36の形成前後で半導体受光素子32
としてのフォトダイオードの暗電流が50倍程度増大して
いた。さらに、評価を進める途中でフォトダイオードと
しての特性が得られなくなったものがあった。これにつ
いてSEM(走査型電子顕微鏡)による断面観察を行な
ったところ、半導体受光素子32が湾曲していた結果、半
導体受光素子32に形成された金属配線に剥離が見られ
た。
An attempt was made to evaluate the connection structure between the optical waveguide and the semiconductor light receiving element according to the conventional example manufactured in this way, and the semiconductor light receiving element 32 was formed before and after the formation of the optical waveguide 36.
As a result, the dark current of the photodiode has increased about 50 times. Further, in some cases, the characteristics of the photodiode were not obtained during the evaluation. As a result of observing a cross section of this with an SEM (scanning electron microscope), as a result of the semiconductor light receiving element 32 being curved, peeling was observed in the metal wiring formed on the semiconductor light receiving element 32.

【0046】[0046]

【発明の効果】以上のように、本発明の光導波路と半導
体受光素子との接続構造によれば、半導体受光素子が半
導体受光素子設置用の電極配線を基板の上面に埋設する
ことによって表面が略平坦に形成された設置部に設置さ
れていることから、半導体受光素子をこの設置部に大き
な湾曲や歪みを生じさせることなく設置することができ
る。
As described above, according to the connection structure of the optical waveguide and the semiconductor light receiving element of the present invention, the surface of the semiconductor light receiving element is improved by burying the electrode wiring for mounting the semiconductor light receiving element on the upper surface of the substrate. Since the semiconductor light receiving element is installed in the installation portion formed to be substantially flat, the semiconductor light receiving element can be installed without causing a large curve or distortion in the installation portion.

【0047】また、本発明の光導波路と半導体受光素子
との接続構造によれば、半導体受光素子が上面に電極を
有するとともに、半導体受光素子のこの電極およびその
近傍の上面が、この電極と半導体受光素子の周囲の基板
の上面に形成された半導体受光素子設置用の電極配線と
を電気的に接続する配線導体により覆われていることか
ら、半導体受光素子は基板の上面に対して電極配線に乗
ることなく平坦な状態で設置されるので、半導体受光素
子に湾曲や歪みを生じさせることなく設置することがで
きる。
Further, according to the connection structure of the optical waveguide and the semiconductor light receiving element of the present invention, the semiconductor light receiving element has the electrode on the upper surface, and the electrode of the semiconductor light receiving element and the upper surface in the vicinity thereof have the electrode and the semiconductor. Since the semiconductor light receiving element is covered by the wiring conductor that electrically connects to the electrode wiring for installing the semiconductor light receiving element formed on the upper surface of the substrate around the light receiving element, Since it is installed in a flat state without riding, the semiconductor light receiving element can be installed without causing bending or distortion.

【0048】従って、本発明によれば、半導体受光素子
の湾曲や歪みに伴う応力による暗電流の増加や感度の低
下を抑制することができ、また、半導体受光素子に亀裂
が生じたり、半導体受光素子に形成された金属配線に剥
離・しわ・クラックが生じたりすることを抑制すること
ができるので、高い信頼性を有した光導波路と半導体受
光素子との接続構造を提供することができた。
Therefore, according to the present invention, it is possible to suppress an increase in dark current and a decrease in sensitivity due to the stress caused by the bending and distortion of the semiconductor light receiving element, and to prevent the semiconductor light receiving element from being cracked or receiving light. Since it is possible to prevent peeling, wrinkles, and cracks from occurring in the metal wiring formed in the element, it is possible to provide a highly reliable connection structure between the optical waveguide and the semiconductor light receiving element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光導波路と半導体受光素子との接続構
造の実施の形態の例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a connection structure between an optical waveguide and a semiconductor light receiving element of the present invention.

【図2】本発明の光導波路と半導体受光素子との接続構
造の実施の形態の例を示す断面図である。
FIG. 2 is a sectional view showing an example of an embodiment of a connection structure between an optical waveguide and a semiconductor light receiving element of the present invention.

【図3】従来の光導波路と半導体受光素子との接続構造
の例を示す断面図である。
FIG. 3 is a sectional view showing an example of a conventional connection structure between an optical waveguide and a semiconductor light receiving element.

【符号の説明】[Explanation of symbols]

11、31・・・・・基板 12、22、32・・・半導体受光素子 13、33・・・・・下部クラッド部 14、34・・・・・コア部 15、35・・・・・上部クラッド部 16、36・・・・・光導波路 18、38・・・・・電極配線 28・・・・・・・配線導体 11, 31 ... Substrate 12, 22, 32 ... Semiconductor light receiving element 13、33 ・ ・ ・ ・ ・ Lower clad 14、34 ・ ・ ・ ・ ・ Core part 15、35 ・ ・ ・ ・ ・ Upper clad 16, 36 ・ ・ ・ ・ ・ Optical waveguide 18, 38 ... Electrode wiring 28 ........ Wiring conductor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されたクラッド部および該
クラッド部中のコア部を有する光導波路を伝搬する伝搬
光を、前記基板上の前記コア部の近傍に受光面を前記コ
ア部に略平行にして配置された半導体受光素子で検出す
るための光導波路と半導体受光素子との接続構造であっ
て、前記半導体受光素子は、半導体受光素子設置用の電
極配線を前記基板の上面に埋設することによって表面が
略平坦に形成された設置部に設置されていることを特徴
とする光導波路と半導体受光素子との接続構造。
1. A light receiving surface for propagating through a light waveguide having a clad portion formed on a substrate and a core portion in the clad portion and having a light-receiving surface near the core portion on the substrate A connection structure of an optical waveguide and a semiconductor light receiving element for detection by semiconductor light receiving elements arranged in parallel, wherein the semiconductor light receiving element has electrode wiring for mounting the semiconductor light receiving element embedded in the upper surface of the substrate. Accordingly, the connection structure between the optical waveguide and the semiconductor light receiving element is characterized in that the optical waveguide and the semiconductor light receiving element are installed in an installation part having a substantially flat surface.
【請求項2】 基板上に形成されたクラッド部および該
クラッド部中のコア部を有する光導波路を伝搬する伝搬
光を、前記基板上の前記コア部の近傍に受光面を前記コ
ア部に略平行にして配置された半導体受光素子で検出す
るための光導波路と半導体受光素子との接続構造であっ
て、前記半導体受光素子は、上面に電極を有するととも
に、該電極と前記半導体受光素子の周囲の前記基板の上
面に形成された半導体受光素子設置用の電極配線とを電
気的に接続する配線導体により前記電極およびその近傍
の上面が覆われていることを特徴とする光導波路と半導
体受光素子との接続構造。
2. A light receiving surface for propagating light propagating through an optical waveguide having a clad portion formed on a substrate and a core portion in the clad portion is provided in the vicinity of the core portion on the substrate, and a light receiving surface is substantially formed on the core portion. A connection structure of an optical waveguide and a semiconductor light receiving element for detection by semiconductor light receiving elements arranged in parallel, wherein the semiconductor light receiving element has an electrode on an upper surface, and the electrode and the periphery of the semiconductor light receiving element. The optical waveguide and the semiconductor light receiving element characterized in that the electrode and the upper surface in the vicinity thereof are covered with a wiring conductor for electrically connecting the electrode wiring for mounting the semiconductor light receiving element formed on the upper surface of the substrate. Connection structure with.
JP2001287709A 2001-09-20 2001-09-20 Connection structure between optical waveguide and semiconductor light receiving element Expired - Fee Related JP3793561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001287709A JP3793561B2 (en) 2001-09-20 2001-09-20 Connection structure between optical waveguide and semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001287709A JP3793561B2 (en) 2001-09-20 2001-09-20 Connection structure between optical waveguide and semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JP2003101044A true JP2003101044A (en) 2003-04-04
JP3793561B2 JP3793561B2 (en) 2006-07-05

Family

ID=19110476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287709A Expired - Fee Related JP3793561B2 (en) 2001-09-20 2001-09-20 Connection structure between optical waveguide and semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP3793561B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107742A1 (en) * 2008-02-28 2009-09-03 日本電気株式会社 Semiconductor device
JP2015197499A (en) * 2014-03-31 2015-11-09 住友大阪セメント株式会社 Optical waveguide element and method for manufacturing the same
WO2021085621A1 (en) * 2019-10-31 2021-05-06 京セラ株式会社 Optical waveguide package and light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107742A1 (en) * 2008-02-28 2009-09-03 日本電気株式会社 Semiconductor device
US8422837B2 (en) 2008-02-28 2013-04-16 Nec Corporation Semiconductor device
JP2015197499A (en) * 2014-03-31 2015-11-09 住友大阪セメント株式会社 Optical waveguide element and method for manufacturing the same
WO2021085621A1 (en) * 2019-10-31 2021-05-06 京セラ株式会社 Optical waveguide package and light emitting device
JPWO2021085621A1 (en) * 2019-10-31 2021-05-06
US20220373736A1 (en) * 2019-10-31 2022-11-24 Kyocera Corporation Optical waveguide package and light-emitting device
JP7362761B2 (en) 2019-10-31 2023-10-17 京セラ株式会社 Optical waveguide package and light emitting device

Also Published As

Publication number Publication date
JP3793561B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
CN101846777B (en) Optical device
EP2413171A1 (en) Laterally coupled optical fiber component and processing method thereof
KR100532281B1 (en) Side illuminated refracting-facet photodetector and method for fabricating the same
US6804440B2 (en) Integrated mode converter, waveguide, and on-chip function
JPH0567770A (en) Photoelectronic integrated circuit device
JP5462073B2 (en) Optical waveguide device and manufacturing method thereof
EP1225459A2 (en) Surface smoothing by spin coating technique for an opto-electronic component
WO2021094473A1 (en) Optoelectronic device and method of manufacture thereof
JPH11183761A (en) Optical connection structure
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JP3793561B2 (en) Connection structure between optical waveguide and semiconductor light receiving element
CN102804008B (en) Reduce the optical loss in reflection grating
US7174062B2 (en) Optical device and method of manufacturing same
JPH1152198A (en) Optical connecting structure
JP2003121673A (en) Connecting structure of optical waveguide and semiconductor light receiving element
US11119280B2 (en) Grating couplers and methods of making same
CN112558333A (en) Electro-optical device and manufacturing method thereof
JP4987335B2 (en) Optical device
CA2222859A1 (en) Photonic component with electrical conduction paths
CN112558217A (en) Electro-optical device and manufacturing method thereof
JP3559528B2 (en) Opto-electric circuit board
JP3898448B2 (en) Optical integrated circuit board
JP6325941B2 (en) Optical circuit
US20210354982A1 (en) Method for Fabrication of a Suspended Elongated Structure by Etching or Dissolution Through Openings in a Layer
JP2002107559A (en) Substrate for optical integrated circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees